Chia (Salvia hispanica L.) Seed Soaking, Germination, and Fatty Acid Behavior at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Acquisition and Store
2.2. Imbibition Tests
2.3. Germination Tests
2.4. Variables Evaluated
2.4.1. Total Germination
2.4.2. Median Germination Time (t50)
2.4.3. Germination Rate (GR)
2.5. Lipid Extraction and Fatty Acid Analysis by GC-MS
2.6. Statistical Analysis
3. Results
3.1. Imbibition
3.2. Germination
3.3. Fatty Acid Analysis
4. Discussion
4.1. Imbibition
4.2. Germination
4.3. Fatty Acids Analysis
5. Conclusions
- In S. hispanica a shorter FII imbibition phase is associated with earlier germination.
- The increase in concentration in fatty acids after 3 h and a negative correlation between linoleic and linolenic acid observed at 20 °C were related to a higher germination efficiency.
- At 30 °C, it was observed the formation of three trans linolenic acid isomers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bueno, M.; Di Sapio, O.; Barolo, M.; Busilacchi, H.; Quiroga, M.; Severin, C. Análisis de la calidad de los frutos de Salvia hispanica L. (Lamiaceae) comercializados en la ciudad de Rosario (Santa Fe, Argentina). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2010, 9, 221–227. [Google Scholar]
- Chicco, A.; D’Alessandro, M.; Hein, G.; Oliva, M.; Lombardo, Y. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br. J. Nutr. 2009, 101, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capitani, M.; Corzo-Rios, L.; Chel-Guerrero, L.; Betancur-Ancona, D.; Nolasco, S.; Tomás, M. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng. 2015, 149, 70–77. [Google Scholar] [CrossRef]
- Imran, M.; Nadeem, M.; Manzoor, M.F.; Javed, A.; Ali, Z.; Akhtar, M.N.; Hussain, Y. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds. BioMed Cent. 2016, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Busilacchi, H.; Bueno, M.; Severin, C.; Di Sapio, O.; Quiroga, M.; Flores, V. Evaluation of Salvia hispanica L. cultivated in the south of Santa Fe (Argentina). Cultiv. Trop. 2013, 34, 55–59. [Google Scholar]
- Beltrán-Orozco, M.; Romero, M. Chía, alimento milenario. Rev. Ind. Aliment. 2003, 22–25. [Google Scholar]
- Jamboonsri, W.; Phillips, T.; Geneve, R.; Cahill, J.; Hildebrand, D. Extending the range of an ancient crop, Salvia hispanica L.—A new ω3 source. Genet. Resour. Crop. Evol. 2012, 59, 171–178. [Google Scholar] [CrossRef]
- Ayerza, R. Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J. Am. Oil Chem. Soc. 1995, 72, 1079–1081. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Trop. Sci. 2004, 44, 131–135. [Google Scholar] [CrossRef]
- Coates, W.; Ayerza, R. Production potential of chia in northwestern Argentina. Ind. Crop. Prod. 1996, 5, 229–233. [Google Scholar] [CrossRef]
- Heuer, B.; Yaniv, Z.; Ravina, I. Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Ind. Crops Prod. 2002, 15, 163–167. [Google Scholar] [CrossRef]
- Ixtaina, V.; Nolasco, S.; Tomás, M. Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crops Prod. 2008, 28, 286–293. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Mohd Ali, N.; Yeap, S.; Ho, W.; Beh, B.; Tan, S.; Tan, S. The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 2012, 171956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayerza, R. Crop year effects on seed yields, growing cycle length, and chemical composition of chia (Salvia hispanica L.) growing in Ecuador and Bolivia. Emir. J. Food Agric. 2016, 28, 196–200. [Google Scholar]
- Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019, 25, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scientific Opinion of the Panel on Dietetic Products Nutrition and Allergies on a Request from the European Commission. Opinion on the safety of ‘Chia seed (Salvia hispanica) and ground whole Chia seed’ as a food ingredient. EFSA J. 2009, 996, 1–26.
- Ayerza, R.; Coates, W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind. Crops Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Lee, A.S. The Effects of Salvia hispanica L. (Salba) on Postprandial Glycemia and Subjective Appetit. Master’s Thesis, Nutritional Sciences University of Toronto, Toronto, ON, Canada, 2009. [Google Scholar]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The chemical composition and nutritional value of chia seeds-current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Chia Seed Market—Growth, Trends and Forecast (2020−2025). Available online: www.mordorintelligence.com/industry-reports/chia-seeds-market (accessed on 15 January 2021).
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant. Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: Cham, Switzerland, 2013; pp. 85–246. [Google Scholar]
- Nonogaki, H.; Bassel, G.; Bewley, J. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Nonogaki, H. Seed Biology Updates—Highlights and New Discoveries in Seed Dormancy and Germination Research. Front. Plant Sci. 2017, 8, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benech-Arnold, R.; Sánchez, R.; Forcella, F.; Kruk, B.; Ghersa, C. Environmental control of dormancy in weed seed banks in soil. Field Crop. Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Batlla, D.; Benech-Arnold, R. A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Sci. Res. 2015, 25, 147–158. [Google Scholar] [CrossRef]
- Bewley, J.; Black, M. Seeds: Physiology of Development and Germination, 2nd ed.; Springer: Cham, Switzerland, 1994; pp. 147–197. [Google Scholar]
- Marcos Filho, J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, C.; Chatgilialoglu, C. Encyclopedia of Radicals in Chemistry, Biology and Materials, 1st ed.; Wiley: Toronto, ON, Canada, 2012; pp. 1599–1623. [Google Scholar]
- Jouhet, J. Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci. 2013, 4, 494. [Google Scholar] [CrossRef] [Green Version]
- Lukatkin, A.; Brazaitytė, A.; Bobinas, A.; Duchovskis, P. Chilling injury in chilling-sensitive plants: A review. Zemdirb. Agric. 2012, 99, 111–124. [Google Scholar]
- Zacheo, G.; Cappelloa, A.R.; Perronea, L.M.; Gnoni, G.V. Analysis of factors influencing lipid oxidation of almond seeds during accelerated ageing. LWT Food Sci. Technol. 1998, 31, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Oenel, A.; Fekete, A.; Krischke, M.; Faul, S.; Gresser, G.; Havaux, M.; Mueller, M.; Berger, S. Enzymatic and non-enzymatic mechanisms contribute to lipid oxidation during seed aging. Plant Cell Physiol. 2017, 58, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Doria, E.; Pagano, A.; Ferreri, C.; Larocca, A.V.; Macovei, A.; Araújo, S.S.; Balestrazzi, A. How Does the Seed Pre-Germinative Metabolism Fight Against Imbibition Damage? Emerging Roles of Fatty Acid Cohort and Antioxidant Defence. Front Plant Sci. 2019, 10, 1505. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Liu, Z.; Xing, M.; Yang, Y.; Wu, X.; Liu, H.; Liang, W. Heat Stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway. Plant Cell Physiol. 2019, 60, 1457–1470. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-X.; Xin, X.; Yin, G.-K.; He, J.-J.; Zhou, Y.-Z.; Chen, J.-Y.; Lu, X.-X. Membrane phospholipids remodeling upon imbibition in Brassica napus L. seeds. Biochem. Biophys. Res. Commun. 2019, 515, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Sudhakaran, I. Effect of Seed Ageing in Biochemical and Molecular Changes in Oilseeds: A Review. Agric. Rev. 2020, 41, 408–412. [Google Scholar]
- Noblet, A.; Leymarie, J.; Bailly, C. Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Sci. Rep. 2017, 7, 8886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, M.; Iqbal Raja, N.; Yasmeen, F.; Hussain, M.; Ejaz, M.; Shah, M.A. Impacts of heat stress on wheat: A critical review. Adv. Crop Sci. Tech. 2017, 5, 1. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Mene-Saffrane, L.; Dubugnon, L.; Chetelat, A.; Stolz, S.; Gouhier-Darimont, C.; Farmer, E. Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J. Biol. Chem. 2009, 284, 1702–1708. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lu, G.H. Cis-trans isomerization of unsaturated fatty acids in edible oils to prepare trans fat. Grasas Y Aceites 2018, 69, e268. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Influence of environment on growing period and yield, protein, oil and α-linolenic content of three chia (Salvia hispanica L.) selections. Ind. Crop. Prod. 2009, 30, 321–324. [Google Scholar] [CrossRef]
- Muñoz, L.; Cobos, A.; Diaz, O.; Aguilera, J. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Salgado-Cruz, M.; Chanona-Pérez, J.; Farrera-Rebollo, R.; Méndez-Méndez, J.; Díaz-Ramírez, M. Chia (Salvia hispanica L.) seed mucilage release characterization. A microstructural and image analysis study. Ind. Crop. Prod. 2013, 51, 453–462. [Google Scholar] [CrossRef]
- Sampayo-Maldonado, S.; Ordoñez-Salanueva, C.A.; Mattana, E.; Ulian, T.; Way, M.; Castillo-Lorenzo, E.; Dávila-Aranda, P.D.; Lira-Saade, R.; Téllez-Valdéz, O.; Rodriguez-Arevalo, N.I.; et al. Thermal Time and Cardinal Temperatures for Germination of Cedrela odorata L. Forest 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Paiva, E.; Barros-Torres, S.; da Silva, F.; Nogueira, N.; Freitas, R.; Leite, M. Light regime and temperature on seed germination in Salvia hispanica L. Acta Scientiarum. Agron. 2016, 38, 513–519. [Google Scholar] [CrossRef] [Green Version]
- International Seed Testing Association—ISTA. International Rules for Seed Testing, 2020th ed.; ISTA: Bassersdorf, Switzerland, 2020; pp. 1–4. [Google Scholar]
- Ordoñez-Salanueva, C.; Seal, C.; Pritchard, H.; Orozco-Segovia, A.; Canales-Martínez, M.; Flores-Ortíz, C. Cardinal temperatures and thermal time in Polaskia Beckeb (Cactaceae) species: Effect of projected soil temperature increase and nurse interaction on germination timing. J. Arid Environ. 2015, 115, 73–80. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of Germination—Aid in Selection and Evaluation for Seedling Emergence and Vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Priestley, D.; Wermer, B.; Leopold, C.; McBride, M. Organic free radical levels in seeds and pollen: The effects of hydration and aging. Physiol. Plant. 1985, 64, 88–94. [Google Scholar] [CrossRef]
- NIST/EPA/NIH Mass spectral library. Available online: www.chemdata.nist.gov (accessed on 30 January 2021).
- Bewley, J. Seed Germination and Dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayani, S.; Rao, S. Extraction of Mucilage from Chia Seeds and its Application as Fat Replacer in Biscuits. Int. J. Eng. Res. Technol. 2020, 9, 922–927. [Google Scholar]
- Geneve, R.; Hildebrand, D.; Phillips, T.; Kirk, J.; Al-Amery, M. Seed germination and mucilage production in chia (Salvia hispanica). Acta Hortic. 2019, 1249, 153–156. [Google Scholar] [CrossRef]
- Singh, B.; Chauhan, G.S.; Bhatt, S.S.; Kumar, K. Metal ion sorption and swelling studies of psyllium and acrylic acid based hydrogels. Carbohydr. Polym. 2006, 64, 50–56. [Google Scholar] [CrossRef]
- Singh, B.; Chauhan, G.S.; Kumar, S.; Chauhan, N. Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydr. Polym. 2007, 67, 190–200. [Google Scholar] [CrossRef]
- Thapliyal, R.C.; Phartyal, S.S.; Baskin, J.M.; Baskin, C.C. Role of mucilage in germination of Dillenia indica (Dilleniaceae) seeds. Aust. J. Bot. 2008, 56, 583–589. [Google Scholar] [CrossRef]
- Lobo, R.; Alcocer, M.; Fuentes, F.; Rodríguez, W.; Morandini, M.; Devani, M. Desarrollo del cultivo de chía en Tucumán, República Argentina. EEAOC-Av. Agroind. 2011, 32, 27–30. [Google Scholar]
- Bochicchio, R.; Rossi, R.; Labella, R.; Bitella, B.; Permiola, M.; Amato, M. Effect of sowing density and nitrogen top-dress fertilization on growth and yield of Chia (Salvia hispanica L.) in a Mediterranean environment. Ital. J. Agron. 2015, 10, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Orozco, G.; Durán, N.; González, D.; Zarazúa, P.; Ramírez, G.; Mena, S. Proyecciones de cambio climático y potencial productivo para Salvia hispanica L. en las zonas agrícolas de México. Rev. Mex. De Cienc. Agrícolas 2014, 10, 1831–1842. [Google Scholar]
- Paiva, E.P.D.; Torres, S.B.; Alves, T.R.C.; Sá, F.V.D.S.; Leite, M.D.S.; Dombroski, J.L.D. Germination and biochemical components of Salvia hispanica L. seeds at different salinity levels and temperatures. Acta Scientiarum. Agron. 2018, 40, e39396. [Google Scholar] [CrossRef]
- Gómez-Favela, M.; Gutiérrez-Dorado, R.; Cuevas-Rodríguez, E.; Canizalez-Román, V.; Del Rosario León-Sicairos, C.; Milán-Carrillo, J.; Reyes-Moreno, C. Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess. Plant Foods Hum Nutr. 2017, 72, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Nadtochii, L.; Kuznetcova, D.; Proskura, A.; Apalko, A.; Nazarova, V.; Srinivasan, M. Investigation of various factors on the germination of chia seeds sprouts (Salvia hispanica L.). Agron. Res. 2019, 17, 1390–1400. [Google Scholar]
- Stefanello, R.; das Neves, L.A.S.; Abbad, M.A.B.; Viana, B.B. Physiological response of chia seeds (Salvia hispanica-Lamiales: Lamiaceae) to saline stress. Biotemas 2015, 28, 35–39. [Google Scholar] [CrossRef]
- Stefanello, R.; das Neves, L.A.S.; Abbad, M.A.B.; Viana, B.B. Germination and vigor of chia seeds (Salvia hispanica L.-Lamiaceae) under different temperatures and light conditions. Braz. J. Med. Plants 2015, 17, 1182–1186. [Google Scholar]
- Possenti, J.C.; Donazzolo, J.; Gullo, K.; Voss, L.C.; Danner, M.A. Influence of temperature and substrate on chia seeds germination. Científica 2016, 44, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Bita, C.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Western, T.L. The sticky tale of seed coat mucilages: Production, genetics, and role in seed germination and dispersal. Seed Sci. Res. 2012, 22, 1–25. [Google Scholar] [CrossRef]
- Ma, Z.; Marsolais, F.; Bykova, N.V.; Igamberdiev, A.U. Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front. Plant Sci. 2016, 7, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segura-Campos, M.R.; Ciau-Solis, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Chemical and functional properties of chia seed (Salvia hispanica L.) gum. Int. J. Food Sci. 2014, 2014, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.; Garcia, V.A.S.; Zanette, C.M. Chia (Salvia hispanica L.) oil extraction using different organic solvents: Oil yield, fatty acids profile and technological analysis of defatted meal. Int. Food Res. J. 2016, 23, 998–1004. [Google Scholar]
- Dąbrowski, G.; Konopka, I.; Czaplicki, S.; Tańska, M. Composition and oxidative stability of oil from Salvia hispanica L. seeds in relation to extraction method. Eur. J. Lipid Sci. Technol. 2017, 119, 1600209. [Google Scholar] [CrossRef]
- Bodoira, R.; Penci, M.; Ribotta, P.; Martínez, M. Chia (Salvia hispanica L.) oil stability: Study of the effect of natural antioxidants. LWT 2017, 75, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Zare, T.; Rupasinghe, T.W.T.; Boughton, B.A.; Roessner, U. The changes in the release level of polyunsaturated fatty acids (ω-3 and ω-6) and lipids in the untreated and water-soaked chia seed. Food Res Int. 2019, 126, 108665. [Google Scholar] [CrossRef]
- Abdallah, A.; Ahumada, M.; Gradziel, T. Oil content and fatty acid composition of almond kernels from different genotypes and California production regions. J. Am. Soc. Hort. 1998, 123, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Borges, O.P.; Soeiro Carvalho, J.; Reis Correia, P.; Paula Silva, A. Lipid and fatty acid profiles of Castanea sativa Mill. Chestnuts of 17 native Portuguese cultivars. J. Food Compos. Anal. 2007, 20, 80–89. [Google Scholar] [CrossRef]
- Thomas, J.M.G.; Boote, K.J.; Allen, L.H., Jr.; Gallo-Meagher, M.; Davis, J.M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [Google Scholar] [CrossRef]
- Wakjira, A.; Labuschagne, M.T.; Hugo, A. Variability in oil content and fatty acid composition of Ethiopian cultivars of linseed. J. Sci. Food Agric. 2004, 84, 601–607. [Google Scholar] [CrossRef]
- Ayerza, R. The seed’s protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors. J. Oleo Sci. 2009, 58, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Nara, T. Structure, function, and dietary regulation of ∆6, ∆5, and ∆9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.; Kang, S.; Park, W. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dybing, C.; Zimmerman, D. Fatty acid accumulation in maturing flaxseeds as influenced by environment. Plant Physiol. 1966, 41, 1465–1470. [Google Scholar] [CrossRef] [Green Version]
- Batlla, D.; Benech-Arnold, R.L. Predicting changes in dormancy level in weed seed soil banks: Implications for weed management. Crop Prot. 2007, 26, 189–197. [Google Scholar] [CrossRef]
- Harwood, J.L.; Stumpf, P.K. Fat Metabolism in Higher Plants: XL. Synthesis of Fatty Acids in the Initial Stage of Seed Germination. Plant Physiol. 1970, 46, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Linder, C. Adaptive Evolution of Seed Oils in Plants: Accounting for the Biogeographic Distribution of Saturated and Unsaturated Fatty Acids in Seed Oils. Am Nat. 2000, 156, 442–458. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, S.; Charlton, W.; Baker, A.; Graham, I. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J. 2002, 31, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Rosental, L.; Nonogaki, H.; Fait, A. Activation and regulation of primary metabolism during seed germination. Seed Sci. Res. 2014, 24, 1–15. [Google Scholar] [CrossRef]
- Izquierdo, N.; Benech-Arnold, R.; Batlla, D.; Belo, R.; Tognetti, J. Seed composition in oil crops. In Oilseed Crops, 1st ed.; Ahmad, P., Ed.; Wiley: Toronto, ON, Canada, 2017; pp. 34–51. [Google Scholar]
- Hazel, J.R. Thermal Adaptation in Biological Membranes: Is Homeoviscous Adaptation the Explanation? Annu. Rev. Physiol. 1995, 57, 19–42. [Google Scholar] [CrossRef]
- Denich, T.J.; Beaudette, L.A.; Lee, H.; Trevors, J.T. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 2003, 52, 149–182. [Google Scholar] [CrossRef]
- Sinensky, M. Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Barg, R.; Yin, M.; Gueta-Dahan, Y.; Leikin-Frenkel, A.; Salts, Y.; Shabtai, S.; Ben-Hayyim, G. Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005, 44, 361–371. [Google Scholar] [CrossRef]
- Larkindale, J.; Huang, B. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol. 2004, 161, 405–413. [Google Scholar] [CrossRef]
- Guy, C. Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol. 1999, 1, 231–242. [Google Scholar]
- Weis, E.; Berry, J.A. Plants and high temperature stress. Symp. Soc. Exp. Biol. 1988, 42, 329–346. [Google Scholar] [PubMed]
- Camejo, D.; Jiménez, A.; Alarcón, J.J.; Torres, W.; Gómez, J.; Sevilla, F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 2006, 33, 177–187. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, G.; Zhang, Y. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf. B Biointerfaces 2007, 57, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Oteng, A.; Kersten, S. Mechanisms of Action of trans Fatty Acids. Adv. Nutr. 2020, 11, 697–708. [Google Scholar] [CrossRef] [PubMed]
Temperature | Final Germination (%) | Median Germination Time t50 (Days) |
---|---|---|
10 °C | 80.8 ± 5.93 | 5.64 ± 0.20 *** |
20 °C | 89.6 ± 4.56 | 1.27 ± 0.01 *** |
30 °C | 88.8 ± 5.21 | 0.58 ± 0.09 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Santos, D.; Ordoñez-Salanueva, C.A.; Sampayo-Maldonado, S.; Campos, J.E.; Orozco-Segovia, A.; Flores-Ortiz, C.M. Chia (Salvia hispanica L.) Seed Soaking, Germination, and Fatty Acid Behavior at Different Temperatures. Agriculture 2021, 11, 498. https://doi.org/10.3390/agriculture11060498
Cabrera-Santos D, Ordoñez-Salanueva CA, Sampayo-Maldonado S, Campos JE, Orozco-Segovia A, Flores-Ortiz CM. Chia (Salvia hispanica L.) Seed Soaking, Germination, and Fatty Acid Behavior at Different Temperatures. Agriculture. 2021; 11(6):498. https://doi.org/10.3390/agriculture11060498
Chicago/Turabian StyleCabrera-Santos, Daniel, Cesar A. Ordoñez-Salanueva, Salvador Sampayo-Maldonado, Jorge E. Campos, Alma Orozco-Segovia, and Cesar M. Flores-Ortiz. 2021. "Chia (Salvia hispanica L.) Seed Soaking, Germination, and Fatty Acid Behavior at Different Temperatures" Agriculture 11, no. 6: 498. https://doi.org/10.3390/agriculture11060498
APA StyleCabrera-Santos, D., Ordoñez-Salanueva, C. A., Sampayo-Maldonado, S., Campos, J. E., Orozco-Segovia, A., & Flores-Ortiz, C. M. (2021). Chia (Salvia hispanica L.) Seed Soaking, Germination, and Fatty Acid Behavior at Different Temperatures. Agriculture, 11(6), 498. https://doi.org/10.3390/agriculture11060498