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Abstract: Farming systems form the backbone of the world food system. The food system, in turn, is
a critical component in sustainable development, with direct linkages to the social, economic, and
ecological systems. Weeds are one of the major factors responsible for the crop yield gap in the
different regions of the world. In this work, a plant and weed identifier tool was conceptualized,
developed, and trained based on artificial deep neural networks to be used for the purpose of weeding
the inter-row space in crop fields. A high-level design of the weeding robot is conceptualized and
proposed as a solution to the problem of weed infestation in farming systems. The implementation
process includes data collection, data pre-processing, training and optimizing a neural network
model. A selective pre-trained neural network model was considered for implementing the task
of plant and weed identification. The faster R-CNN (Region based Convolution Neural Network)
method achieved an overall mean Average Precision (mAP) of around 31% while considering the
learning rate hyperparameter of 0.0002. In the plant and weed prediction tests, prediction values in
the range of 88–98% were observed in comparison to the ground truth. While as on a completely
unknown dataset of plants and weeds, predictions were observed in the range of 67–95% for plants,
and 84% to 99% in the case of weeds. In addition to that, a simple yet unique stem estimation
technique for the identified weeds based on bounding box localization of the object inside the image
frame is proposed.

Keywords: deep learning; artificial neural networks; image identification; agroecology; weeds; yield
gap; environment; health

1. Introduction

Growing food through agriculture involves different labor-intensive practices. Most
of these practices have traditionally been performed manually. Weeding is one such
agricultural practice. However, generally, as farming has become more industrialized—or
that the industrialized agriculture has become the leitmotif for all to emulate—different
practices evolved over time with the aim of increasing the efficiency of labor and increasing
the productivity of the land. This involved efforts to increase the efficacy of the manual
practices by using mechanical and chemical aids or in some cases to present alternate
pathways for these practices without any direct manual intervention [1].

The growth of weeds is one of the largest biotic factors contributing to the yield gap
in food crops [2,3]. In South Asia, it is the single largest biotic yield gap factor in rice
production systems [4,5]. It has been reported that in sugarcane cultivation, weeds reduced
the crop growth at early stages and have resulted in a yield loss of 27–35% [6]. In traditional
farming systems, weeds have been manually removed from the crop field with a help of
hands or with a hoe. Growing intercrops in between the main crop rows is also a potential
strategy to control the growth of weeds. However, the rise in the use of agrochemicals
multiple times (up to 300 times) in the last 50 years, to control the growth of weeds among
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other things, has shown a lot of negative effects on human and planetary health [7]. The
incidence of herbicide resistance among certain weed populations is also a cause of concern
in this regard [8,9].

It is in this backdrop that a transition to agroecology-based farming systems is being
recommended internationally with an urgency never expressed before. Agroecology is
the study of the ecology of food systems and applying this knowledge for the design of
sustainable farming systems. Agroecology-based alternatives include organic farming
and sustainable intensification strategies like the System of Rice Intensification [10]. The
problem of weeds, however, persists in some of the proposed methodologies too. For
example, the proliferation of weeds is an oft-cited critique of an agroecological methodology
of growing rice, the System of Rice Intensification, which involves growing rice under
alternate wetting and drying conditions, with earlier transplantation and wider spacing
between the rice plants [11] (Figure 1). While as in the case of agrochemical-based farming,
the problem of weeds leads to environmental hazards due to the use of pesticides, in
the case of agroecological methodologies, the practices that are suggested to counter
weed proliferation are not harmful to the environment. Such practices are however often
labor intensive [10,12].
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The excessive use of agrochemicals like pesticides including herbicides has become
a burning topic of discussion in the past few years although the dangers associated with
it have been discussed in the literature for a long time [13–16]. The presence of fertilizer
residues in surface and groundwater and that of pesticide residues in food items has been
well documented [15–20]. Their effects on human and planetary health have been detailed
in different studies; with the use of fertilizers and pesticides has increased manifold over
the past four decades particularly in developing countries [9,21,22]. On the other hand, lack
of nutrients in the soil and pest proliferation continues to challenge farmers leading to a
decline in productivity [23,24]. For example, increased weed proliferation due to excessive
use of fertilizers has resulted in yield losses in farming systems in South Asia [2,9,18,25].

In agrarian societies, secondary practices in farming, associated with plant protection,
have traditionally been done with the help of manual labor, much like the primary practices,
those associated with sowing, planting and harvesting. In some parts of the world, farming
practices like weeding are still done or were done until recently, manually. These practices
have gradually phased out to a large extent and have been replaced by the use of chemical
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pesticides like herbicides and weedicides. As such, the use of agrochemical pesticides has
become the norm [26].

So, one of the options to reverse the ecological damage of the pesticides would be
to go back to manual weeding. However, agroecology does not simply advocate going
back to earlier practices; it involves going back to roots armed with new knowledge and
tools [27,28]. This is the motivation behind the AI-based weed identifier robot, the concept
and design of which is detailed in the following sections. An AI-trained weeding robot
could play a supporting role in agroecology in this regard, when designed keeping in view
the needs of smallholder farms, in particular. As for conventional farming, by which the
current dominant form of agriculture is referred to, such a robot could achieve the double
goals of reducing pesticide use and controlling weed proliferation [11,26].

Different non-conventional yet non-chemical methods for weed identification and
management have been proposed, thanks to the widening scope of technological ad-
vances [29]. In this regard, different technologies have been used for the task of precision
weed management in agriculture, which includes the follows:

Aerial and Satellite Remote Sensing: Aerial remote sensing technologies operate from a
certain height. Here the differential spectral reflectance of the plants and weeds and spectral
resolution of the instrument (vision device) are the driving factors of identification [30].
In the case of a developing plant canopy or taller plants, such methods are hindered by
their inability to differentiate through the lack of or improper visual access to the weeds
growing on the ground. In the initial stages of the cropping season as well, random
stubbles or crop residues might interfere with weed identification [31]. Inaccuracies due
to spectral signal mixing have also been reported in aerial weed identification and hence
hinders precision weed removal [32]. The major reported challenges in aircraft and satellite-
enabled remote sensing for weed management in addition to the acquisition of high spatial
and temporal imagery from higher altitudes is the acquisition of good imagery under
cloudy conditions [31,32].

Unmanned Aerial Vehicles (UAVs): UAVs provide an edge over remote sensing
methods as they operate from a height that is closer to the ground and provides high-
resolution imagery in real-time. Images can be retrieved more frequently and largely
independent of the weather conditions like clouds [29]. Although UAVs provide higher
resolution imagery, they are beset with limitations such as high battery use during flight
time and the high processing time of the imagery [33]. The operation of UAVs like drones is
also often regulated by the government and hence their use and usability might get affected
by local government regulations [34]. Huang et al. have proposed the serial application of
a UAV-based weed identification system and a Variable Rate Spray (VRS) system for weed
identification and management [33]. The integration of both the operative functions is
limited by the payload carrying capacity of the UAV. However, the two operative functions
could easily be integrated into the same machine, with a much higher carrying capacity,
for example, in an on-ground robotic precision weed identification and removal system.

Robotics: The increasing scope of robotic technologies has made possible the de-
ployment of robotics in weed identification and management [29]. With robotics, weed
identification goes a step closer to the ground as compared to the previously discussed
methods. Based on artificial intelligence, using artificial neural networks, weeds can
be not just identified in real-time with higher spatial resolution but can also be tackled,
physically, thermally, or biologically, in real-time with a robotic arm attached to the robot
on the ground. In this regard, the application of machine learning using convolutional
neural networks for the identification of plants/fruits at their different stages has also
been reported [35].

In this study, a plant and weed identifier robot (precision weeding robot) has been
conceptualized and its software designed, based on state-of-the-art deep learning tech-
niques using artificial neural networks (convolution neural networks). Experiments were
conducted on a dataset of over 200 images of three different plant species taken under
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different conditions and of different sizes at different growth stages. The neural network
was trained to identify the plants and classify them as either weed or plant.

The robot is conceptualized for use in both small and big farms. However, the
motivation behind rendering it low-cost and low-tech is to enable smallholders to be the
primary beneficiaries. The importance of this approach stems from the fact that smallholder
farmers are the primary producers of food for the majority of the world population [36].
A low-cost weeding robot that can identify and distinguish weeds from plants could be
an addition to the agroecological interventions [28,37]. The robot can, based on the need,
either remove the weeds or incorporate them into the soil. The option of fitting the robotic
arm with other heads is also there, which can be used to spray trace elements or plant
protection substances.

The construction of the autonomous farming robot mainly focussed on performing
weeding operations is broadly divided into six phases for prototyping and carry out the
initial tests:

Phase 1: Conceptualisation of the idea framework for the design of the robot.
Phase 2: Building and testing an artificially intelligent classifier that can distinguish a

plant from a weed in real-time.
Phase 3: Design the method for estimation and extraction of the position of the

identified weeds using computer vision techniques.
Phase 4: Building a mobile robotic platform prototype and install all necessary com-

ponents and the robotic manipulator for developing and testing.
Phase 5: Design and develop control algorithms for moving the robot platform and the

manipulator with the end effector towards the weed and perform different removal strategies.
Phase 6: Validation studies and iterative tests in the lab and in the field. Improving on

the flaws and developing additional features and testing.
The ideas and results from the first three phases are described in the following sections.

2. Literature Review
2.1. Studies on Weed Killing Herbicides and Its Effects

Application of weedicides is the commonly used method for post-emergent control
of weeds [38,39]. A study conducted in 2016 reported that, globally, the use of the single
most commonly used herbicide Glyphosat increased 15-fold in a span of 20 years [40]. An
increasing number of studies detail the concerns that arise with the usage of herbicides with
respect to adverse effects on human health, soil nutrition, crop health, groundwater, and
biodiversity [41]. Many governments are planning to ban the usage of such agrochemicals
and are hence looking for alternative solutions in this regard [40]. The World Health Organ-
isation (WHO) has reported sufficient evidence regarding the carcinogenicity of insecticides
and herbicides, while its potential effect on human beings at the DNA (Deoxyribonucleic
acid) and chromosome level has also been reported [42]. In a study, the US FDA (Food
and Drug Administration) reported the presence of glyphosate residues in 63.1% of corn
and 67% of soy samples, respectively [40]. A case study in 2017 reported that a detectable
amount of glyphosate was found in the urine specimens of pregnant women leading them
to have shorter pregnancy lengths [40]. Another study from Sri Lanka shows that drinking
glyphosate contaminated water causes chronic kidney diseases [43]. In addition to being
a health risk for humans, the use of pesticides has also been reported to cause a decrease
in monarch butteries population [44], slow larvae growth in honey bees, and lead to their
death when exposed to glyphosate [45]. The use of herbicides generally poses a slew of
adverse non-target risks on the different components of the agroecosystems [46]. Hence
exploring a non-chemical solution to the problem of weed proliferation is plausible.

2.2. Deep Machine Learning in Agriculture

Machine learning (ML) is a subset of the artificial intelligence domain that provides
computers the ability to learn, analyze, and make their own decisions/predictions with-
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out being explicitly programmed. It is mainly categorized into predictive or supervised
learning and unsupervised learning [47].

The goal of the supervised learning approach is to learn a mapping function from
inputs x to outputs y, given a labeled N set of input-output pairs

D = {(xi, yi)}N
i=1 (1)

Here, D is called the training set, and N is the number of training examples. In simple
terms, we have few sample inputs and outputs and we use a mathematical algorithm to
learn an underlying mapping function that maps input to the output. Hereby, the aim is to
estimate the mapping function and predict the output when an entirely new set of input
data is provided. Currently, supervised learning is widely used in many applications, such
as classification, pattern recognition, and regression problems [47].

On the other hand, in unsupervised learning, we are only given inputs, and the goal
is to find ‘interesting patterns’ in the data [11,47].

D = {xi}N
i=1

In simple terms, here, the algorithm is left to learn and analyze the underlying pattern
without providing any input labeled data. The algorithm learns through structuring data
patterns and predicts the output. Some of the examples of unsupervised learning are
clustering and association problems [47]. Figure 2 shows a general block diagram of the
machine learning approach.
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Deep Learning is a subset of the Machine Learning approach in artificial intelligence.
Artificial deep neural networks are one of the deep learning architectures, which provide a
compelling supervised learning framework [48,49]. Machine learning and deep learning
algorithms are applied in various agricultural operations, such as flower species recognition,
disease prediction and detection in plants, crop yield forecasting, weed classification
and detection, and plant species recognition and classification [50]. These are briefly
described below.

2.2.1. Disease Identification

Crop diseases are a significant threat to the crop yield and the quality of the food
produced, with adverse consequences on the livelihood of small-scale farmers and food
security [51]. Globally, 80% of the food is grown majorly by the small-scale farmers, and
among them, there is a reported yield loss of 50% due to crop diseases and pests [51]. Vari-
ous types of microbial plant pathogens are the typical causative agents of plant diseases [20].
Different bio-control agents have been assessed and used against those pathogens to curb
plant diseases [52]. However, a few decades back, research efforts were initiated for the
early identification of plant and crop diseases at different agricultural institutes to help
farmers in the prevention of crop diseases [51]. To carry out the prevention measures,
early detection of the pathogens, and the diagnosis of crop diseases is essential. With
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technological advancements, today, these disease detection steps are carried out much
more efficiently [53].

Artificial Intelligence technology, along with computer vision, image processing,
object detection, and machine learning algorithms are widely used and analyzed and have
proven to be effective in plant disease diagnosis and detection [53]. By utilizing popular
architectures like AlexNet [23] and GoogleNet [24], Mohanty et al. reported a disease
prediction accuracy of 99.35% upon the analysis of 26 diseases in 14 crop varieties [51].
In addition to that, a real-time disease detector proposed in the experimental study by
Alvaro et al. in tomato plants helped to diagnose diseases at an early stage in tomato
crops in comparison to various lab analyses [54]. Hence, deep machine learning-based
interventions are making significant contributions to agricultural research.

2.2.2. Crop Yield Forecasting

For the purpose of planning and designing food supply chains, it is helpful to have an
idea about the crop yield that can be expected for a particular cropping system. Accurate
yield estimation also helps farmers to choose better crop management methodologies
among the different available ones [55]. Conventionally, crop yield estimation is based
on previous experience and seasonal weather conditions [55,56]. Such yield estimation
approaches, however, are constrained by factors including climate variability and the
changing soil and water dynamics and are hence often not well adapted to changing condi-
tions [56]. In modern farming systems, the availability of time-series yield data, combined
with many other sources of spatial agricultural farm data, can be utilized in designing
machine learning algorithms that can contribute to better yield prediction models [56].
Support Vector Machines (SVM), Artificial Neural Networks (ANN’s), Bayesian Networks
(BN), Backpropagation Networks (BPN), Least Squared Support Vector Machines (LS-
SVM), Convolutional Neural Networks (CNN) are some of the models that are used for
yield prediction [50].

In a study, Support Vector Machine (SVM) algorithms used on coffee plantations
to determine whether the seeds are harvestable or not helped farmers to optimize their
economic plans and work schedules [50]. In another study, Unmanned Aircraft Systems
(UAS) were used to collect the spatial and temporal remote sensing data, using an artificial
neural network model to predict tomato crop yield which had a predictive accuracy of
(R2~0.78–0.89) [57]. R2 is the coefficient of determination which is an evaluation metric
that is commonly used in regression tasks. In another study, three factors, such as soil
conditions, weather conditions, and management practices data (sowing dates) from the
year 1980 to 2015, were collected and considered as inputs [58]. With that data, a CNN-
RNN (Convolutional Neural Network-Recurrent Neural Networks) model was used to
predict the yield in soybean and corn fields across 13 states in the United States. The
model showed that soil and weather conditions are vital components in yield forecasting
in addition to crop management practices [58]. In other recent research, it is reported
that a deep learning-based 3D CNN model applied for soybean crop yield prediction
outperformed the state-of-the-art machine learning techniques [59].

2.2.3. Plant Leaf Classification and Identification

Easy recognition of different plant species can be of great help to ecologists, biologists,
taxonomists, and researchers in plant-related studies and for medical purposes [60,61].
Machine learning and computer vision algorithms are making considerable contributions
in this field [50]. They help reduce the dependency on expert availability and save time
in classification tasks [50]. Deep learning models that specifically deal with images are
used in plant leaf identification and have outperformed conventional image processing
techniques and machine learning algorithms [62].

In one research study, a proposed deep learning model that uses ResNet26 architecture
could achieve recognition levels of 91.78% on the BJFU100 dataset that consists of 10,000
images of 100 classes [60,62]. In comparison to that, the same proposed model could achieve
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99.65% in classifying 32 kinds of leaf structures of plants utilizing the publicly available
Flavia leaf dataset [60,62,63]. Studies report that it is not just the colors and shape of the
leaves that are used to classify the plants, rather plant leaf veins can also be used as input
features in determining leaf identity and properties [62]. The increased usage of mobile
technology has brought the above techniques to the stage of practical implementation,
being integrated into the form of mobile applications. Few mobile applications like Flora-
incognita, Pla@ntNet are able to recognize plants, fruits, flowers, and barks of the trees by
just snapping a picture of it [64,65]. Currently, Pl@ntNet is able to recognize 27,909 varieties
of plants and maintains a database of 1,794,096 images of different plants [64].

2.2.4. Weed Classification and Detection

Weed management in crops is a challenging task for farmers and poses a significant
threat to crop yields if not done properly [50,66]. Weeds compete with crops for nutrients
and usually grow faster, hence early identification and classification are crucial for a better
crop yield [50,67,68]. Machine learning algorithms like SVM, ANN, have already been
used for classifying and achieved high accuracy levels in different crops [50].

Utilizing the openly available dataset of plant seedlings provided by the Aarhus
University of Denmark, Ashqar et al. developed a deep learning model that was able to
classify 12 species of weeds over 5000 images with a precision of 99.48% [69]. In another
study, Smith et al. used CNNs and transfer learning techniques to classify grass, dock,
and clover and achieved a 94.9% accuracy in classifying weeds [70]. The transfer learning
technique is a powerful tool that can be used over small datasets and can achieve a
reasonable level of accuracies [70]. In another study, a fuzzy real-time classifier was
developed for weed identification in sugarcane crops, with an accuracy level of 92.9% [6].
However, the latest deep learning architectures can improve the performance of the tools
and can leverage the possibilities in exploring new ideas in weed control and management
strategies [68]. Real-time identification of weeds can be a potent tool for robots in precise
weeding. It can be a valuable addition to sustainable weed management systems [50,68].
Consequently, this could contribute towards offsetting the heavy usage of pesticides [67].

2.3. Artificial Neural Networks

As the name suggests, an artificial neural network (ANN) is a system that is inspired
by the connections of neurons in human brains [71]. An artificial neuron is a single block
mathematical entity that processes information and is essential in the functioning of a
neural network [71]. Haykin stated that a typical neuron has three essential elements: a set
of connection links that have their weights, a summation point, and an activation function.
The neuron k can be mathematically described by the following equations [71].

uk =
m

∑
j=1

wkjxj

yk = Φ(uk + bk)

where uk is linear combiner output; wk1, wk2, wk3, . . . wkm are synaptic weights; x1, x2, x3,
. . . xm are inputs; bk is the bias that has the effect of lowering the input activation function;
Φ(.) is the activation function; yk is the output of the neuron. A typical mathematical
model of the neuron is shown in Figure 3 [71].
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An artificial neural network is simply a collection of artificial neurons. Typically they
are connected and organized in layers. A layer is made up of interconnected neurons that
contain an activation function. A neural network consists of an input layer, an output
layer, and one or more hidden layers. The input layer takes the inputs from the outside
world and passes those inputs with a weighted connection to the hidden layers. The
hidden layers then perform the computations and feature extractions and are activated
by standard nonlinear activation functions such as tanh, ReLU (Rectified Linear Unit),
sigmoid, softmax, and pass the values to the output layer. These types of networks are
typically called feed-forward neural networks or multilayer perceptrons. Figure 4 shows a
feed-forward neural network [72].
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When it comes to training a neural network, the focus is mainly put on minimizing the
output prediction error by adjusting the weights on each connection in a backward manner.
This process is called back-propagation [73]. The back-propagation algorithm then searches
for the minimum value in the weight space using a stochastic gradient descent method.
The obtained weights, which can minimize the loss/cost function, are then considered as a
solution for the training problem and the training process culminates [73].

2.4. Convolution Neural Networks

The term convolutional neural network (CNN) denotes one of the deep neural network
algorithms that mainly deal with computer vision-related tasks [48]. They are often used in
applications like image classification, object detection, and instance segmentation problems.
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The special feature of CNNs is that they are able to learn and understand the spatial or
temporal correlation of the data. These are highly successful in practical applications
Convolutional neural networks use a special kind of mathematical operation in one of its
layers called convolution operation instead of a generic matrix multiplication [48].

A convolution neural network (ConvNet) typically consists of three layers, a convo-
lutional layer, a pooling layer, and a fully connected or dense layer. By aligning all those
layers in a sequence or stacking them up, CNN architectures can be built. Figure 5 illus-
trates a convolutional neural network. The convolution layer is the central building unit
of CNNs. It consists of kernels that convolve independently on the input image resulting
in a set of feature maps. Strides, depth, and zero paddings are the three parameters that
control the size or volume of the activation map [74]. Here, stride represents the number of
pixels it has to move over the input image at a time; depth represents the number of kernels
that are used for convolution over the input image [74]. Convolving kernel over the input
image results in a reduction of the size of the activation map and loss of information in the
corners. The zero-padding concept adds zero values at the corners and helps to control
the output volume of the activation map. Besides, to provide the network with the ability
to understand complex data, every neuron is linked with a nonlinear activation function.
ReLU is one of the frequently used activation functions because it provides the network
with the ability to make accurate predictions [74].
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The pooling layer mainly serves the purpose of reducing the spatial size representation
to reduce training parameters and computing costs in the network and retains essential
information when the images are larger. Pooling is also referred to as downsampling
or subsampling. Pooling is done independently on each depth dimension of the image.
However, the pooling layer also helps to reduce over-fitting during training. Among other
types of pooling, max pooling with a 2 × 2 filter, and stride = 2 is commonly used in
practice for better results [74].

2.5. State-of-the-Art Object Detection Methods

In case of image classification problems, the object recognition (detection, recognition
or identification) part is the challenging part. It involves the classification of various objects
in an image and localization of the detected objects by drawing some bounding boxes
and assigning class label names for every bounding box [75]. The instance or semantic
segmentation is another problem in computer vision, where instead of drawing a bounding
box around the objects, they are indicated with specific pixels or masks [75].

Compared to machine learning methods of detecting objects, deep learning methods
are highly successful and do not require manual feature extraction. Region-Based Convolu-
tional Neural Network (R-CNN), You Only Look Once (YOLO), Single shot Multi Detector
(SSD) are some of the techniques that are proposed for object identification and localization
tasks, that can perform end to end training and detection [76–81].

R-CNN was proposed in 2014, and comprises three steps. Initially, a selective search
algorithm is used to find the regions that may contain objects (approximately 2000 pro-
posals) in an image [76,77]. Later on, a CNN is used for feature extraction and finally,
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the features are classified. However, the constraint here is that the whole ROI (Region of
Interest) with objects is warped to a fixed size and provided as an input to the CNN [77].
This process is computationally heavy and has a slow object detection speed. To mitigate
some of the flaws and make it work fast, the Fast R-CNN method was introduced [77].
Here, in the first stage, it uses a CNN to extract all the features and then an ROI pooling
layer is used to extract features for a specific input region and feed the output to a fully
connected layer that divides and passes it to two classifiers which perform classification
and bounding box regression [77].

However, another method Faster R-CNN was proposed by Shaoqing Ren and col-
leagues and it outperformed both the previous models in terms of speed and detection [76].
They introduced the Regional Proposal Network (RPN) method and combined it as a
single-mode [76]. It uses RPN to propose the regions and Fast R-CNN detector that uses
proposed regions. Mask R-CNN is another method that is an extension to the Faster
R-CNN for pixel-level semantic segmentation [78]. It was introduced as a third branch,
based on the Faster R-CNN architecture, along with classification and localization. It is
a fully connected network that predicts a segmentation mask in a pixel-to-pixel manner.
Although it is fast, it is not optimized for speed and accuracy [78]. Figure 6 represents the
summary of the R-CNN family of methods [82].
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YOLO is another popular object detection method proposed by Redmon et al. that uses
a different approach compared to the above R-CNN family of approaches [80]. A single
neural network is used to predict class probabilities and bounding boxes from the images.
Their base model and Fast YOLO model can process images in real-time at 45 fps and
155 fps with double mAP (mean Average Precision) [80]. Although it was reported to be
fast and outperformed the state-of-the-art R-CNN’s family techniques in terms of speed, it
tends to make more localization errors [80].

SSD is another approach proposed by Wei Liu et al. to detect objects in images by
using a single neural network [79]. It performs the generation of region proposals and
also identifies the objects in the proposed region in a single shot. Whereas, RPN-based
approaches use two shots, and are hence slower than SSD, have achieved an mAP higher
than Faster R-CNN or YOLO [79].

2.6. Transfer Learning Technique

Transfer learning is a technique that is used in many machine learning and deep
learning tasks. It has been defined in different ways. Goodfellow et al. define it as an
approach of transferring the knowledge of a previously trained neural network model to
the new model [48]. It has also been defined as an optimization that allows rapid progress
when the model is learning for another task [83]. Mathematically, this can be defined
as follows.

Definition: For a learning task Ls in the source domain Ds and a learning task Lt in
the target domain Dt, transfer learning helps improving the performance of the predictive
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function ft(.) in target domain Dt by utilizing the knowledge acquired from Ds and Ts;
where Ds 6= Dt and Ls 6= Lt. Figure 7 represents transfer learning technique.
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For instance, a neural network model that is trained to learn and recognize the images
of animals or birds can be used to train and identify automotive cars or medical x-ray
diagnostic images or any other set of images. Usually, this process comes in handy when
there is less amount of data that is available to train for the second task. However, it also
helps in accelerating the training process on the second task, compared to training from
scratch, which may take weeks to achieve optimal performance. When the first task is
trained to recognize some images, the low-level layers of the neural network model try to
learn the basic features of the images. For example, contours, edges, circles are extracted
by the low-level layers, which are called feature extractors. These feature extractors are a
standard in the first stages of the neural network training and are the standard building
blocks for most image recognition-related tasks. We utilize these feature extractors for the
second task, and in the end, we use an image classifier to train and classify for our specific
job. In our scenario, since the task is to recognize two classes i.e., plants and weeds, the
transfer learning technique was utilized to perform experiments that are described in the
next section.

The transfer learning technique, as described above, is proposed as the method to be
utilized for the tasks of weed identification and classification as it has been reported to
be suitable for tasks of autonomous identification and classification tasks [84]. Despite its
widespread application in diverse fields like training self-driving cars to audio transcription,
the transfer learning technique faces two major limitations. The phenomena of negative
transfer and over-fitting are considered two major limitations of the transfer learning
technique [85]. Negative transfer occurs when the model source domain data is dissimilar
from target domain data. In other words, negative transfer can occur when the two
tasks are too dissimilar [86]. As a result, the model does not perform well, leading to
poor results. On the other hand, while doing transfer learning, the models are prone
to overfitting, in absence of careful evaluation and tuning. Overfitting is however a
general limitation for all prediction technologies [87]. These limitations can be overcome
by carefully tuning the hyperparameters and choosing the right size (number of layers) of
the neural network model.

3. Materials and Methods

This field of studies regarding the problem of weed infestation were carried out on
rice farming systems in the Kashmir region in India. The robot development research is
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being undertaken at the Hamburg University of Technology (TU Hamburg), Hamburg,
Germany under the research group Rural Revival and Restoration Engineering (RUVIVAL)
at the Institute of Wastewater Management and Water Protection with the support of the
Institute of Reliability Engineering.

3.1. Conceptualisation and High-Level Design of the Robot

The conceptualized mobile robot platform’s intuitive design is shown in Figure 8 as a
demonstration of how a robot platform might look once it is built in real-time. The design
is developed using Onshape design software [88]. The robot was conceptualized initially
to operate between rows of rice plants with a spacing of 25 cm, however, subsequently, it is
planned that the robot shall be a modular one, as such operation can be adjusted to the row
width and the height of the plants at different stages. The robot is intended to recognize
weeds at an early BBCH stage, ideally at the leaf development stage. In this regard, the
images of plants taken for training purposes also included plants at the sprouting stage.
The conceptualized robot, as shown in the figure, has an electronics storage box where it
has batteries, sensors, and a single-board computer. On top of the electronic box, there is
a solar panel mount to provide a renewable source of energy for the robot’s movement.
Once the robot has successfully identified the weeds, an algorithm provides the position of
the weeds in terms of real-world coordinates of the robotic platform relative to the image
frame. After the transformations have taken place, a robotic manipulator picks up the
real-world coordinates and performs inverse kinematics operations and drives the end
effector to the desired position and performs weed control mechanisms like mechanical or
thermal weed control, optionally mulching.
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The choice of robotic manipulators to perform mechanical weeding can vary depend-
ing on various factors such as kinematic structure, degrees of freedom, workspace, motion
control, accuracy, and repeatability [89,90]. There is a possibility to mount three types of
manipulators underneath the robotic platform.

1. Articulated arm
2. Cartesian robot
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3. Parallel manipulator

Parallel manipulators have high rigidity, high payload/weight ratio, high speed and
acceleration, high dynamic characteristics, and it is easier to solve inverse kinematics
problems with them compared to serial manipulators [89,90]. On the downside, they
have a limited and complex workspace. A parallel manipulator may still be one of the
better choices for performing weeding action. Serial manipulators or articulated arms
have a larger workspace, high inertia, low stiffness, low speeds, and accelerations and
experience more difficulty in solving the inverse kinematics problem compared to parallel
manipulators [89]. Cartesian robots are not considered an ideal choice because of their
lesser number of applications on mobile platforms. At this point, we propose a parallel
manipulator as the ideal choice based on its advantages and characteristics. However, it
can still be an open question to agree on the perfect manipulator that can be mounted
onto the robot to perform weeding acts. The following Figure 9 presents three degrees of
freedom parallel delta manipulator (excluding the fourth degree of the end actuator) [90].
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This robot is intended to be used as an agricultural tool together with other sustainable
agricultural practices, which decrease the dependence of farmers on external inputs like
mineral fertilizers and pesticides. Therefore, from a purely monetary perspective, the robot
can decrease the input costs by decreasing labor requirements and eliminating the cost
associated with pesticides, while increasing yield by bridging the yield gap resulting from
weed infestation. An important aspect of the use of an autonomous weeding robot, from an
agroecological perspective, is to reduce the ecological footprint of food production through
the phasing out of chemical pesticides. This will also lead to better quality food and less
contamination of soil and water due to agrochemical residues, as already discussed in
the introduction. The environmental and societal damages of pesticide use have been
estimated to be around $10 billion [91]. The costs and benefits of this intervention, hence,
go much beyond the cost of procurement of the equipment and the benefit of labor savings
due to robot deployment for weeding. The proposed weeding robot is conceptualized as a
low-cost robotic machine, as compared to the robots that are available in the market, which
are available in the range of $20,000 to $125,000 [92–94]. The prototype is being built with a
cost estimation of $15,000 and the final robot upon industrial production is expected to be
available to the farmers for a price under $10,000. In comparison, the monetary costs of
pesticides for a smallholder with 10 hectare land under cultivation, is around $1750 per
year at $70 per acre (2018, 2019) [95]. Pesticide costs are expected to further increase in the
coming years with increased incidence of pesticide resistance. This means, if the robot is
acquired by a farmer cooperative of five farmers who use it on sharing basis, the monetary
cost of procuring the robot will be the same as the cost they would otherwise incur by using
pesticides in one year, with environmental and human health benefits a strong motivation.
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3.2. Hardware Design Approach of the Weeding Robot

Designing robot hardware that is operating under dynamic surroundings is often a
challenging task. We can notice, a high-level, modular hardware design is presented and
introduced in Figure 10. The robot ideally consists of a single-board computer along with
all the required modules, peripherals, sensors, and actuators. Single boards computers
have everything built on a single circuit board like RAM, processor, and peripherals. It
has general-purpose input-output pins that are good at controlling sensors and actuators.
There are many open-source single-board computer varieties available today. Depending
on the choice of application, it is essential to choose one. Open source boards like Raspberry
Pi have processors and have to ability to run Linux and distributed systems like Robot
Operating System (ROS) [96,97].
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ROS is a lightweight middleware that is specifically designed for robotic applications.
Its publish-subscribe design pattern is one of the featured patterns that enables asyn-
chronous parallel processing from node to node communication. It has built-in packages
that can solve inverse kinematics, forward kinematics, path planning, navigation, PID
(proportional-integral-derivative) control, vision-related tasks. It also has graphical tools
like Gazebo, a Rviz that helps to visualize the robot model for simulations [96].

Boards like Jetson Nano, Jetson TX2-Serie, Jetson Xavier NX, Jetson AGX Xavier-
Series from NVIDIA [86], Coral dev board from Google has TPU(Tensor Processing Unit)
and NPU(Neural Processing Unit) [98], that enables and accelerates them to use in AI-
specific applications like object detection, image classification, instance segmentation for
training and inferencing purposes [99]. These boards are cheaper and costs in the range
of approximately 100$ to 800$. These boards will be analyzed and utilized for our robot
building purpose in future work by keeping a low-cost reliable design in scope.

3.3. Software Design Approach of the Weeding Robot

Software for the weeding robot can be entirely developed in the ROS framework using
high-level languages like C++ or python. A sensor interface provides all the inputs from
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the cameras and sensors on the robot. The perception interface deals with the identification
of weeds, stem positions, and position estimation of the detected weeds. OpenCV libraries
can be used in the perception interface for real-time weed identification. The navigation
interface has closed-loop feedback control algorithms that help with path-planning between
the crop rows. The robot interface takes the outputs from the feedback controllers and
drives the robot in the crop field autonomously and manages the weeds in real-time using
the delta manipulator. A high-level software block diagram for the weeding robot is
presented in Figure 11.
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Python is widely popular and is used for AI, Computer Vision, and Machine Learning
applications. It has gained popularity over the last few years because of its simple syntax
structure and versatile features. The open-source community developers are actively
contributing to many libraries, which makes it easy for application or product developers
to build a product without reinventing the wheel.

OpenCV is an open-source software library for computer vision applications. This
library can be modified and used for commercial purposes under BSD-license. It comes
with many built-in algorithms, for example, face recognition, object identification, tracking
humans, and objects. This library is used broadly in all domains, including medicine,
research labs, and defense.

3.4. Training and Implementation
3.4.1. Plant and Weed Identification Pipeline

The plant and weed identification pipeline process comprises three stages. Figure 12
represents the three stages. In the first stage, data was collected and preprocessed according
to the input requirements of the neural network model. In the second stage, two neural
network models were trained, evaluated, analyzed, and optimized. Finally, in the third
stage, the best performing optimized model was exported for real-time identification of
plants and weeds.
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3.4.2. Experimental Setup

Deep learning tasks are majorly dependent on data is essential for conducting experi-
ments. The input data was based on three plant species: red radish (Raphanus raphanistrum
subsp. sativus or Raphanus sativus), garden cress (Lepidium sativum), and common dandelion
(Taraxacum oficinale) were considered for our experiments. The abundant availability of the
common dandelion on lawns, and the fast growth of red radish and garden cress made
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us opt for them. The problem of plant and weed classification can be divided into two
categories: binary and multi-class classification. By grouping the species separately into
two categories, we considered this as a binary classification problem. Considering them
individually, it becomes a multi-class classification problem. The end goal was to precisely
locate any type of weeds in the soil. We treated the classification as a binary classification
task. We merged edible radish and garden cress into one category (plants) and common
dandelion (weed) into another category and carried out our classification tests.

It is a common phenomenon that weeds grow faster compared to edible plants and
compete for more soil nutrients. As a result, during this crucial time at the beginning
of the growth cycle, distinguishing between the plant and weed is essential. This can
then be followed by weed management techniques. Based on that fact, a dataset of
edible plant seedlings and weeds of different sizes under different surrounding conditions
and backgrounds were prepared. Python programming language, Google’s open-source
TensorFlow object detection API were utilized to build, train, and analyze neural network
models. The system overview used for training, testing, and inference is presented in the
table below (Table 1).

Table 1. System overview.

CPU AMD Ryzen 7 2700X 8x 3.70 GHz

Memory 16 GB DDR4 RAM 3000 MHz
GPU NVIDIA 8 GB RAM
OS Ubuntu 18.04 LTS 64-bit

3.4.3. Data Acquisition and Pre-Processing

Deep learning tasks require a considerable amount of input data as the main source
for training the neural network models. For our problem, we made our dataset based
on three plant species, for experimental purposes. A greenhouse was maintained in the
laboratory, and we planted red radish and garden cress in mini-plots. We took photographs
and compiled the dataset by taking RGB pictures of the growing plants using a mobile
camera. The raw pictures collected were of pixel dimensions 4032 × 3024. Since they
were high-resolution images, providing them directly as input to train the network would
have been computationally expensive and hence the learning process would have been
time-consuming. Therefore the raw images were converted to 800 × 600 dimensions and
then used for pre-processing.

A complete set of 200 images consisting of photos taken from different perspectives and
angles of plants and weeds was used for training and evaluation purposes. Figures 13 and 14
show some of the input image samples that were used for training the network.
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Figure 14. Test plants: A few photographs of Radish seedlings (Left) and Cress (Right) that were
used in the training.

In order to train the network, the whole dataset was split into two, one for training
and one for evaluation. The train/test split ratio was considered as 160/40 using the Pareto
rule. When using the TensorFlow object detection API, we maintained a structure such as
a workspace for all the configuration files and datasets. The whole process was divided
into five steps based on the TensorFlow custom object detection process. Those five steps
included preparing the workspace, annotating images, generate TFRecord file format input
files, configure/train/optimize the model, and export the inference graph for testing.

For annotating images, an open-source labeling tool LabelImg was used to draw the
bounding boxes. The annotations were saved in the PASCAL Visual Object Classes (VOC)
format as XML files. A representation of the bounding boxes that were drawn around the
edible plants and weeds is shown in Figure 15.
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3.4.4. Training and Analysis of the Neural Network Model

By utilizing the transfer learning technique, two pre-trained models Faster R-CNN
inceptionv2 and SSD inceptionv2 were chosen from the TensorFlow model zoo that were
trained for the Common Objects in Context (COCO) dataset. For the weeding robot, a
latency is preferred between the detection and interacting with the weed. Hence there
was no primary requirement for higher detection speeds in our scenario. A reasonable
detection speed with higher mean Average Precision (mAP) accuracies and higher confi-
dence scores were preferred. The reported mAP accuracies and speed of the above two
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mentioned models on the COCO dataset were reasonably well and suitable for our plant
and weed detection problem. Hence these models were adapted for training, optimization,
or better generalization.

Generally, to come up with a model architecture, neural networks are stacked up in
layers sequentially, which however can make the large network computationally expensive.
A large neural network also comes with the downside of not being able to provide remark-
able accuracies. Some of the available backbone architectures include AlexNet, VGG16/19,
GoogLeNet, MobileNet, Inceptionv2, Inceptionv3, Inceptionv4, NASNet, ResNet, Xcep-
tion, Inception-Resnet. The models that were trained in our experiments and analysis
use Inceptionv2 architecture as feature extractors. Christian Szegedy and his colleagues
had proposed GoogLeNet. It consists of a 22-layer deep convolutional neural network
architecture that was considerably computationally efficient. Instead of stacking up layers
sequentially and selecting filters, they proposed a block in between the layers named as
"Inception" module. The inception module performed different kinds of filter operations
in parallel. From these filter operations, we get different outputs that were concatenated
’depth’ wise all together. This makes the network go wider rather than deeper. The single
output obtained from the previous operation is then passed on to the next layer. The result
of doing this operation was observed to be computationally less expensive. The inception
block is represented in Figure 16.
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Before the training process had started, the pre-trained Faster R-CNN inceptionv2
model configuration file that was trained on the COCO dataset was modified. In the custom
configuration (Configuration 2), we set the total number of classes to 2, as it indicates the
classification of plant and weed. The maximum detections per class and maximum total
detections variables were set to 10. The network was then allowed to start the training
process from the fine-tune checkpoint that comes with the unmodified model. The learning
rate is considered as one of the essential hyperparameters that help to optimize the model
to achieve better performance. Considering the unmodified learning rate and the number
of steps that come with the pre-trained model, the model was over-fitting with a large
deviation with increasing evaluation loss. By using the heuristics method and reducing
the step size and keeping the learning rate constant, the model performed with a better
generalization ability. For further evaluation and fine-tuning purposes, we also considered
another higher learning rate value for the same model using the heuristics method. This
configuration (Configuration 2) was tried to find if the model converges faster to 0 with
better generalization capability.

ł
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Intersection Over Union (IOU): It is an evaluation metric based on the overlap be-
tween two bounding boxes. It requires a ground truth bounding box BG and a predicted
bounding box BP. With this metric, we can determine if the detection is valid or invalid.
IOU ranges from 0 to 1. The higher the number, the closer the boxes together. IOU is
defined mathematically as the intersection of the overlapping bounding boxes area divided
by the union of the overlapping bounding boxes area Figure 17.
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Figure 17. Graphical representation of Intersection Over Union (IOU) (Source: Adrian Rose-
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When IOU scores were available, a threshold (example 0.5) was set for transforming
the score into classifications. The IOU values that were above the threshold were con-
sidered positive predictions, and if it was below the threshold, they were considered as
negative predictions.
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Average Precision (AP): Average precision is another way to evaluate object detectors.
It is a numerical metric that is the precision averaged across all the recall values between 0
and 1. It uses an 11 point interpolation technique to calculate the AP. It can be interpreted
as the area under the precision x recall curve.

Mean Average Precision (mAP): The mAP is another and widely accepted metric to
evaluate object detectors. It is merely the average of AP, i.e., it computes the AP for each
class and averages them. Tensorboard app is used to visualize the mAP and AP values at
different thresholds. The results are briefly discussed in the next sections.

3.4.5. Stem Position Extraction

Extracting the position of the stem is essential for the robotic manipulator for the
precise weed management process. It can be done using semantic segmentation techniques,
as described by Lottes et al. [100]. The approach reported though is computationally
expensive and at best a predictive approach. In this work, a simple stem position extraction
technique was formulated and proposed based on the bounding box localization, based on
the fact that plants usually exhibit radial or bilateral symmetry. However, plants that are
anchored to a single location exhibit an overall roughly radial symmetry. Based on that
fact, we say that the center point of the detected bounding box around the weed should
be the estimated stem position in the image frame. The accuracy of the stem position was
directly proportional to how well the bounding box regressor localizes the complete weed
or plant structure.

4. Results and Discussions
4.1. Training

Tensorboard is a powerful visualization tool for evaluating model performances. It was
utilized in this work for obtaining the graphs and analyzing purposes. We consider COCO
mAP at [0.5:0.95] IOU and mAP at a 0.5 IOU threshold to evaluate the model’s performance.

4.1.1. Case 1: Configuration 1

In this case, we considered learning rate configuration 1. With that configuration, the
Faster R-CNN inceptionv2 COCO model was trained and fine-tuned up to 200 k steps. The
model performed considerably well and reached a maximum overall mAP [0.5:0.95]IOU
of 30.94% at 149.6 k step (Figure 18). The maximum mAP at the 0.5 IOU threshold was
61.5% at 149.6 k (Figure 19). At the 200 k step, the maximum overall mAP[0.5:0.95]IOU
was reached, at 30.57%. The maximum mAP at the 0.5 IOU threshold was 61.29%. These
values were considered suitable given the comparatively less amount of data that the
model was trained with. The graphs corresponding to the model performance are shown
in the following figures. Graphs were generated at a smoothing value of 0.6 to show the
overall trend of the training and evaluation process.
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Figure 18. Overall mean Average Precision (mAP) at (0.5:0.95) IOU, X-axis: steps, Y-axis: mean
average precision.
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Figure 19. mAP at 0.5 IOU, X-axis: steps, Y-axis: mean average precision.

Steps on X-axis: One gradient update is considered as a training or evaluation step
(iteration). It represents the number of batch-size images that are processed during a single
iteration. For instance, we considered 200 images, and our batch size is set to 1 image
in training configuration. That means one image was processed during one step, and
gradients were updated once. Now the model takes 200 steps to complete the processing of
the entire dataset. As the model processed the entire dataset, we say the model completed
one epoch.

Y-axis: Y-axis in the following graphs corresponds to their respective losses and mAP
of the model.

By observing Figures 20 and 21 for training and evaluation loss, we say the model is
performing better as the two loss learning curves show a decreasing trend without huge
variations. The X-axis represents the number of training and evaluation steps the model
was trained with, while the Y-axis represents the training and evaluation loss recorded
at each step respectively. Approximately at 150 k step, the model’s total evaluation loss
had reached a minimum of 0.61, and from after that, we observe a very slight increase
in the loss values, this indicates the model was trying to overfit slowly and indicates it
may not be feasible to train further. The training was stopped at 200 k, and the nearest
checkpoint recorded at 200 k step was exported and inferencing was done. This perfor-
mance was cross-verified with the pre-trained configuration, as it stated at 200 k steps were
enough for the model to perform better. Although the model performed quite well on the
new unknown images, there was scope in the optimization of the model by tuning the
model’s hyperparameters.
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One of the observations from the analysis and experiments was: If the data consid-
ered was very low, data augmentation techniques such as flipping the images can help
increase the mAP. The transfer learning technique was evaluated and justified that it can
be quite helpful and quick when training on a new classification task instead of training
the network from scratch or initializing with random weights. Hyperparameters such as
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the learning rate can be tuned further to increase mAP. Having high graphical processing
units and performing a grid search or random search method can help us find optimal
hyperparameters, but the process may be computationally expensive and time-consuming.

Agriculture 2021, 11, x FOR PEER REVIEW 23 of 34 
 

 

unknown images, there was scope in the optimization of the model by tuning the model's 
hyperparameters. 

 
Figure 20. Training loss, X-axis: steps, Y-axis: training loss. 

 
Figure 21. Total evaluation loss, X-axis: steps, Y-axis: evaluation loss. 

One of the observations from the analysis and experiments was: If the data consid-
ered was very low, data augmentation techniques such as flipping the images can help 
increase the mAP. The transfer learning technique was evaluated and justified that it can 
be quite helpful and quick when training on a new classification task instead of training 
the network from scratch or initializing with random weights. Hyperparameters such as 
the learning rate can be tuned further to increase mAP. Having high graphical processing 
units and performing a grid search or random search method can help us find optimal 
hyperparameters, but the process may be computationally expensive and time-consum-
ing. 

In order to establish fully the notion that our model was finely well-tuned, the losses 
for the RPN network and the final classifier were also considered. By observing Figures 
22 and 23, the decreasing trend of the box classifier classification and localization loss in-
dicates that the final classifier is good at classifying and localizing the detected plant and 
weed objects. In Figures 22 and 23, X-axis represents the number of evaluation steps and 
Y-axis represents the classification loss and localization loss recorded at each step respec-
tively. 

Commented [M7]: Please change -0.2 and -20k to 
−0.2 and −20k. 

Commented [TS8R7]: Figure replaced. The minus 
sign is like that in the program we have used. 
Unfortunately, cannot be changed. 

Commented [M9]: The ordinate and abscissa in 
the picture are not displayed completely, please 
change the picture completely displayed. 

Commented [TS10R9]: Figure replaced. 

Figure 21. Total evaluation loss, X-axis: steps, Y-axis: evaluation loss.

In order to establish fully the notion that our model was finely well-tuned, the losses for the
RPN network and the final classifier were also considered. By observing Figures 22 and 23, the
decreasing trend of the box classifier classification and localization loss indicates that the
final classifier is good at classifying and localizing the detected plant and weed objects. In
Figures 22 and 23, X-axis represents the number of evaluation steps and Y-axis represents
the classification loss and localization loss recorded at each step respectively.
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Figure 22. BoxClassifier: classification loss, X-axis: steps, Y-axis: classification loss.
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Figure 23. BoxClassifier: localisation loss, X-axis: steps, Y-axis: localisation loss.

The final ground truths and detections of various sizes of weeds and plants at the 200 k
evaluation step are presented in Figures 24–26 corresponding to common dandelion (weed),
garden cress and radish respectively. It is worth noticing the model gave predictions with
good detection scores.
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4.1.2. Case 2: Configuration 2

In this case, we considered learning rate configuration 2. With this configuration, the
training process was faster and achieved higher mAP values. With a lesser amount of steps
in this configuration, the results obtained were not comparatively better than the results
of the learning rate configuration 1. However, the model was overfitting and trying to
memorize when trained for a longer time. It was one of the reasons the model achieved
a higher overall mAP of 34.82% at (0.5:0.95) IOU (Figure 27) and mAP of 63% at 0.5 IOU
threshold at 200 k step (Figure 28). The resultant graphs during the training and evaluation
process are shown below. The graphs were generated at a smoothing value of 0.6 for
showing the overall trend of the training and evaluation process.Agriculture 2021, 11, x FOR PEER REVIEW 26 of 34 
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Figure 27. Overall mAP at (0.5:0.95) IOU, X-axis: steps, Y-axis: mean average precision.
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Figure 28. mAP at 0.5 IOU, X-axis: steps, Y-axis: mean average precision.

By observing the loss curves in Figures 29 and 30, the localization loss is increasing
after the 60 k step. Ideally, all the loss curves should be in decreasing trend, and any large
deviations of any loss are considered not suitable for generalization. Considering that, in
this case, we should stop training at this point. Hence we can say the chosen learning rate
hyperparameter may not be ideal for inferencing purposes compared to case 1 results. With
that, case 1 results were considered for inferencing purposes, and the results are reported
discussed in the following section.
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4.2. Plant and Weed Identification

After the model was trained, it was used for inference on real-time data for plant
and weed identification. For inferencing a new set of images, the model was saved and
exported. For exporting the frozen graph, TensorFlow object detection API’s inbuilt “export
inference graph.py” script was used. The python script was modified accordingly to our
task. The same training hardware setup and a Logitech stereo camera were used for real-
time identification of plants and weeds. A completely new set of images was provided for
predictions. The predicted output images are shown in Figures 31–33.
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4.3. Extracted Stem Positions

With the previously described stem estimation technique, we tested our method in
real-time. We observed that the estimated stem positions were close enough (83–97%) to
the original stem positions of the weed. The result of the extracted stem position in the
image frame is presented in Figure 34.Agriculture 2021, 11, x FOR PEER REVIEW 29 of 34 
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Figure 34. Estimated stem position of the weeds and plants using the trained robot.

4.4. Discussion of Results

The use of convolutional neural network-based models has been reported in different
areas of agriculture, including disease identification, classification on the basis of ripeness
of fruits, plant recognition using leaf images, and identification of weeds [35,101–104]. The
application of convolutional neural networks (CNNs) using the transfer learning technique
has also been reported in recent literature in the case of crop/fruit (age) classification.
Perez-Perez et al. (2021) reported accuracy of 99.32% in the case of identification of different
ripening stages of Medjoul dates [35]. This specific work points to the possibility of tuning
the hyperparameters to achieve higher performance parameters with the proposed weeding
robot as has been mentioned regarding the results of the current study. In recent years other
studies have reported classification of plants through plant and leaf image recognition
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using convolution neural networks with accuracies up to 99% [103,104]. Sladojevic et al.
(2016) reported the use of CNNs for disease recognition by leaf image classification with
precision up to 98% [102].

With respect to the classification of different plant species, with the aim of site-specific
weed management, Dyrmann et al. (2016) trained a CNN on a set of 10,413 images
of 22 different plant species and were able to achieve a classification accuracy of up to
86% [101]. In the reported study, although the number of species classified was high,
the images that were considered in the dataset were of plants at the same growth stage
i.e., the seedling stage [101]. This makes the classification easier due to the same plant
and leaf structure and hence higher accuracies are expected. However, in the case of
weed removal applications, multiple weeding procedures might be needed at different
times during a crop season, hence training a neural network with images of plants and
weeds at different growth stages was done in the current study. The methodology is also
reported in a recent study reported in literature where a crop field at two different growth
stages was used to train the neural network, achieving an accuracy of 99.48% [105]. The
classification accuracies achieved in the current study hence fall in the range of accuracies
found in various studies reported in recent literature. The current study adds further value
to the research by reporting the mean Average Precision (mAP) of the object detection
tasks performed by the trained model. The mAP is an important metric to evaluate object
detection models including both classification and localization tasks. Table 2 gives an
overview of three other studies on CNNs for plant/weed/fruit classification that have
reported comparable results together with the current study.

Table 2. Comparison of studies with reported training of CNNs for plant classification and identification tasks.

Reference Number of Species Growth Stages Number of Images
(Dataset)

Highest Classification
Accuracy

Object Detection:
Mean Average

Precision (mAP)

Perez-Perez et al. (2021) 1 Ripe and Unripe 1002 99.32% n.a.
Dyrmann et al. (2016) 22 Seedling 10,413 86.2% n.a.
Asad and Bais (2020) 2 Two 906 99.48% n.a.

Current study 3 Multiple 200 Plant: 95% Weed: 99% 31%

5. Conclusions

The weed identifier robot is proposed as a non-chemical solution to the rampant
problem of weed infestation in food crop farming systems. Research and implementation
of a plant and weed identification system using deep learning and state-of-the-art object
detection methods was done. Transfer learning technique was explored and the deep learn-
ing model was further analysed, evaluated and justified for better generalization. It was
seen that deep learning architectures are much better than conventional machine learning
architectures in terms of image identification and predictive performance. A simple unique
stem estimation technique was proposed which extracted their positions in the image
frame. Consequently, the paper also offers a high-level hardware and software design
architecture proposal of a cost-effective autonomous weeding robot.

The developed plant and weed identification system was presented and tested on
the real-world data and good confidence scores on classification and identification were
achieved. It can be concluded that higher values of mAP could be achieved with more
steps with the right hyperparameters. Real-time identification was done using a Logitech
web camera and it was observed that the model was good at identifying and distinguishing
between plants and weeds. The stem position estimation approach was tested and it
was found that accuracies were directly dependent on the bounding box localization
during identification. Based on our observation, we conclude that this technique also
reduces the amount of computation when compared with other methods. In addition to
building the prototype and validation studies, future work in this direction could include
investigations on choosing a method to find the right hyperparameters for optimization
of the identification function of the robot. Further studies could explore 3D position
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estimation methods to determine the position from the center of the identified weed in the
2D image frame to the real-world robot frame.
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