Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?
Abstract
:1. Introduction
2. Materials and Methods
Plant Material and Experimental Design
3. Results and Discussion
3.1. Yield and Morphology
3.2. Impact of Storage Time and Deficit Irrigation on the Appearance (Color) of Mango Fruits
3.3. Impact of Water Stress on Total Soluble Solids, Titrabale Acidity, Organic Acids and Sugars
3.4. Impact of Water Stress on the Minerals Content of Mango
3.5. Impact of Water Stress on the Antioxidant Activity (AA) and Total Phenolic Content (TPC)
3.6. Impact of Water Stress on the Fiber Content of Mango
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Trends and Challenges. Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 8 March 2021).
- Lipan, L.; Garcia-Tejero, I.F.; Gutierrez-Gordillo, S.; Demirbas, N.; Sendra, E.; Hernandez, F.; Duran-Zuazo, V.H.; Carbonell-Barrachina, A.A. Enhancing Nut Quality Parameters and Sensory Profiles in Three Almond Cultivars by Different Irrigation Regimes. J. Agric. Food Chem. 2020, 68, 2316–2328. [Google Scholar] [CrossRef] [PubMed]
- Lipan, L.; Cano-Lamadrid, M.; Hernández, F.; Sendra, E.; Corell, M.; Vázquez-Araújo, L.; Moriana, A.; Carbonell-Barrachina, Á.A. Long-Term Correlation between Water Deficit and Quality Markers in HydroSOStainable Almonds. Agronomy 2020, 10, 1470. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Y.; Yang, Q.; Wang, X.; Cui, N. Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS. Agric. Water Manag. 2021, 245, 106650. [Google Scholar] [CrossRef]
- Spreer, W.; Ongprasert, S.; Hegele, M.; Wünsche, J.N.; Müller, J. Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes. Agric. Water Manag. 2009, 96, 574–584. [Google Scholar] [CrossRef]
- Rodríguez Pleguezuelo, C.R.; Cárceles Rodríguez, B.; García Tejero, I.F.; Gálvez Ruíz, B.; Franco Tarifa, D.; Francia Martínez, J.R.; Durán Zuazo, V.H. Chapter 13—Irrigation Strategies for Mango (Mangifera indica L.) Under Water-Scarcity Scenario in the Mediterranean Subtropical Environment. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; García Tejero, I.F., Durán Zuazo, V.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 299–316. [Google Scholar]
- Durán Zuazo, V.H.; Pleguezuelo, C.R.R.; Tarifa, D.F. Impact of sustained-deficit irrigation on tree growth, mineral nutrition, fruit yield and quality of mango in Spain. Fruits 2011, 66, 257–268. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Worldwide Fruit Production. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 8 March 2021).
- Ngamchuachit, P.; Sivertsen, H.K.; Mitcham, E.J.; Barrett, D.M. Influence of cultivar and ripeness stage at the time of fresh-cut processing on instrumental and sensory qualities of fresh-cut mangos. Postharvest Biol. Technol. 2015, 106, 11–20. [Google Scholar] [CrossRef]
- Fukuda, S.; Spreer, W.; Yasunaga, E.; Yuge, K.; Sardsud, V.; Müller, J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agric. Water Manag. 2013, 116, 142–150. [Google Scholar] [CrossRef]
- Chomchalow, N.; Songkhla, P.N. Thai Mango Export: A Slow-but-Sustainable Development. AU J. Technol. 2008, 12, 1–8. [Google Scholar]
- Elias, F.; Ruiz, L. Agroclimatología de España. Cuaderno I.N.I.A. 2008, 12, 1–8. [Google Scholar]
- Rodríguez Pleguezuelo, C.R.; Durán Zuazo, V.H.; Francia Martínez, J.R.; Muriel Fernández, J.L.; Tarifa, D.F. Monitoring the pollution risk and water use in orchard terraces with mango and cherimoya trees by drainage lysimeters. Irrig. Drain. Syst. 2011, 25, 61–79. [Google Scholar] [CrossRef]
- Carbonell-Barrachina, A.; Calín-Sánchez, Á.; Bagatar, B.; Hernandez, F.; Legua, P.; Martínez, R.; Melgarejo, P. Potential of Spanish sour–sweet pomegranates (cultivar C25) for the juice industry. Food Sci. Technol. Int. 2012, 18, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lamadrid, M.; Girona, D.; García-García, E.; Dominguis-Rovira, V.; Domingo, C.; Sendra, E.; López-Lluch, D.; Carbonell-Barrachina, Á.A. Distribution of essential and non-essential elements in rice located in a Protected Natural Reserve “Marjal de Pego-Oliva”. J. Food Compos. Anal. 2020, 94, 103654. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- AOAC. Official Methods (985.29) of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1997; Volume 2. [Google Scholar]
- Sa’ad, F.S.A.; Ibrahim, M.F.; Shakaff, A.Y.M.; Zakaria, A.; Abdullah, M.Z. Shape and weight grading of mangoes using visible imaging. Comput. Electron. Agric. 2015, 115, 51–56. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; WHO. Codex Alimentarius, 1993—Codex Standard for Mangoes (Codex Stan 184-2003, Amended 2005); FAO: Rome, Italy, 2018. [Google Scholar]
- Farina, V.; Gentile, C.; Sortino, G.; Gianguzzi, G.; Palazzolo, E.; Mazzaglia, A. Tree-Ripe Mango Fruit: Physicochemical Characterization, Antioxidant Properties and Sensory Profile of Six Mediterranean-Grown Cultivars. Agronomy 2020, 10, 884. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Ali, H.M.; Salem, M.Z.M.; Ibrahem, E.G.; Elshikh, M.S. Genetic and Morphological Characterization of Mangifera indica L. Growing in Egypt. HortScience 2018, 53, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Baloch, M.K.; Bibi, F. Effect of harvesting and storage conditions on the post harvest quality and shelf life of mango (Mangifera indica L.) fruit. S. Afr. J. Bot. 2012, 83, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Karanjalker, G.R.; Ravishankar, K.V.; Shivashankara, K.S.; Dinesh, M.R.; Roy, T.K.; Sudhakar Rao, D.V. A Study on the Expression of Genes Involved in Carotenoids and Anthocyanins During Ripening in Fruit Peel of Green, Yellow, and Red Colored Mango Cultivars. Appl. Biochem. Biotechnol. 2018, 184, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Suh, J.H.; Chambers, A.H.; Crane, J.; Wang, Y. Relationship between Sensory Attributes and Chemical Composition of Different Mango Cultivars. J. Agric. Food Chem. 2019, 67, 5177–5188. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef] [PubMed]
- Rathore, H.; Tariq, M.; Sammi, S.; Soomro, A.H. Effect of Storage on Physico-Chemical Composition and Sensory Properties of Mango (Mangifera indica L.) Variety Dosehari. Pak. J. Nutr. 2007, 6, 143–148. [Google Scholar]
- Kour, R.; Singh, M.; Gill, P.P.S.; Jawandha, S.K. Ripening quality of Dusehri mango in relation to harvest time. J. Food Sci. Technol. 2018, 55, 2395–2400. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Taylor, C.; Sommer, K.; Wilkinson, K.; Wirthensohn, M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015, 173, 821–826. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Lipan, L.; Vázquez-Araújo, L.; Barber, X.; Pérez-López, D.; Carbonell-Barrachina, Á. Opinion of Spanish Consumers on Hydrosustainable Pistachios. J. Food Sci. 2016, 81, S2559–S2565. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, L.; Lipan, L.; Andreu, L.; Martín-Palomo, M.J.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. Effect of regulated deficit irrigation on the quality of raw and table olives. Agric. Water Manag. 2019, 221, 415–421. [Google Scholar] [CrossRef]
- Mohammed, H.N.; Mahmud, T.M.M.; Puteri, E.M.W. Deficit irrigation for improving the postharvest quality of lowland tomato fruits. Pertanika J. Trop. Agric. Sci. 2018, 41, 741–758. [Google Scholar]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agric. Water Manag. 2014, 134, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Spreer, W.; Nagle, M.; Neidhart, S.; Carle, R.; Ongprasert, S.; Müller, J. Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. ‘Chok Anan’). Agric. Water Manag. 2007, 88, 173–180. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170567/nutrients (accessed on 8 March 2021).
- Anderson, N.T.; Subedi, P.P.; Walsh, K.B. Manipulation of mango fruit dry matter content to improve eating quality. Sci. Hortic. 2017, 226, 316–321. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Morad-Talab, N.; Abd-Allah, E.F.; Ahmad, P.; Hajiboland, R. Plant growth under drought stress: Significance of mineral nutrients. In Water Stress and Crop Plants: A Sustainable Approach; Wiley: Hoboken, NJ, USA, 2016; Volume 2, pp. 649–668. [Google Scholar]
- Agbemafle, R.; Owusu-Sekyere, J.; Plange, A. Effect of deficit irrigation and storage on the nutritional composition of tomato (Lycopersicon esculentum Mill. cv. Pectomech). Croat. J. Food Technol. Biotechnol. Nutr. 2015, 10, 59–65. [Google Scholar]
- Alimohammadi, R.M.A.; Tatari, M.; Fattahi, A. Effects of deficit irrigation during different phenological stages of fruit growth and development on mineral elements and almond yield. Iran. J. Water Res. Agric. 2012, 26, 143–159. [Google Scholar]
- Alikhani-Koupaei, M.; Fatahi, R.; Zamani, Z.; Salimi, S. Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder. Agric. Water Manag. 2018, 209, 219–227. [Google Scholar] [CrossRef]
- Carbonell-Barrachina, A.A.; Memmi, H.; Noguera-Artiaga, L.; Gijon-Lopez, M.D.; Ciapa, R.; Perez-Lopez, D. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. J. Sci. Food Agric. 2015, 95, 2866–2873. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Behboudian, M.H.; Greven, M.; Zegbe-Domínguez, J.A. Mineral contents of grape, olive, apple, and tomato under reduced irrigation. J. Plant Nutr. Soil Sci. 2004, 167, 91–92. [Google Scholar] [CrossRef]
- Tayarani-Najaran, Z.; Rashidi, R.; Rashedinia, M.; Khoshbakht, S.; Javadi, B. The protective effect of Lavandula officinalis extract on 6-hydroxydopamine-induced reactive oxygen species and apoptosis in PC12 cells. Eur. J. Integr. Med. 2021, 41, 101233. [Google Scholar] [CrossRef]
- Shrivastava, A.; Mishra, S.P.; Pradhan, S.; Choudhary, S.; Singla, S.; Zahra, K.; Aggarwal, L.M. An Assessment of Serum Oxidative Stress and Antioxidant Parameters in Patients Undergoing Treatment for Cervical Cancer. Free Radic. Biol. Med. 2021, 167, 29–35. [Google Scholar] [CrossRef]
- Alam, M.Z.; Alhebsi, M.S.R.; Ghnimi, S.; Kamal-Eldin, A. Inability of total antioxidant activity assays to accurately assess the phenolic compounds of date palm fruit (Phoenix dactylifera L.). NFS J. 2021, 22, 32–40. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, A.; Naderi, R.; Brunetti, C.; Maserti, B.E.; Salami, S.A.; Babalar, M. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 2019, 9, 19250. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Cai, R.; Chen, Y.; Gu, B. The impact of dietary fiber and probiotics in infectious diseases. Microbe Pathog. 2020, 140, 103931. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Rodríguez, O.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Pacheco-Vargas, G. Pulp and peel of unripe stenospermocarpic mango (Mangifera indica L. cv Ataulfo) as an alternative source of starch, polyphenols and dietary fibre. Food Res. Int. 2020, 138, 109719. [Google Scholar] [CrossRef]
- Gebruers, K.; Dornez, E.; Bedõ, Z.; Rakszegi, M.; Frás, A.; Boros, D.; Courtin, C.M.; Delcour, J.A. Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9353–9361. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Azimi-Moqadam, M.R.; Moradi, P.; MohseniFard, E.; Shekari, F.; Kompany-Zareh, M. Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiol. Biochem. 2018, 132, 391–399. [Google Scholar] [CrossRef]
- Thakur, A.; Singh, Z. Responses of ‘Spring Bright’ and ‘Summer Bright’ nectarines to deficit irrigation: Fruit growth and concentration of sugars and organic acids. Sci. Hortic. 2012, 135, 112–119. [Google Scholar] [CrossRef]
- Nahar, K.; Gretzmacher, R. Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Die Bodenkultur 2002, 53, 45–51. [Google Scholar]
- Campi, P.; Gaeta, L.; Mastrorilli, M.; Losciale, L. Innovative soil management and micro-climate modulation for saving water in peach orchards. Front. Plant Sci. 2020, 11, 1052. [Google Scholar] [CrossRef] [PubMed]
- Fernàndez, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive trees orchard. Agric. Water Manag. 2020, 233, 106074. [Google Scholar] [CrossRef]
ANOVA † | FI | SDI75 | SDI50 | SDI33 | |
---|---|---|---|---|---|
Size (mm) | |||||
Length | *** | 155a ‡ | 146b | 143b | 133c |
Width | *** | 98.0a | 94.7ab | 91.0b | 86.0c |
Thickness | *** | 82.4a | 81.1ab | 77.2bc | 74.7c |
Weight (g) | |||||
Whole | *** | 681a | 586b | 540b | 455c |
Peel | *** | 115a | 103ab | 87.2bc | 76.3c |
Flesh | *** | 535a | 455b | 424b | 351c |
Pit | NS | 30.9 | 28.1 | 29.2 | 27.7 |
Seed | NS | 10.7 | 9.44 | 11.0 | 9.35 |
Treatments | Titratable Acidity | Organic Acids | Total Soluble Solids | Sugars |
---|---|---|---|---|
g L−1 | g L−1 | °Brix | g L−1 | |
ANOVA Test † | ||||
* | *** | *** | *** | |
Tukey Multiple Range Test ‡ | ||||
FI | 0.87ab | 4.67c | 17.5a | 168a |
SDI75 | 1.52a | 6.33ab | 16.1ab | 161a |
SDI50 | 0.75b | 5.12bc | 14.8b | 149b |
SDI33 | 0.99ab | 7.16a | 15.3b | 161a |
Treatments | Na | Mg | P | K | Ca | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|
mg kg−1 | |||||||||
ANOVA Test † | |||||||||
*** | *** | ** | ** | *** | *** | *** | *** | *** | |
Tukey Multiple Range Test ‡ | |||||||||
FI | 17.3c | 621b | 772a | 7053ab | 301c | 2.60c | 8.78a | 6.09a | 5.32b |
SDI75 | 20.9b | 678b | 791a | 6549b | 513b | 3.49b | 7.33b | 5.50a | 4.88b |
SDI50 | 24.2a | 692b | 788a | 7441a | 661a | 4.15a | 8.90a | 5.59a | 7.17a |
SDI33 | 17.6c | 792a | 646b | 7709a | 655a | 3.08bc | 7.68b | 2.76b | 3.79b |
Treatments | ABTS•+ | DPPH | FRAP | TPC |
---|---|---|---|---|
mmol Trolox kg−1 | g GAE kg−1 | |||
ANOVA † | ||||
** | * | *** | * | |
Tukey Multiple Range Test ‡ | ||||
FI | 145a | 192a | 5.97c | 2.28b |
SDI75 | 145a | 183ab | 6.37bc | 2.83a |
SDI50 | 141b | 181ab | 7.43ab | 2.81a |
SDI33 | 142b | 170b | 8.44a | 2.75ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipan, L.; Carbonell-Pedro, A.A.; Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Franco Tarifa, D.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S.; Muelas, R.; Sendra, E.; et al. Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango? Agriculture 2021, 11, 448. https://doi.org/10.3390/agriculture11050448
Lipan L, Carbonell-Pedro AA, Cárceles Rodríguez B, Durán-Zuazo VH, Franco Tarifa D, García-Tejero IF, Gálvez Ruiz B, Cuadros Tavira S, Muelas R, Sendra E, et al. Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango? Agriculture. 2021; 11(5):448. https://doi.org/10.3390/agriculture11050448
Chicago/Turabian StyleLipan, Leontina, Aarón A. Carbonell-Pedro, Belén Cárceles Rodríguez, Víctor Hugo Durán-Zuazo, Dionisio Franco Tarifa, Iván Francisco García-Tejero, Baltasar Gálvez Ruiz, Simón Cuadros Tavira, Raquel Muelas, Esther Sendra, and et al. 2021. "Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?" Agriculture 11, no. 5: 448. https://doi.org/10.3390/agriculture11050448
APA StyleLipan, L., Carbonell-Pedro, A. A., Cárceles Rodríguez, B., Durán-Zuazo, V. H., Franco Tarifa, D., García-Tejero, I. F., Gálvez Ruiz, B., Cuadros Tavira, S., Muelas, R., Sendra, E., Carbonell-Barrachina, Á. A., & Hernández, F. (2021). Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango? Agriculture, 11(5), 448. https://doi.org/10.3390/agriculture11050448