Chemical Composition and Broad-Spectrum Insecticidal Activity of the Flower Essential Oil from an Ancient Sicilian Food Plant, Ridolfia segetum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil Extraction
2.3. GC-FID Analysis of the Essential Oil
2.4. GC-MS Analysis of the Essential Oil
2.5. Insect Rearing
2.6. Insecticidal Activity on Culex quinquefasciatus
2.7. Insecticidal Activity on Musca domestica
2.8. Insecticidal Activity on Spodoptera littoralis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Flower Essential Oil Yield and Its Chemical Composition
3.2. Insecticidal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mazzi, D.; Dorn, S. Movement of insect pests in agricultural landscapes. Ann. Appl. Biol. 2012, 160, 97–113. [Google Scholar] [CrossRef]
- Di Giovanni, F.; Wilke, A.B.B.; Beier, J.C.; Pombi, M.; Mendoza-Roldan, J.A.; Desneux, N.; Canale, A.; Lucchi, A.; Dantas-Torres, F.; Otranto, D.; et al. Parasitic strategies of arthropods of medical and veterinary importance. Entomol. Gen. 2021. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, R.; Shi, G.; Jin, Y.; Robson, M.G.; Huang, X. Overuse or underuse? An observation of pesticide use in China. Sci. Total. Environ. 2015, 538, 1–6. [Google Scholar] [CrossRef]
- Deligeorgidis, N.P.; Kavallieratos, N.G.; Malesios, C.; Sidiropoulos, G.; Deligeorgidis, P.N.; Benelli, G.; Papanikolaou, N.E. Evaluation of combined treatment with mineral oil, fenoxycarb and chlorpyrifos against Cydia pomonella, Phyllonorycter blancardella and Synanthedon myopaeformis in apple orchards. Entomol. Gen. 2019, 39, 117–126. [Google Scholar] [CrossRef]
- Humann-Guilleminot, S.; Binkowski, Ł.J.; Jenni, L.; Hilke, G.; Glauser, G.; Helfenstein, F. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 2019, 56, 1502–1514. [Google Scholar] [CrossRef]
- Gul, H.; Ullah, F.; Biondi, A.; Desneux, N.; Qian, D.; Gao, X.; Song, D. Resistance against clothianidin and associated fitness costs in the chive maggot, Bradysia odoriphaga. Entomol. Gen. 2019, 39, 81–92. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Desneux, N.; Gao, X.; Song, D. Imidacloprid-induced hormetic effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Gen. 2019, 39, 325–337. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Desneux, N.; Tariq, K.; Ali, A.; Gao, X.; Song, D. Clothianidin-induced sublethal effects and expression changes of vitellogenin and ecdysone receptors genes in the melon aphid, Aphis gossypii. Entomol. Gen. 2019, 39, 137–149. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Desneux, N.; Qu, Y.; Xiao, X.; Khattak, A.M.; Gao, X.; Song, D. Acetamiprid-induced hormetic effects and vitellogenin gene (Vg) expression in the melon aphid, Aphis gossypii. Entomol. Gen. 2019, 39, 259–270. [Google Scholar] [CrossRef]
- Varikou, K.; Garantonakis, N.; Birouraki, A. Exposure of Bombus terrestris L. to three different active ingredients and two application methods for olive pest control. Entomol. Gen. 2019, 39, 53–60. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Naqqash, M.N.; Gökçe, A.; Bakhsh, A.; Salim, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 2016, 115, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Wilke, A.B.; Bloomquist, J.R.; Desneux, N.; Beier, J.C. Overexposing mosquitoes to insecticides under global warming: A public health concern? Sci. Total. Environ. 2021, 762, 143069. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018, 179, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Ind. Crops Prod. 2018, 117, 382–392. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, M.; Lapied, B.; Jankowski, W.; Stankiewicz, M. The unusual action of essential oil component, menthol, in potentiating the effect of the carbamate insecticide, bendiocarb. Pestic. Biochem. Phys. 2019, 158, 101–111. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green micro-and nanoemulsions for managing parasites, vectors and pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavela, R.; Morshedloo, M.R.; Mumivand, H.; Khorsand, G.J.; Karami, A.; Maggi, F.; Desneux, N.; Benelli, G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020, 40, 421–435. [Google Scholar] [CrossRef]
- Euro + Med Plantbase. Available online: http://euromed.luomus.fi/euromed_map.php?taxon=343528&size=medium (accessed on 22 March 2021).
- Pignatti, S. Flora d’Italia; Edagricole: Milan, Italy, 1982; Volume 2, p. 220. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole-New Business Media: Milan, Italy, 2018; Volume 3, p. 592. [Google Scholar]
- Tbatou, M.; Kabil, M.; Belahyan, A.; Belahsen, R. Dietary potential of some forgotten wild leafy vegetables from Morocco. Int. Food Res. J. 2018, 25, 1829–1836. [Google Scholar]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Tuttolomondo, T.; Licata, M.; Leto, C.; Savo, V.; Bonsangue, G.; Gargano, M.L.; Venturella, G.; La Bella, S. Ethnobotanical investigation on wild medicinal plants in the Monti Sicani regional park (Sicily, Italy). J. Ethnopharmacol. 2014, 153, 568–586. [Google Scholar] [CrossRef]
- Cabral, C.; Poças, J.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Ridolfia segetum (L.) Moris (Apiaceae) from Portugal: A source of safe antioxidant and anti-inflammatory essential oil. Ind. Crops Prod. 2015, 65, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Beeby, E.; Magalhães, M.; Lemos, M.F.L.; Pires, I.M.; Cabral, C. Cytotoxic effects of Ridolfia segetum (L.) Moris phytoproducts in cancer cells. J. Ethnopharmacol. 2020, 267, 113515. [Google Scholar] [CrossRef]
- Jabrane, A.; Ben Jannet, H.; Harzallah-Skhiri, F.; Casanova, J.; Mighri, Z. GC, GC-MS and 13C NMR spectroscopy integrated analyses and in vitro antibacterial activity of Ridolfia segetum essential oils from Tunisia. J. Essent. Oil-Bear. Plants 2009, 12, 521–530. [Google Scholar] [CrossRef]
- Jabrane, A.; Ben Jannet, H.; Mastouri, M.; Mighri, Z.; Casanova, J. Chemical composition and in vitro evaluation of antioxidant and antibacterial activities of the root oil of Ridolfia segetum (L.) Moris from Tunisia. Nat. Prod. Res. 2010, 24, 491–499. [Google Scholar] [CrossRef]
- Ben Jannet, H.; Mighri, Z. Hydrodistillation kinetic and antibacterial effect studies of the flower essential oil from the Tunisian Ridolfia segetum (L.). J. Essent. Oil Res. 2007, 19, 258–261. [Google Scholar] [CrossRef]
- Bicchi, C.; Rubiolo, P.; Ballero, M.; Sanna, C.; Matteodo, M.; Esposito, F.; Zinzula, L.; Tramontano, E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata. Planta Med. 2009, 75, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Casiglia, S.; Riccobono, L.; Bruno, M.; Rosselli, S.; Senatore, F.; Senatore, F. Chemical composition of the essential oil from Thapsia garganica L. (Apiaceae) grown wild in Sicily and its antimicrobial activity. Nat. Prod. Res. 2016, 30, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crops Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Di Napoli, M.; Varcamonti, M.; Basile, A.; Bruno, M.; Maggi, F.; Zanfardino, A. Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil. Nat. Prod. Res. 2019, 33, 3436–3440. [Google Scholar] [CrossRef] [PubMed]
- Badalamenti, N.; Bruno, M.; Gagliano Candela, R.; Maggi, F. Chemical composition of the essential oil of Elaeoselinum asclepium (L.) Bertol subsp. meoides (Desf.) Fiori (Umbelliferae) collected wild in Central Sicily and its antimicrobial activity. Nat. Prod. Res. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Badalamenti, N.; Ilardi, V.; Rosselli, S.; Bruno, M.; Maggi, F.; Leporini, M.; Falco, T.; Loizzo, M.R.; Tundis, R. Ferulago nodosa subsp. geniculata (Guss.) Troia & Raimondo: Isolation of essential oil and evaluation of its bioactivity. Molecules 2020, 25, 3249. [Google Scholar] [CrossRef]
- Bruno, M.; Ilardi, V.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Fiorini, D.; Venditti, A.; Maggi, F. Composition and biological activities of the essential oil from a Sicilian accession of Prangos ferulacea (L.) Lindl. Nat. Prod. Res. 2020, in press. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Beier, J.C.; Benelli, G. Filariasis vector control down-played due to the belief the drugs will be enough—Not true! Entomol. Gen. 2020, 40, 15–24. [Google Scholar] [CrossRef]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1–15. [Google Scholar] [CrossRef]
- OEPP/EPPO. EPPO Standards PM 7/124 (1) Diagnostic Protocol for Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. OEPP/EPPO Bull. 2015, 34, 257–270. [Google Scholar]
- EDQM (Council of Europe). European Pharmacopoeia, 6th ed.; EDQM: Strasbourg, France, 2008. [Google Scholar]
- Cecchini, C.; Coman, M.M.; Cresci, A.; Tirillini, B.; Cristalli, G.; Papa, F.; Sagratini, G.; Vittori, S.; Maggi, F. Essential oil from fruits and roots of Ferulago campestris (Besser) Grecescu (Apiaceae): Composition and antioxidant and anti-Candida activity. Flavour Frag. J. 2010, 25, 493–502. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST 17. Mass Spectral Library; (NIST/EPA/NIH); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- FFNSC 2. Flavors and Fragrances of Natural and Synthetic Compounds. Mass Spectral Database; Shimadzu Corps: Kyoto, Japan, 2012. [Google Scholar]
- Pavela, R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia Pac. Entomol. 2014, 17, 287–293. [Google Scholar] [CrossRef]
- Pavela, R. Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J. Essent. Oil -Bear. Plants 2007, 10, 346–356. [Google Scholar] [CrossRef]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- WHO. Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides; CTD/WHOPES /IC /96.1; WHO: Geneva, Switzerland, 1996; p. 69. [Google Scholar]
- Benelli, G.; Maggi, F.; Canale, A.; Mehlhorn, H. Lyme disease is on the rise—How about tick repellents? A global view. Entomol. Gen. 2019, 39, 61–72. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Zorzetto, C.; Sánchez-Mateo, C.C.; Santini, G.; Canale, A.; Maggi, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University: London, UK, 1971; pp. 68–78. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Maxia, A. Comparative analysis of the oil and supercritical CO2 extract of Ridolfia segetum (L.) Moris. Nat. Prod. Res. 2007, 21, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Palá-Paúl, J.; Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Ramos-Vázquez, P. Volatile constituents of Ridolfia segetum (L.) Moris gathered in southern Spain, Andalucia province. J. Essent. Oil Res. 2002, 14, 206–209. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Vallejo, M.C.G. Volatile constituents of Ridolfia segetum (L.) Moris gathered in central Spain: Castilla la Mancha. J. Essent. Oil Res. 2005, 17, 119–121. [Google Scholar] [CrossRef]
- Karkouri, J.E.L.; Amalich, S.; Drioiche, A.; Fadili, K.; Eto, B.; Khabal, Y.; Zair, T. Phytochemical valuation of the umbels of Ridolfia segetum (L.) Moris of Morocco. Int. J. Adv. Res. 2017, 5, 1780–1788. [Google Scholar] [CrossRef] [Green Version]
- Božović, M.; Garzoli, S.; Baldisserotto, A.; Andreotti, E.; Cesa, S.; Pepi, F.; Vertuani, S.; Manfredini, S.; Ragno, R. Variation in essential oil content and composition of Ridolfia segetum Moris based on 30-hour prolonged fractionated extraction procedure. Nat. Prod. Res. 2020, 34, 1923–1926. [Google Scholar] [CrossRef] [PubMed]
- Gattefosse, J.; Igolen, G. Aromatic flora of Morocco. The essence of “harvest fennel” (Ridolfia segetum). Bull. Soc. Chim. Fr. 1946, 361–363. [Google Scholar]
- Sutthanont, N.; Attrapadung, S.; Nuchprayoon, S. Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, A.; Kannathasan, K.; Venkatesalu, V. Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol. Res. 2008, 103, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Huong, L.T.; Huong, T.T.; Huong, N.T.; Hung, N.H.; Dat, P.T.; Luong, N.X.; Ogunwande, I.A. Mosquito larvicidal activity of the essential oil of Zingiber collinsii against Aedes albopictus and Culex quinquefasciatus. J. Oleo Sci. 2020, 69, 153–160. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Sánchez-Aldana, D.; Chacón-Vargas, K.F.; Rivera-Chavira, B.E.; Sánchez-Torres, L.E.; Camacho, A.D.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. Oviposition deterrent and larvicidal and pupaecidal activity of seven essential oils and their major components against Culex quinquefasciatus Say (Diptera: Culicidae): Synergism–antagonism effects. Insects 2018, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Sundararajan, B.; Moola, A.K.; Vivek, K.; Kumari, B.R. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb. Pathog. 2018, 125, 475–485. [Google Scholar] [CrossRef]
- Mohafrash, S.M.; Fallatah, S.A.; Farag, S.M.; Mossa, A.T.H. Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica. Ind. Crops Prod. 2020, 157, 112944. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Q.; Rao, Y.; Hong, L.; Zhang, D. Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 2019, 26, 23824–23831. [Google Scholar] [CrossRef]
- Chere, J.M.C.; Dar, M.A.; Pandit, R.S. Evaluation of some essential oils against the larvae of house fly, Musca domestica by using residual film method. Biotechnol. Microb. 2018, 9, 555752. [Google Scholar] [CrossRef]
- Xie, Y.; Jin, H.; Yang, X.; Gu, Q.; Zhang, D. Toxicity of the essential oil from Thymus serpyllum and thymol to larvae and pupae of the housefly Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 2020, 27, 35330–35340. [Google Scholar] [CrossRef]
- Hazarika, H.; Tyagi, V.; Krishnatreyya, H.; Islam, J.; Boruah, D.; Kishor, S.; Chattopadhyaya, P.; Zaman, K. Essential oil based controlled-release non-toxic evaporating tablet provides effective repellency against Musca domestica. Acta Trop. 2020, 210, 105620. [Google Scholar] [CrossRef] [PubMed]
- Scalerandi, E.; Flores, G.A.; Palacio, M.; Defagó, M.T.; Carpinella, M.C.; Valladares, G.; Bertoni, A.; Palacios, S.M. Understanding synegistic toxicity of terpenes as insecticides: Contribution of metabolic detoxification in Musca domestica. Front. Plant Sci. 2018, 9, 1579. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Pavela, R.; Giordani, C.; Casettari, L.; Curzi, G.; Cappellacci, L.; Petrelli, R.; Maggi, F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018, 112, 668–680. [Google Scholar] [CrossRef]
- Pavela, R.; Zabka, M.; Bednar, J.; Triska, J.; Vrchotova, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 2016, 83, 275–282. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae). Ecotoxicol. Environ. Saf. 2014, 100, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Canale, A.; Benelli, G. Promising insecticidal efficacy of the essential oils from the halophyte Echinophora spinosa (Apiaceae) growing in Corsica Island, France. Environ. Sci. Pollut. Res. 2020, 27, 14454–14464. [Google Scholar] [CrossRef]
- Pavela, R.; Bartolucci, F.; Desneux, N.; Lavoir, A.V.; Canale, A.; Maggi, F.; Benelli, G. Chemical profiles and insecticidal efficacy of the essential oils from four Thymus taxa growing in central-southern Italy. Ind. Crops Prod. 2019, 138, 111460. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sanchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef]
- Pavela, R. Sublethal effects of some essential oils on the cotton leafworm Spodoptera littoralis (Boisduval). J. Essent. Oil-Bear. Plants 2012, 15, 144–156. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cianfaglione, K.; Bajalan, I.; Morshedloo, M.R.; Lupidi, G.; Romano, D.; et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019, 129, 631–640. [Google Scholar] [CrossRef]
- Cheng, S.S.; Huang, C.G.; Chen, Y.J.; Yu, J.J.; Chen, W.J.; Chang, S.T. Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour. Technol. 2009, 100, 452–456. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Bruno, M.; Benelli, G. Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 2018, 15, e1700382. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Jia, R.; Guo, M.; Qin, K.; Zhang, L. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind. Crops Prod. 2020, 150, 112403. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afsharf, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Tak, J.H.; Isman, M.B. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, J.H.; Isman, M.B. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Sci. Rep. 2017, 7, srep42432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.T.; Chao, L.K.P.; Hong, K.S.; Huang, Y.J.; Yang, T.S. Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects 2020, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Pavela, R.; Canale, A.; Cianfaglione, K.; Ciaschetti, G.; Conti, F.; Nicoletti, M.; Senthil-Nathan, S.; Mehlhorn, H.; Maggi, F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017, 66, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Benelli, G. Essential Oils from Aromatic and Medicinal Plants as Effective Weapons against Mosquito Vectors of Public Health Importance. In Mosquito-borne Diseases. Parasitology Research Monographs; Benelli, G., Mehlhorn, H., Eds.; Springer: Cham, Switzerland, 2018; Volume 10. [Google Scholar] [CrossRef]
- Yeom, H.J.; Jung, C.S.; Kang, J.; Kim, J.; Lee, J.H.; Kim, D.S.; Kim, H.S.; Park, P.S.; Kang, K.S.; Park, I.K. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J. Agric. Food Chem. 2015, 63, 2241–2248. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Benelli, G. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol. Environ. Saf. 2016, 129, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Murfadunnisa, S.; Vasantha-Srinivasan, P.; Ganesan, R.; Senthil-Nathan, S.; Kim, T.J.; Ponsankar, A.; Kumar, S.D.; Chandramohan, D.; Krutmuang, P. Larvicidal and enzyme inhibition of essential oil from Spheranthus amaranthroides (Burm.) against lepidopteran pest Spodoptera litura (Fab.) and their impact on non-target earthworms. Biocatal. Agric. Biotechnol. 2019, 21, 101324. [Google Scholar] [CrossRef]
- Conti, B.; Flamini, G.; Cioni, P.L.; Ceccarini, L.; Macchia, M.; Benelli, G. Mosquitocidal essential oils: Are they safe against non-target aquatic organisms? Parasitol. Res. 2014, 113, 251–259. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Nzekoue, F.K.; Cappellacci, L.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Sut, S.; Dall’Acqua, S.; et al. Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind. Crops Prod. 2019, 137, 356–366. [Google Scholar] [CrossRef]
- Ferreira, T.P.; Oliveira, E.E.; Tschoeke, P.H.; Pinheiro, R.G.; Maia, A.M.S.; Aguiar, R.W.S. Potential use of Negramina (Siparuna guianensis Aubl.) essential oil to control wax moths and its selectivity in relation to honey bees. Ind. Crops Prod. 2017, 109, 151–157. [Google Scholar] [CrossRef]
- Melo, C.R.; Picanço, M.C.; Santos, A.A.; Santos, I.B.; Pimentel, M.F.; Santos, A.C.C.; Blank, A.F.; Araujo, A.P.A.; Cristaldo, P.F.; Bacci, L. Toxicity of essential oils of Lippia gracilis chemotypes and their major compounds on Diaphania hyalinata and non-target species. Crop Prot. 2018, 104, 47–51. [Google Scholar] [CrossRef]
Components | LRI a | LRI Lit. | % | Id.b | |
---|---|---|---|---|---|
1 | α-Thujene | 921 | 924 | 0.4 | RI, MS |
2 | α-Pinene | 926 | 932 | 3.0 | Co-I,RI,MS |
3 | Camphene | 939 | 946 | T | Co-I,RI,MS |
4 | Sabinene | 965 | 969 | 0.5 | Co-I,RI,MS |
5 | β-Pinene | 968 | 974 | 2.5 | Co-I,RI,MS |
6 | Myrcene | 989 | 988 | 1.1 | Co-I,RI,MS |
7 | α-Phellandrene | 1004 | 1002 | 49.3 | Co-I,RI,MS |
8 | δ-3-Carene | 1008 | 1008 | t | Co-I,RI,MS |
9 | α-Terpinene | 1014 | 1014 | 0.1 | Co-I,RI,MS |
10 | p-Cymene | 1022 | 1020 | 1.4 | Co-I,RI,MS |
11 | Limonene | 1024 | 1025 | 0.3 | Co-I,RI,MS |
12 | β-Phellandrene | 1025 | 1025 | 9.2 | RI,MS |
13 | (Z)-β-Ocimene | 1037 | 1032 | 1.3 | Co-I,RI,MS |
14 | (E)-β-Ocimene | 1047 | 1044 | 0.1 | Co-I,RI,MS |
15 | γ-Terpinene | 1055 | 1054 | 0.2 | Co-I,RI,MS |
16 | Terpinolene | 1086 | 1086 | 20.7 | Co-I,RI,MS |
17 | Linalool | 1101 | 1095 | t | Co-I,RI,MS |
18 | 1,3,8-p-Menthatriene | 1109 | 1108 | t | RI, MS |
19 | allo-Ocimene | 1129 | 1128 | t | Co-I,RI,MS |
20 | Terpinen-4-ol | 1173 | 1174 | 0.1 | Co-I,RI,MS |
21 | p-Cymen-8-ol | 1183 | 1179 | 0.1 | RI, MS |
22 | α-Terpineol | 1186 | 1186 | t | Co-I,RI,MS |
23 | Piperitone | 1250 | 1249 | t | RI,MS |
24 | Piperitenone | 1336 | 1340 | t | RI,MS |
25 | Piperitenone oxide | 1362 | 1366 | 5.9 | RI,MS |
26 | Germacrene D | 1471 | 1484 | t | RI,MS |
27 | Dill apiole | 1621 | 1620 | 3.7 | RI,MS |
Monoterpene hydrocarbons | 90.1 | ||||
Oxygenated monoterpenes | 6.1 | ||||
Sesquiterpene hydrocarbons | t | ||||
Others | 3.7 | ||||
Total | 99.9 |
Insect Species | Unit | LC/LD50 | CI95 | LC/LD90 | CI95 | χ2 (df = 4) | p-Level |
---|---|---|---|---|---|---|---|
Culex quinquefasciatus 3rd instar larva | µL L−1 | 27.1 | 18.9–32.3 | 42.5 | 38.9–54.2 | 0.734 | 0.574 ns |
Musca domestica adult female | µg adult−1 | 50.8 | 41.2–62.3 | 147.5 | 129.5–168.7 | 3.751 | 0.289 ns |
Musca domestica adult male | µg adult−1 | 10.5 | 5.8.15.6 | 75.2 | 61.8–93.6 | 2.485 | 0.615 ns |
Spodoptera littoralis 3rd instar larva | µg larva−1 | 37.9 | 28.5–42.6 | 99.6 | 87.2–152.7 | 2.745 | 0.133 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badalamenti, N.; Ilardi, V.; Bruno, M.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Maggi, F.; Canale, A.; Benelli, G. Chemical Composition and Broad-Spectrum Insecticidal Activity of the Flower Essential Oil from an Ancient Sicilian Food Plant, Ridolfia segetum. Agriculture 2021, 11, 304. https://doi.org/10.3390/agriculture11040304
Badalamenti N, Ilardi V, Bruno M, Pavela R, Boukouvala MC, Kavallieratos NG, Maggi F, Canale A, Benelli G. Chemical Composition and Broad-Spectrum Insecticidal Activity of the Flower Essential Oil from an Ancient Sicilian Food Plant, Ridolfia segetum. Agriculture. 2021; 11(4):304. https://doi.org/10.3390/agriculture11040304
Chicago/Turabian StyleBadalamenti, Natale, Vincenzo Ilardi, Maurizio Bruno, Roman Pavela, Maria C. Boukouvala, Nickolas G. Kavallieratos, Filippo Maggi, Angelo Canale, and Giovanni Benelli. 2021. "Chemical Composition and Broad-Spectrum Insecticidal Activity of the Flower Essential Oil from an Ancient Sicilian Food Plant, Ridolfia segetum" Agriculture 11, no. 4: 304. https://doi.org/10.3390/agriculture11040304
APA StyleBadalamenti, N., Ilardi, V., Bruno, M., Pavela, R., Boukouvala, M. C., Kavallieratos, N. G., Maggi, F., Canale, A., & Benelli, G. (2021). Chemical Composition and Broad-Spectrum Insecticidal Activity of the Flower Essential Oil from an Ancient Sicilian Food Plant, Ridolfia segetum. Agriculture, 11(4), 304. https://doi.org/10.3390/agriculture11040304