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Abstract: Convolutional neural networks (CNNs) have proven their efficiency in various applications
in agriculture. In crops such as date, they have been mainly used in the identification and sorting of
ripe fruits. The aim of this study was the performance evaluation of eight different CNNs, considering
transfer learning for their training, as well as five hyperparameters. The CNN architectures evaluated
were VGG-16, VGG-19, ResNet-50, ResNet-101, ResNet-152, AlexNet, Inception V3, and CNN from
scratch. Likewise, the hyperparameters analyzed were the number of layers, the number of epochs,
the batch size, optimizer, and learning rate. The accuracy and processing time were considered
to determine the performance of CNN architectures, in the classification of mature dates’ cultivar
Medjool. The model obtained from VGG-19 architecture with a batch of 128 and Adam optimizer
with a learning rate of 0.01 presented the best performance with an accuracy of 99.32%. We concluded
that the VGG-19 model can be used to build computer vision systems that help producers improve
their sorting process to detect the Tamar stage of a Medjool date.

Keywords: Phoenix dactylifera L.; Medjool dates; image classification; convolutional neural networks;
deep learning; transfer learning

1. Introduction

The date palm fruit (Phoenix dactylifera L.) is a berry composed of a fleshy mesocarp,
covered by a thin epicarp and an endocarp covering all of its seed [1]. The name of this fruit
is “date,” which comes from the Greek word “Daktylos,” which means “finger” [2]. This
fruit has been the primary source of food in several countries in the Middle East, playing
an essential role in the economy, society, and environment [3].

This fruit’s growth presents a progressive maturity level in four stages known by their
Arabic names: Kimri, Khalal, Rutab, and Tamar. At its first stage of growth (Kimri), the
fruit is small, green, and with a hard texture. In its second stage (Khalal), the fruit reaches
its maximum size and changes it is green color to yellow or red. In the third stage (Rutab),
the fruit is losing weight and moisture, turning the fruit into a brown color. In the last stage
(Tamar), the fruit is ripe and ready to be harvested [4].

According to Food and Agriculture Organization of the United Nations data, the
world’s largest date producers are Egypt, Saudi Arabia, Iran, Algeria, and Iraq, producing
66% of the world production in 2018 [5]. However, despite not being a native crop of the
American continent, the date has also become a priority fruit for cultivation in southern
California and Arizona in the United States and northwestern Mexico, where high-quality
dates, such as Medjool cultivar, are grown [6].

The date palm producers face several challenges concerning harvesting, sorting, and
packaging because they are mainly performed manually [7]. Therefore, many employers
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are hiring for these activities that involve long working hours. People perform repetitive
tasks, causing mistakes in the correct inspection of the fruit’s quality attributes, such as
color (maturity level), size, and texture.

Particularly in the Medjool date harvesting process, fruit pickers shake the palm bunch
so that the ripe dates fall into containers. This can cause the ripe fruit to suffer damage to
its texture or that fruits in other ripening stages are also harvested. The dates are placed in
trays, where the immature ones will be extracted and grouped in other trays to dry them in
the sun until they reach their full maturity. In contrast, the minute or damaged ones are
commonly separated to develop date by-products or for animal consumption. Finally, the
Medjool date sorting (which has the required degree of maturity) is packed.

To automate the processes related to harvesting, sorting, and packaging of dates,
recently, there has been interest in exploring convolutional neural networks (CNNs) [8,9].
CNN has shown exceptional accuracy for classifying fruits and vegetables, considering
several quality parameters, such as color (maturity level), shape, texture, and size [10–14].

Regarding dates, we identified that some studies use machine learning algorithms
and image processing techniques to sort among date palm fruit or to detect among their
different maturity stages [15–17]. Further, there are research works that propose using
CNNs [8,9,18]. However, these studies do not present models to detect the maturity stage
of the Medjool date.

The main contribution of this article was the identification of the hyperparameters
that best influenced the training of a CNN architecture that transfers learning to Medjool’s
mature date sorting. To achieve it, we performed a comparison of the performance of eight
CNN architectures. Two versions of the CNN architecture are called the Visual Geometric
Group (VGG) from Oxford University, VGG-16 and VGG-19. Three versions of the CNN
architecture are called Residual Network from Microsoft research, ResNet-50, ResNet-101,
and ResNet-152. WE also looked at AlexNet, Inception Version 3, and a CNN from scratch.
The hyperparameters analyzed were the number of layers, the number of epochs, the batch
size, optimizer, and learning rate.

2. Materials and Methods
2.1. Image Acquisition

The images corresponding to ripe and unripe dates in trays were taken in Septem-
ber 2020, during the first round of harvest of Medjool dates in the plantation located in
Colonia La Herradura (32◦36′56′′ N, 115◦15′36′′ W) in the Mexicali Valley, Mexico. The
acquisition of images was made with three different cameras, using natural light between
8:00 a.m. and 2:00 p.m. We used a Canon EOS Rebel T6 of 18 megapixels and the cameras
of the smartphones Samsung, SM-N950F and SM-N960F, which have a dual camera of
12 megapixels.

2.2. Image Data Set

The image data set contained 1002 images in JPG format, which are of different sizes
(5184× 3456, 4449× 3071, and 4376× 3375 pixels). The network architectures were trained
with JPG images because they are fed with low-quality images in real scenarios. We refer
to low-quality as images with blur, noise, contrast, or compression. We considered that if
you are trained in architecture with this type of image, the system will be able to classify
the Medjool date in images with these features. Further, a study shows that convolutional
neural networks are minimally affected in their performance by using JPG format [19].

The image data set was distributed as follows: 501 images of ripe dates and 501 images
of unripe dates on trays (Figure 1). The dates in trays were previously classified as ripe or
unripe by expert people.
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Figure 1. Example of dataset images. (A–C) Trays with ripe dates. (D–F) Trays with unripe dates.

2.3. Convolutional Neural Networks

The convolutional neural network (CNN) is a type of artificial neural network, where
neurons correspond to receptive fields similar to the neurons in the primary visual cortex
of a biological brain [20]. Also, CNN is identical to ordinary neural networks such as
multilayer perceptron. They are composed of neurons that have weights and biases that
can learn. Each neuron receives some input, performs a scalar product, and then applies an
activation function [21]. The CNN as a multilayer perceptron has a loss or cost function on
the last layer, which will be fully connected.

Figure 2 presents a CNN structure, which consists of three blocks. The first is the input,
an image. Next, we can see the block of feature extraction, which consists of convolutional
and pooling layers. Finally, the third block is of classification, which consists of fully
connected layers and softmax. The structure of the convolutional network changes as the
number of convolution and pooling layers increases.

Figure 2. Representation of a basic convolutional neural network (CNN).

The main difference between convolutional neural networks from ordinary neural
networks is that they explicitly assume that the inputs are images [21], allowing specific
encoding properties in the architecture, gaining efficiency and reducing the number of
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parameters in the network. In this way, CNNs can model complex variations and behaviors,
giving quite accurate predictions. This study considered eight CNNs’ architectures: VGG-
16, VGG-19, Inception V3, ResNet-50, ResNet-101, ResNet-152, AlexNet, and one CNN
from scratch.

2.3.1. VGG-16 and VGG-19 Architectures

VGG is the abbreviation for the Visual Geometric Group [22]. The VGG model was
developed by Simonay and Zimmerman [23]. VGG uses 3 × 3 convolutional layers stacked
on top of each other in increasing depth. The reduction of volume size is handled by max
pooling. Two fully connected layers, each with 4096 nodes, are then followed by a softmax
classifier [23]. The number 16 or 19 is the layer of networks considered deep.

2.3.2. Inception V3 Architecture (GoogLeNet V3)

This architecture was born with the name of GoogLeNet, but subsequent updates have
been called Inception vN, where N refers to the version number put out by Google [22].
The basic module of Inception [24] consists of four branches concatenated in parallel: a
1× 1 kernel convolution, followed by two 3× 3 convolutions; a 1× 1 convolution, followed
by a 3 × 3 convolution; a pooling, followed by a 1 × 1 convolution; and finally a 1 × 1
convolution. Inception consists of 10 modules, although these modules are going slightly
as the net gets deeper. Five of the modules are changed with the purpose of reducing the
computational cost by replacing the n × n convolutions with two convolutions, a 1 × 7
followed by a 7 × 1. Two last modules replace the last two convolutions: 3 × 3 of the first
branch with two convolutions each and one 1 × 3 followed by another 3 × 1, this time in
parallel. In total, Inception V3 has 42 layers with parameters.

2.3.3. ResNet-50, ResNet-101, and ResNet-152 Architectures (Residual Neural Network)

ResNet [25] does not have a fixed depth and depends on the number of consecutive
modules used. However, increasing the network’s depth to obtain a greater precision
makes the network more difficult to optimize. ResNet addresses this problem by adjusting
a residual application in place of the original and adding several connections between
layers. These new connections skip several layers and perform an identity or a 1 × 1
convolution. The base block of this network is called the residual block. When the network
has 50 or more layers, it is composed of three sequential convolutions, a 1 × 1, a 3 × 3,
and a 1 × 1, and a connection that links the input of the first convolution to the output
of the third convolution. This study used three models with this architecture, ResNet-50,
ResNet-101, and ResNet-152, which are composed of 50, 101, and 152 layers, respectively.

2.3.4. AlexNet

This architecture consists of five convolutional layers and three fully connected layers.
Some convolution layers are followed by max-pooling layers (1, 2, and 5 layers). The
Rectified Linear Unit (ReLU) nonlinearity is applied to the output of every convolutional
and fully connected layer. The fully connected layers have 4096 neurons each [26]. To
avoid data over-adjustment, a regularization method is used, known as a dropout, which
consists of “turning off” neurons with a predetermined probability during training.

2.3.5. CNN from Scratch

The CNN that we built from scratch was composed of four alternate convolutional
and max-pooling layers, followed by a dropout after every other convolutional and pooling
pair. After the last grouping layer, we attached a fully connected layer with 256 neurons,
another dropout layer, and, finally, a softmax classification layer for our classes. The loss
function was the cross entropy since it is useful with convolutional neural networks, most
significantly for purposes of image classification [27]. In order to compare the performance
of a network that learns from scratch against other architectures that start from transfer
learning, a convolutional network was trained from scratch.



Agriculture 2021, 11, 115 5 of 12

2.3.6. CNNs’ Optimization Techniques and Hyperparameters
Techniques

All the above networks were too deep to train them from scratch with our data set.
Therefore, we used transfer learning, which consists of taking the features learned in other
contexts and using them in a new and similar problem [28]. Transfer learning is usually
done for tasks where the data set has too little data to train a full-scale model from scratch.
This was our case since we only had 1002 Medjool date images.

Transfer learning is commonly used in two ways: (1) pretraining model, which consists
of using a pretrained model that replace its last layers with others, so that the characteristics
are of the new data set and (2) convolutional network tuning, which is a strategy to tune
the weights of the layers using backward propagation.

For this study, the application of transfer learning was the pretraining model. We used
the pre-trained networks with ImageNet, which is a large visual database designed for
use in visual object recognition [26]. We removed the final classification layer, the neuron
softmax layer at the end, which corresponds to ImageNet, and instead replaced it with a
new softmax layer for our image data set. A summary of the utilized CNN architectures is
shown in Table 1.

Table 1. Characteristics of the CNNs’ architectures used in this study.

Network Depth
(Hidden Layers) Image Size Parameters

CNN from scratch 24 224 × 224 1,209,058
VGG-16 16 224 × 224 134,268,738
VGG-19 19 224 × 224 143,667,240

ResNet-50 50 224 × 224 23,591,810
ResNet-101 101 224 × 224 42,662,274
ResNet-152 152 224 × 224 58,375,042
Inception v3 48 299 × 299 21,806,882

AlexNet 8 227 × 227 56,328,962

Hyperparameters

Hyperparameters are variables that define the structure of a convolutional network
as well as allow it to be trained [29]. These hyperparameters are learning rate, epochs,
optimizer, batch size, number of layers, and activation functions, among others, which
can be adjusted to make CNN more efficient. In this study, we changed the values of the
hyperparameters optimizer, learning rate, batch, and epochs. Our CNN used an optimizer
Adaptive Moment Estimation (Adam) and Stochastic Gradient Descent (SGD) since those
are well-known optimizers, which have good performance to classify images in CNN [30].
The learning rates for the optimizers were 0.01 and 0.001. The batch size value was 64
and 128, the epochs were 25 and 400, and the number of layers depended on the CNN
architecture used (Table 1).

2.4. Experimental Framework

To implement and evaluate the CNN architectures presented in Section 2.3, we used
the Google Colab cloud service based on Jupyter’s Notebooks, which allows the free use of
Google’s GPUs or TPUs, with the libraries Scikit-learn, PyTorch, TensorFlow, Keras, and
OpenCV [31]. The hardware specifications used in this experiment were GPU: Nvidia-
Tesla-T4; CPU: Intel(R) Xeon(R) CPU @ 2.20 GHz; RAM: ~12.78 GB available; Hard Disk:
~32.20 GB available; and the software specifications were and Operating System: 18.04.5
LTS (Bionic Beaver) with the libraries Keras 1.0.8 and Tensorflow 1.15 as a back-end.
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2.5. Performance Evaluation

The accuracy is the metric used to evaluate the classification performance of the
architectures proposed in this paper. This metric calculates the percentage of samples that
are correctly classified, and it is represented in the next equation:

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

where tp represents true positives, those that belonged to the class and were correctly
classified in that class; tn represents true negatives, those that did not belong to the class
and were correctly classified in another class; fp represents false positives, those that did not
belong to the class and were wrongly assigned to the class; and finally, fn represents false
negatives, those that belonged to the class and were mistakenly classified in another class.

3. Results

Using the Adam parameter as an optimizer, it can be observed in Table 2 that for the
evaluation with 25 epochs, the highest performance percentage was for VGG-16 (96.63%
and 95.27%), with a learning rate (0.001), and for VGG-19 (93.92% and 97.30%), with
a learning rate (0.01). The lowest performance was for AlexNet (64.19%) and ResNet-
152 (64.17%), for a learning rate (0.001), and CNN from scratch (46.62% and 53.38%),
with a learning rate (0.01). On the other hand, for 400 epochs, the highest percentage
was Inception V3 (98.65%) and VGG-19 (98.75%), both for a learning rate (0.001) and for
Inception V3 (98.65%) and VGG-19 (99.32%), with a learning rate (0.01). Likewise, the
lowest performance was for ResNet-101 and ResNet-152 (both with 80.41%) and ResNet-101
(79.05%), for a learning rate (0.001) and, finally, AlexNet (67.57%) and CNN from scratch
(43.24%), both with a learning rate (0.01). It can also be observed that the two best results
were for VGG-19 (99.32% and 98.65%) for a batch (128), followed by Inception V3 (98.65%)
for both batches (64); all these for 400 epochs.

Table 2. Accuracy evaluation of eight CNN architectures, changing the values of the hyperparameters of a batch, learning
rate, and epochs, using the Adaptive Moment Estimation (Adam) parameter as an optimizer.

Parameters CNN from Scratch VGG-16 VGG-19 ResNet-50 ResNet-101 ResNet-152 AlexNet Inception V3

Epochs 25 25 25 25 25 25 25 25
400 400 400 400 400 400 400 400

Batch = 64, Optimizer = Adam, Learning Rate = 0.001

Accuracy 93.24 96.63 90.54 68.92 71.62 74.32 64.19 96.62
(%) 94.59 96.62 95.95 81.08 80.41 80.41 88.51 98.65

Time 9 24 14 11 14 25 11 12
(min) 16 40 43 33 41 61 19 131

Batch = 128, Optimizer = Adam, Learning Rate = 0.001

Accuracy 85.13 95.27 87.84 70.95 70.27 64.17 75.00 93.24
(%) 93.92 97.29 98.65 83.11 75.67 81.08 85.81 95.27

Time 11 12 5 13 7 9 11 13
(min) 12 34 46 45 16 54 19 48

Batch = 64, Optimizer = Adam, Learning Rate = 0.01

Accuracy 46.62 85.81 93.92 83.78 65.54 75.68 85.81 95.95
(%) 95.27 95.95 96.62 86.49 79.05 84.46 67.57 98.65

Time 10 12 12 10 11 16 16 11
(min) 14 43 45 34 45 65 18 47

Batch = 128, Optimizer = Adam, Learning Rate = 0.01

Accuracy 53.38 97.29 97.30 84.46 76.35 66.89 89.19 93.92
(%) 43.24 96.62 99.32 84.46 79.73 81.76 87.16 95.95

Time 11 12 13 12 11 15 11 13
(min) 16 38 43 33 46 60 18 44
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Regarding the time parameter in Table 2, CNN from scratch had the lowest values
for processing time. However, some values were higher than those reported by ResNet-50,
ResNet-101, ResNet-152, and AlexNet architectures. Likewise, the highest processing times
in 25 epochs were for ResNet-152 (25 min) and Inception V3 (13 min), with a learning rate
(0.001), and for ResNet-152 and AlexNet (16 min) and ResNet-152 (15 min), for a learning
rate (0.01). For 400 epochs, the highest process time was for Inception V3 (131 min) and
ResNet-152 (54 min), both for a learning rate (0.001) and ResNet-152 (65 and 60 min), with
a learning rate (0.01). The ResNet-152 architecture was the CNN that required the most
processing time on its network for most hyperparameters. The highest processing times
were not associated with high or low accuracy.

Table 3 reveals that using the Stochastic Gradient Descent (SGD) parameter as an
optimizer, for an evaluation with 25 epochs, the highest performance percentage was for
VGG-19 (87.16%) and VGG-16 (87.16%), with a learning rate (0.001), and for Inception
V3 (92.56% and 91.89%), with a learning rate (0.01). While the lowest performance was
for AlexNet (52.70%) and CNN from scratch (51.35%), for a learning rate (0.001), and for
ResNet-50 and ResNet-152 (both with 45.94%) and ResNet-50 (45.94%), with a learning
rate (0.01). On the other hand, for 400 epochs, the highest percentage was obtained by
Inception V3 (95.94%) and CNN from scratch (94.59%), both for a learning rate (0.001),
and VGG-19 (94.59%) and Inception V3 (95.27%), with a learning rate (0.01). Likewise,
the lowest performance was obtained by AlexNet (56.08% and 60.81%), for a learning rate
(0.001), and, finally, ResNet-50 (50% and 52.03%) with a learning rate (0.01). It can also be
observed that the two best CNN architectures turned out to be CNN from scratch (94.59%)
and Inception V3 (95.27%) for a batch (128), followed by Inception V3 (95.94%) and VGG-19
(94.59%) for a batch (64).

Table 3. Accuracy evaluation of eight CNNs’ architectures, changing the batch’s hyperparameters values, learning rate, and
epochs, using the Stochastic Gradient Descent (SGD) parameter as an optimizer.

Parameters CNN from Scratch VGG-16 VGG-19 ResNet-50 ResNet-101 ResNet-152 AlexNet Inception V3

Epochs 25 25 25 25 25 25 25 25
400 400 400 400 400 400 400 400

Batch = 64, Optimizer = SGD, Learning Rate = 0.001

Accuracy 54.05 86.49 87.16 66.89 53.38 54.05 52.70 86.50
(%) 93.24 93.24 91.21 75.68 75.00 64.19 56.08 95.94

Time 12 14 13 11 12 13 11 13
(min) 16 41 46 36 47 58 19 42

Batch = 128, Optimizer = SGD, Learning Rate = 0.001

Accuracy 51.35 87.16 85.81 68.92 53.37 53.37 53.38 79.05
(%) 94.59 90.54 92.57 71.62 74.32 64.87 60.81 93.24

Time 10 23 13 12 12 13 11 14
(min) 28 50 48 32 44 115 18 43

Batch = 64, Optimizer = SGD, Learning Rate = 0.01

Accuracy 83.11 88.51 77.10 45.94 46.62 45.94 53.38 92.56
(%) 89.86 92.57 94.59 50.00 66.89 65.54 83.78 93.92

Time 10 12 12 11 8 14 11 12
(min) 15 45 45 32 44 58 31 44

Batch = 128, Optimizer = SGD, Learning Rate = 0.01

Accuracy 79.72 78.37 79.73 45.94 46.62 53.37 54.05 91.89
(%) 91.26 90.54 88.51 52.03 56.08 64.19 80.41 95.27

Time 11 11 12 11 69 13 34 12
(min) 16 41 44 53 44 54 21 42

Table 3 shows that, for the time parameter, there was no defined pattern to identify
the architecture that presented the lowest processing time in all its hyperparameters. Low
values mostly appeared for CNN from scratch. However, the lowest value was for the
ResNet-101 model with 8 min, in epochs (25), batch (64), and learning rate (0.01). Likewise,
the accuracy of CNN from scratch was better than that reported by ResNet-50, ResNet-101,
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ResNet-152, and AlexNet architectures. The highest processing times in 25 epochs was
for VGG-16 (14 and 23 min), with a learning rate (0.001), and for ResNet-152 (14 min) and
ResNet-101 (69 min), for a learning rate (0.01). For 400 epochs, the highest process time
was for ResNet-152 (58 and 115 min) for a learning rate (0.001) and (58 and 54 min), with
a learning rate (0.01). Finally, ResNet-52 architecture required the most processing time
for most hyperparameters. The highest processing times were not associated with high or
low accuracy.

4. Discussion

Convolutional Neural Networks (CNNs) are used in several agriculture areas such as
leaf and plant disease detection, land cover classification, crop type classification, plant
recognition, segmentation of root and soil, crop yield estimation, fruit counting, obstacle
detection in row crops and grass mowing, and identification of weeds, to mention a
few [32,33]. For example, in Mohanty et al. [34], they presented the training of CNN
architectures AlexNet and Google Net with a PlanVillage image data set to detect 26 types
of diseases in 14 kinds of crops. Their results showed an accuracy of 99.35% to identify
healthy and diseased plants. Meanwhile, Rahnemonfar and Sheppard [35] proposed using
the CNN architectures’ inception and Residual Networks (ResNet) architectures to estimate
the yield of a tomato plant using synthetic images. Their results indicated that, with 91%
accuracy, they can evaluate the yield.

Another example was presented in [36], where authors proposed training several
convolutional networks to identify four fruits (mango, orange, apple, and banana). They
were classified into two categories: fresh and rotten. The best performing models were
Inception version 3 and the Visual Geometric Group of 16-layer (VGG-16) architectures,
which received the learning transfer. Their results showed identification and classification
percentages of 90% accuracy. A similar study was presented in [13], where the use of a
VGG-16 network to classify vegetables and fruits was proposed. A total of 26 categories
were classified: pumpkin, celery, cauliflower, pineapple, pomegranate, grapefruit, banana,
cucumber, broccoli, onion, carrot, etc. The authors claimed to have 95.6% accuracy in
classifying these fruits and vegetables. Regarding dates, we identified research works that
proposed using CNNs to sort among dates or to detect among their different maturity
stages [8,9,16].

Currently, determining the stage of maturity in the Medjool date using traditional
image processing and machine learning methods is complicated. This is because these
methods are trained to extract features in various cultivars such as their appearance, color
(associated with the maturity stages), shape, and texture [7,16]. However, there are no
studies where a feature extraction or predictive model for sorting Medjool dates that we
are aware of. Furthermore, recent models cannot determine sorting Medjool because this
cultivar is harvested, sorted, packaged, and consumed in its Tamar stage.

To contribute with a model that may be useful in sorting the Medjool date through im-
ages, we compared the performance of eight CNN architectures in this study. Additionally,
some hyperparameters’ values were modified, and transfer learning was used to identify
and propose the use of CNN with the best precision.

As shown in Table 2, our findings indicated that when we use an Adam optimizer,
the VGG architectures show the best accuracy, with the VGG-19 model that reached the
highest percentage of accuracy with 99.32%. Likewise, the ResNet and CNN from scratch
architectures showed the lowest performance percentages; the CNN from a scratch model
achieved the most insufficient precision, with 43.24%. The highest average percentage
generated among the eight architectures was 89.53%, using the combination of batch (64),
learning rate (0.01), and epochs (400), with an average time of 48.71 min, while the lowest
was 75%, combining a batch (64), learning rate (0.001), and epochs (25), with an average
time of 12.25 min.

Likewise, Table 3 indicates that no architecture showed the best accuracy when we
used an SGD parameter as an optimizer. However, the ResNet-50 architecture showed
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the lowest performance percentages, with batch (64 and 128) and learning rate (0.001).
The highest percentage generated among the eight architectures was 80.57%, using the
combination of batch (64), learning rate (0.001), and epochs (400), with an average time of
38.13 min, while the lowest was 66.21%, combining a batch (128), learning rate (0.01), and
epochs (25), with an average time of 21.63 min.

It was noticeable that, if the number of epochs for all models was increased, the
percentage of accuracy and required processing time also increased. Likewise, we observed
that the highest processing times corresponded to the ResNet-152 architecture, which could
be associated with the fact that this architecture had the highest number of layers. However,
none of its precision was higher than 85% performance.

The optimizer can help us minimize the error function that allows us to conform to
the training set examples. In this study, the accuracy was higher for Adam than for SGD.

Several studies have focused on identifying the CNN that offers the best precision for
selecting dates from cultivars in their various stages of maturity [8,9,18]. However, there
are currently no reported studies that use any CNN to classify the date cultivar Medjool.

Table 4 compares similar studies to ours, where CNNs’ architectures with the best
performance have been reported. Nasiri et al., 2019 [9], only worked on VGG-16 with
two hyperparameters, obtaining the highest accuracy of 96.98%. Likewise, Altaheri et al.,
2019 [8], worked on two CNN with transfer learning and fine-tuning, modifying three
hyperparameters twice, obtaining the highest percentage for VGG-16 with an accuracy
of 97.25%. Faisal et al., 2020 [16], compared four CNNs’ performances, evaluating four
hyperparameters, resulting in ResNet as the best model, with an accuracy of 99.01%. Finally,
our study evaluated eight CNNs’ performances, using transfer learning and modifying
four hyperparameters twice, resulting in the VGG-19 model with the highest performance,
with 99.32% accuracy.

Table 4. Comparison of studies that report CNN architectures in the detection of various stages of maturity in the date palm fruit.

Reference Date Palm Cultivar Maturity Stages Number of Images
(Dataset)

CNN
Architectures Hyperparameters Best Accuracy

Nasiri et al.,
2019 [9] Shahani Khalal, Rutab, Tamar,

and defective date +1300 images VGG-16 Epochs = 15
Batch = 32

VGG-16
96.98%

Altaheri et al.,
2019 [8]

Barhi, Khalas,
Meneifi, Naboot
Saif and Sullaj

Immature-1,
Immature-2,

pre-Khalal, Khalal,
Khalal-with-Rutab,

pre-Tamar, and Tamar.

8072 images
AlexNet, VGG-16,

Transfer learning and
Fine-Tuning

Epochs = 50 and 200
Batch = 32 and 128

Learning rate =
0.0001, 0.0002

VGG-16 97.25%

Faisal et al.,
2020 [18]

Barhi, Khalas,
Meneifi, Naboot
Saif, and Sullaj

Immature, Khalal,
Khalal with Rutab,

Pre-Tamar, and Tamar
8079 images

ResNet, VGG-19,
Inception V3, NASNet

and support vector
machine (SVM)

(regression and linear)

Epochs = 50
Batch = 16

Optimizer = Adam
Learning rate =

0.0001

ResNet
99.01%

This Study Medjool Ripe and unripe 1002 images

VGG-16, VGG-19,
Inception V3,

ResNet-50,
ResNet-101,

ResNet-152, AlexNet,
CNN from scratch

Epochs = 25 and 400
Batch = 64 and 128

Optimizers = Adam,
Stochastic Gradient

Descent
Learning rate =

0.001, 0.01

VGG-19
99.32%

One aspect to consider in this comparison is that the Medjool date is only consumed
in its Tamar stage. Therefore, this study only used two stages for its sorting. The number of
images was lower compared to the rest of the studies. However, in our work, the percentage
of accuracy was higher due to the application of transfer learning and modification in
various hyperparameters, which influence architectures’ performance [37,38].

In our study, resulting from choosing the hyperparameters epochs (400), batch (128),
optimizer (Adam), and a learning rate (0.01), we identified that VGG-19 architecture had
the best performance. Likewise, this architecture could be included as part of the software
that controlled a robotic mechanism to support the date palm farmer in an automated
system of sorting ripe fruits.
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5. Conclusions

This study evaluated the precision and processing time of eight CNN architectures.
Seven of them were pretrained by an extensive image database designed for object recogni-
tion (ImageNet). These models were named VGG-16, VGG-19, Inception V3, ResNet-50,
ResNet-101, ResNet-152, and AlexNet, which received transfer learning when their last
classification layer was replaced. Additionally, a model that learns from scratch was used,
that is, without obtaining learning.

All CNN architectures were evaluated by modifying the epochs, batch, optimizer,
and learning rate hyperparameters since these parameters have been reported to have
positive effects on the performance of convolutional networks. The results indicated that
the CNN with the best performance for the sorting Medjool date was the architecture of the
VGG group, which used the Adam optimizer. From these architectures, the VGG-19 model
was the one that reported the best accuracy, with 99.32%. Likewise, the ResNet group
architectures were the ones that reported the lowest performance using the same optimizer,
the ResNet-152 model, which reported the most insufficient accuracy, with 64.17%. The use
of the SGD optimizer did not have a significant effect on obtaining high accuracies.

Finally, it will be necessary to continue working on the best accuracy and the shortest
processing time, with the modification of other hyperparameters. The inclusion in the
evaluation of different fruit attributes, such as its size, gives it a high commercial value. It
is essential in the packing process of this fruit.
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