Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Overall Framework of SH Evaluation
2.4. Selection of Evaluation Indicator
- I.
- PP
- II.
- WPR
- III.
- CSR
- IV.
- PFIB
- V.
- PCN
2.5. Comprehensive Evaluation Method
2.5.1. Determination of Indicator
2.5.2. Multipliers of Restrictive Factors
2.5.3. SHI Evaluation Model
2.5.4. Calculation of Food Production Stability Index
2.5.5. SH Obstacles Diagnosis Model
3. Results
3.1. SF and SH Evaluation
3.1.1. Comparative Analysis of SF and SH
3.1.2. Spatial Distribution Characteristics and Pattern of SH
3.2. Diagnosis and Analysis of SH Obstacles
3.3. Relationship between Food Production Stability Index and SHI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.L.; Zhang, J.Z.; Shen, J.B.; Tian, J.; Jin, K.; Zhang, F.S. Soil Health and Agriculture Green Development: Opportunities and Challenge. Acta Pedol. Sin. 2020, 57, 783–796. [Google Scholar] [CrossRef]
- Yu, C.Q. China’s water crisis needs more than words. Nature 2011, 470, 307. [Google Scholar] [CrossRef] [PubMed]
- Norris, C.E.; Mac Bean, G.; Cappellazzi, S.B.; Cope, M.; Greub, K.L.; Liptzin, D.; Rieke, E.L.; Tracy, P.W.; Morgan, C.L.; Honeycutt, C.W. Introducing the North American project to evaluate soil health measurements. Agron. J. 2020, 112, 3195–3215. [Google Scholar] [CrossRef]
- Peng, X. China’s demographic history and future challenges. Science 2011, 333, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Fitawek, W.; Hendriks, S. Evaluating the Impact of Large-Scale Agricultural Investments on Household Food Security Using an Endogenous Switching Regression Model. Land 2021, 10, 323. [Google Scholar] [CrossRef]
- Li, T.; Long, H.; Zhang, Y.; Tu, S.; Ge, D.; Li, Y.; Hu, B. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Qi, X.; Fu, Y.; Wang, R.Y.; Ng, C.N.; Dang, H.; He, Y. Improving the sustainability of agricultural land use: An integrated framework for the conflict between food security and environmental deterioration. Appl. Geogr. 2018, 90, 214–223. [Google Scholar] [CrossRef]
- Nechaev, V.; Gaponenko, A. The introduction of the newest biotechnologies is necessary for sustainable agricultural development and needs the sufficient investments. Visegr. J. Bioecon. Sustain. Dev. 2013, 2, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU-Green Deal. Soil 2020, 6, 1–14. [Google Scholar] [CrossRef]
- Shen, R.F.; Wang, C.; Sun, B. Soil Related Scientific and Technological Problems in Implementing Strategy of Storing Grain in Land and Technology. Bull. Chin. Acad. Sci. 2018, 33, 135–144. [Google Scholar] [CrossRef]
- Pan, G.X.; Cheng, K.; Lu, H.F.; Li, L.Q.; Liu, X.Y.; Bian, R.J.; Zhang, X.H.; Zheng, J.F.; Zheng, J.W. Sustainable Soil Management: An Emerging Soil Science Challenge for Global Development. Sci. Agric. Sin. 2015, 48, 4607–4620. [Google Scholar] [CrossRef]
- Oshri, R.; Levy, G.J.; Yosef, S.; Tal, S.; Gil, E. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total Environ. 2018, 15, 1484–1491. [Google Scholar] [CrossRef]
- Liang, S.-Y.; Lehmann, A.; Wu, K.-N.; Stahr, K. Perspectives of function-based soil evaluation in land-use planning in China. J. Soils Sediments 2013, 14, 10–22. [Google Scholar] [CrossRef]
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Zhao, R. Bibliometric analysis of research on soil health from 1999 to 2018. J. Soils Sediments 2020, 20, 1513–1525. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Lin, L.; Hao, Z. Soil Carbon Regulating Ecosystem Services in the State of South Carolina, USA. Land 2021, 10, 309. [Google Scholar] [CrossRef]
- Andrea, F.; Bini, C.; Amaducci, S. Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Appl. Soil Ecol. 2017, 123, 693–698. [Google Scholar] [CrossRef]
- Dominati, E.; Mackay, A.; Green, S.; Patterson, M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro- ecosystems: A case study of pastural agriculture in New Zealand. Ecol. Econ. 2014, 100, 119–129. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Veerman, C.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciala, E.; Emmett, B.; Frison, E.A.; Grand, A.; Filchev, L.; Kriaučiūnienė, Z.; et al. Caring for soil is caring for life-Ensure 75% of soils are healthy by 2030 for food, people, nature and climate. Indep. Expert Rep. Luxemb. Eur. Comm. Publ. Off. Eur. Union 2020. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; Deyn, G.D.; De Goede, R.G.M.; Fleskens, L.; Geissen, V.; Kuyperb, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Zhang, T.L.; Pan, J.J.; Zhao, Q.G. Progress and direction of soil quality research. Soils 1999, 31, 1–7. [Google Scholar]
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; Van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health. The Cornell Framework Manual, 3rd ed.; Cornell University: Geneva, NY, USA, 2016. [Google Scholar]
- Zhang, J.N.; Luo, S.M. A discussion on basiccontentand evaluation indexsystem ofagroecosystem health. Chin. J. Appl. Ecol. 2004, 15, 1473–1476. [Google Scholar]
- Trutmann, P.; Paul, K.B.; Cishabayo, D. Seed treatments increase yield of farmer varietal field bean mixtures in the central African highlands through multipled is ease and bean fly control. Crop. Prot. 1992, 11, 458–464. [Google Scholar] [CrossRef]
- Chen, M.Q.; Huang, L.; Cai, H.S.; Liu, X.; Liu, T.J. Evaluation of land health in Poyang lake area. J. Nat. Resour. 2004, 19, 170–175. [Google Scholar] [CrossRef]
- Li, Q.; Yan, J.M.; Zhao, Y. Cultivated land health also needs to be diagnosed. China Land 2011, 11, 37–39. [Google Scholar]
- Zhao, R.; Wu, K.N.; Zhang, X.D.; Feng, Z. Evaluation on Cultivated Land Health Productivity in Main Grain Production Areas: A Case Study in Wen County of Henan Province. China Land Sci. 2019, 33, 67–75. [Google Scholar]
- Paul, C.; Kuhn, K.; Steinhoff-knopp, B.; Weihuhn, P.; Helming, K. Towards a standardization of soil-related ecosystem service assessments. Eur. J. Soil Sci. 2020, 1–16. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [Green Version]
- Lucie, G.; Madlene, N.; Andreas, P.; Marielle, F.; Stefan, Z.; Peter, S.; Adrienne, G.R.; Armin, K. Assessment of soil multi-functionality to support the sustainable use of soil resources on the Swiss Plateau. Geoderma Reg. 2018, 14, e00181. [Google Scholar] [CrossRef]
- Bhim, G.; Teodor, R.; Sandén, T.; Heide, S.; Cristina, M.; Giovanna, V.; Lilian, O.; Isabelle, G.; Antonio, D.; Mark, L. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Luz, F.B.D.; Silva, V.R.D.; Mallmann, F.J.K.; Pires, C.A.B.; Debiasi, H.; Franchini, J.C.; Cherubin, M.R. Monitoring soil quality changes in diversified agricultural cropping systems by the Soil Management Assessment Framework (SMAF) in southern Brazil. Agric. Ecosyst. Environ. 2019, 281, 100–110. [Google Scholar] [CrossRef]
- Vogel, H.J.; Eberhardt, E.; Franko, U.; Lang, B.; Ließ, M.; Weller, U. Quantitative evaluation of soil functions: Potential and state. Front. Env Sci. 2019, 7, 164. [Google Scholar] [CrossRef]
- Mueller, L.; Shepherd, G.; Schindler, U.; Ball, B.C.; Munkholm, L.J.; Hennings, V.; Smolentseva, E.; Rukhovic, O.; Lukin, S.; Hu, C.S. Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res. 2013, 127, 74–84. [Google Scholar] [CrossRef]
- Mueller, L.; Schindler, U.; Shepherd, T.G.; Ball, B.C.; Smolentseva, E.; Hu, C.; Hennings, V.; Schad, P.; Rogasik, J.; Zeitz, J.; et al. A framework for assessing agricultural soil quality on a global scale. Arch. Agron. Soil Sci. 2012, 58, S76–S82. [Google Scholar] [CrossRef]
- Schulte, R.P.O.; Creamer, R.E.; Donnellan, T.; Farrelly, N.; Fealy, R.; O’Donoghue, C.; O’hUallachain, D. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ. Sci. Policy 2014, 38, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ. Res. Lett. 2017, 12, 124007. [Google Scholar] [CrossRef]
- Ghaley, B.; Porter, J.; Sandhu, H.S. Soil-based ecosystem services: A synthesis of nutrient cycling and carbon sequestration assessment methods. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 177–186. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Wall, D.; Creamer, R.; Bampa, F.; Schulte, R.P.O. Functional land management: Bridging the think-do-gap using a multi-stakeholder science policy interface. Ambio 2018, 47, 216–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, M.; Kropff, M.; Crossa, J.; Koo, J.; Kruseman, G.; Molero Milan, A.; Rutkoski, J.; Schulthess, U.; Balwinder-Singh, U.S.; Sonder, K.; et al. Role of Modelling in International Crop Re-search: Overview and Some Case Studies. Agronomy 2018, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Hack-ten Broeke, M.J.D.; Mulder, H.M.; Bartholomeus, R.P.; van Dam, J.C.; Holshof, G.; Hoving, I.E.; Walvoort, D.J.J.; Heinen, M.; Kroes, J.G.; van Bakel, P.J.T.; et al. Quantitative land evaluation implemented in Dutch water management. Geoderma 2019, 338, 536–545. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer functions in Earth system science: Challenges and perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Thoumazeau, A.; Bessou, C.; Renevier, M.S.; Trap, J.; Marichal, R.; Mareschal, L.; Decaëns, T.; Bottinelli, N.; Jaillard, B.; Chevallier, T.; et al. Biofunctool®: A new framework to assess the impact of land management on soil quality. Part A: Concept and validation of the set of indicators. Ecol. Indic 2019, 97, 100–110. [Google Scholar] [CrossRef]
- Thoumazeau, A.; Bessou, C.; Renevier, M.S.; Trap, J.; Marichal, R.; Mareschal, L.; Decaëns, T.; Bottinelli, N.; Jaillard, B.; Chevallier, T.; et al. Biofunctool®: A new framework to assess the impact of land management on soil quality. Part B: Investigating the impact of land management of rubber plantations on soil quality with the Biofunctool® index. Ecol. Indic 2019, 97, 429–437. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Pathak, H.; Kumari, S.; Biswas, S.; Chakrabarty, B.; Padaria, R.N.; Kamble, K.; Pandey, M.; Sasmal, S.; Singh, A. Soil health card development for efficient soil management in Haryana, India. Soil Tillage Res. 2019, 191, 294–305. [Google Scholar] [CrossRef]
- Schulte, R.P.O.; Bampa, F.; Bardy, M.; Coyle, C.; Creamer, R.E.; Fealy, R.; Gardi, C.; Ghaley, B.B.; Jordan, P.; Laudon, H.; et al. Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Front. Environ. Sci. 2015, 3, 85–91. [Google Scholar] [CrossRef]
- Bampa, F.; O’Sullivan, L.; Madena, K.; Sandén, T.; Spiegel, H.; Henriksen, C.B.; Ghaley, B.B.; Jones, A.; Staes, J.; Sturel, S.; et al. Harvesting european knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manag. 2019, 35, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Debeljak, M.; Trajanov, A.; Kuzmanovski, V.; Schrder, J.; Henriksen, C.B. A Field-Scale Decision Support System for Assessment and Management of Soil Functions. Front. Environ. Sci. 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.Z.; Zhao, Q.G. Measurement of urbanization process and the paddy soil loss in Yixing city, China between 1949 and 2000. Catena 2007, 69, 65–73. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Li, Q.; Xu, T.; Wu, Z.; Liu, J. Application of Three Deep Machine-Learning Algorithms in a Construction Assessment Model of Farmland Quality at the County Scale: Case Study of Xiangzhou, Hubei Province, China. Agriculture 2021, 11, 72. [Google Scholar] [CrossRef]
- Legaz, B.V.; De Souza, D.M.; Teixeira, R.F.M.; Anton, A.; Putman, B.; Sala, S. Soil quality, properties, and functions in life cycle assessment: An evaluation of models. J. Clean Prod. 2017, 140, 502–515. [Google Scholar] [CrossRef]
- Wu, K.N.; Yang, Q.J.; Zhao, R. A discussion on soil health assessment of arable land in China. Acta Pedol. Sin. 2021, 58, 1–10. [Google Scholar] [CrossRef]
- Ma, C.Y.; Ci, K.D.; Zhu, J.; Sun, Z.L.; Liu, Z.X.; Li, X.Y.; Zhu, Y.L.; Tang, C.; Wang, P.; Liu, Z.M. Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. Sci. Total Environ. 2020, 759, 143501. [Google Scholar] [CrossRef]
- Mueller, L.; Schindler, U.; Shepherd, T.G.; Ball, B.C.; Smolentseva, E.; Pachikin, K.; Hu, C.; Hennings, V.; Sheudshen, A.K.; Behrendt, A.; et al. The Muencheberg Soil Quality Rating for Assessing the Quality of Global Farmland. Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Environmental Science and Engineering. In Soil and Recycling Management in the Anthropocene Era; Springer International Publishing: Cham, Switzerland, 2014; pp. 235–248. [Google Scholar]
- Yang, Q.J.; Wu, K.N.; Feng, Z.; Zhao, R.; Zhang, X.D.; Li, X.L. Soil Quality Assessment on Large Spatial Scales: Advancement and Revelation. Acta Pedol. Sin. 2020, 57, 565–578. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Rao, C.S.; Abhilash, P.C. Impact of Integrated Agronomic Practices on Soil Fertility and Respiration on the Indo-Gangetic Plain of North India. Agronomy 2021, 11, 402. [Google Scholar] [CrossRef]
- Schiefer, J.; Lair, G.J.; Blum, W.E.H. Indicators for the definition of land quality as a basis for the sustainable intensification of agricultural production. Int. Soil Water Conserv. Res. 2015, 3, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Glæsner, N.; Helming, K.; DeVries, W. Do Current European Policies Prevent Soil Threats and Support Soil Functions? Sustainability 2014, 6, 9538–9563. [Google Scholar] [CrossRef] [Green Version]
- Cammarata, M.; Timpanaro, G.; Scuderi, A. Assessing Sustainability of Organic Livestock Farming in Sicily: A Case Study Using the FAO SAFA Framework. Agriculture 2021, 11, 274. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, J.; Wang, T.; Moryani, H.T.; Kang, W.; Zheng, J.; Zhan, C.; Xiao, W. Hazardous Heavy Metals Accumulation and Health Risk Assessment of Different Vegetable Species in Contaminated Soils from a Typical Mining City, Central China. Int. J. Environ. Res. Public Health 2021, 18, 2617. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, S.; Sun, Y.; Liu, Y.; Wang, F. Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China. Appl. Sci. 2021, 11, 1408. [Google Scholar] [CrossRef]
- Gopalakrishnan, T.; Kumar, L. Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability 2020, 12, 8317. [Google Scholar] [CrossRef]
- Sandén, T.; Trajanov, A.; Spiegel, H.; Kuzmanovski, V.; Saby, N.; Picaud, C.; Henriksen, C.B.; Debeljak, M. Development of an agricultural primary productivity decision support model: A case study in France. Front. Environ. Sci. 2019, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Mueller, L.; Schindler, U.; Mirschel, W.; Shepherd, T.G.; Ball, B.C.; Helming, K.; Rogasik, J.; Eulenstein, F.; Wiggering, H. Assessing the productivity function of soils. A Review. Agron. Sustain. Dev. 2010, 30, 601–614. [Google Scholar] [CrossRef]
- Burauel, P.; Bamann, F. Soils as filter and buffer for pesticides—experimental concepts to understand soil functions. Environ. Pollut. 2005, 133, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Barthes, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion: Validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant Soil 2020, 390, 111–127. [Google Scholar] [CrossRef]
- Tibbett, M.; Fraser, T.D.; Duddigan, S. Identifying potential threats to soil biodiversity. PeerJ 2020, 8, e9271. [Google Scholar] [CrossRef]
- Chen, H.P.; Lee, M.; Chiueh, P.T. Creating ecosystem services assessment models incorporating land use impacts based on soil quality. Sci. Total Environ. 2021, 773, 145018. [Google Scholar] [CrossRef]
- Jose Antonio, R.M.; Jorge, Á.; Jose Luis, G.; Carmen, G.; Nikos, N.; Miguel, E.; José Joaquín, R.; Carlos, G.; Diana, M.; Rafael, B. Soil organic carbon stock on the Majorca Island: Temporal change in agricultural soil over the last 10 years. Catena 2019, 181, 104087. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Z.; Zhou, J.; Xu, X.; Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total Environ. 2021, 775, 145930. [Google Scholar] [CrossRef]
- Coyle, C.; Creamer, R.E.; Schulte, R.P.O.; O’Sullivan, L.; Jordan, P. A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Policy 2016, 56, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.M.; Zhou, D.; Chang, X.; Lin, Z.L. A new grading system for evaluating China’s cultivated land quality. Land Degrad. Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- De Neve, S.; Hofman, G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues. Biol. Fertil. Soils 2000, 30, 544–549. [Google Scholar] [CrossRef]
- Song, G.; Chen, L.L.; Zou, C.H. Spatial heterogeneity of early-warning status of cultivated land system security and its driving factors in Heilongjiang Province. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Jiang, G.H.; Zhang, R.J.; Ma, W.Q.; Zhou, D.Y.; Wang, X.P.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- Lou, S.; Huang, W.; Liu, S.; Zhong, G. Scarcity of drinking water in Taihu lake basin, China: A case study of Yixing city. Water 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, K.; Zhao, R.; Yang, Q. Evaluation of Healthy Productivity of Cultivated Land at County Scale. Res. Soil Water Conserv. 2020, 27, 294–300. [Google Scholar]
- Giacometti, C.; Mazzon, M.; Cavani, L.; Triberti, L.; Baldoni, G.; Ciavatta, C.; Marzadori, C. Rotation and Fertilization Effects on Soil Quality and Yields in a Long Term Field Experiment. Agronomy 2021, 11, 636. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Zhao, Z. Spatial heterogeneity of soil fertility in coastal zones: A case study of the Yellow River Delta, China. J. Soils Sediments 2021, 21, 1826–1839. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Lin, J.; Chen, X.; Li, C.; Zhang, J. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. J. Soils Sediments 2020, 20, 3091–3102. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- Putte, A.V.D.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Schrder, J.J.; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; Van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2020, 32, 476–486. [Google Scholar] [CrossRef]
- Powlson, D.S. Soil health—Useful terminology for communication or meaningless concept? Or both? Front. Agric. Sci. Eng. 2020, 7, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Krüger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–40. [Google Scholar] [CrossRef]
- Karlen, D.L.K.; Gardner, J.C.; Rosek, M.J. A soil quality framework for evaluating the impact of CRP. J. Prod. Agric. 1998, 11, 56–60. [Google Scholar] [CrossRef]
- Salvati, L.; Colantoni, A. Land use dynamics and soil quality in agro-forest systems: A country-scale assessment in Italy. J. Environ. Plan. Manag. 2015, 58, 175–188. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Filippi, N.; Guermandi, M.; Malucelli, F.; Marchi, N.; Staffilani, F.; Tarocco, P. A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 2016, 261, 190–203. [Google Scholar] [CrossRef]
- Kibblewhite, M.G. Definition of priority areas for soil protection at a continental scale. Soil Use Manag. 2012, 28, 128–133. [Google Scholar] [CrossRef]
- Pheap, S.; Lefèvre, C.; Thoumazeau, A.; Leng, V.; Boulakia, S.; Koy, R.; Hok, L.; Lienhard, P.; Brauman, A.; Tivet, F. Multi-functional assessment of soil health under Conservation Agriculture in Cambodia. Soil Tillage Res. 2019, 194, 104349. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Ritz, K.; Black, H.I.J.; Campbell, C.D.; Harris, J.A.; Wood, C. Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 2009, 9, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Obade, V.D.P. Integrating management information with soil quality dynamics to monitor agricultural productivity. Sci. Total Environ. 2018, 651, 2036–2043. [Google Scholar] [CrossRef]
- Xue, R.; Wang, C.; Liu, M.; Zhang, D.; Li, K.; Li, N. A new method for soil health assessment based on Analytic Hierarchy Process and meta-analysis. Sci. Total Environ. 2019, 650, 2771–2777. [Google Scholar] [CrossRef]
- Ng, E.L.; Zhang, J.L. The Search for the Meaning of Soil Health: Lessons from Human Health and Ecosystem Health. Sustainability 2019, 11, 3697. [Google Scholar] [CrossRef] [Green Version]
- Kragt, M.E.; Robertson, M.J. Quantifying ecosystem services trade-offs from agricultural practices. Ecol. Econ. 2014, 102, 147–157. [Google Scholar] [CrossRef]
- Li, X.L.; Wu, K.N.; Chu, X.X.; Yang, Q.J.; Zhang, X.D.; Hao, S.H. Research progress and prospects for cultivated land productivity evaluation. China Land Sci. 2019, 33, 91–100. [Google Scholar]
- McKenzie, D.C. Visual soil examination techniques as part of a soil appraisal framework for farm evaluation in Australia. Soil Tillage Res. 2013, 127, 26–33. [Google Scholar] [CrossRef] [Green Version]
Basic Indicator Non-Restrictive | Evaluation Indicators | SF | Evaluation Indicators | Basic Indicator Non-Restrictive | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PP | WPR | CSR | PFIB | PCN | |||||||||||
Inherent properties | Soil | Soil depth | Bulk density | Physical indicators | Dynamic properties | ||||||||||
Texture | Clay content | ||||||||||||||
Soil tillage depath | Aggregate stability | ||||||||||||||
Soil configuration | Organic content | Chemical indicators | |||||||||||||
Topography | Slope | Soil pH | |||||||||||||
Geomorphic type | CEC | ||||||||||||||
Climate | Annual accumulated temperature | Soil nutrient element | |||||||||||||
Annual precipitation | Beneficial trace element | ||||||||||||||
Soluble organic carbon | |||||||||||||||
Soil respiration | Biological indicators | ||||||||||||||
Soil earthworm | |||||||||||||||
Soil moisture content | Hydrology | ||||||||||||||
Hazard indicator (Restrictive) | The degree of soil salinization, depth of the barrier layer, degree of soil erosion, white pollution, pesticide residues, irrigation water pollution, heavy metals pollution, atmospheric pollution, degree of surface rock exposure, crop pollution, gravel content, soil acidification, soil compaction, flood disasters, and soil alkalization |
Basic Indicator | The Gradation and Assignment of Basic Indicator (Non-Restrictive) | |||||
---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 40 | |
Slope (°) | <2 | [2, 6) | [6, 15) | [15, 25) | ≥25 | |
Geomorphic type | Plain | Hills | Plateau | Mountain land | ||
Annual precipitation | ≥1280 | (1250, 1280] | <1250 | |||
Annual accumulated temperature (≥10°) | ≥5400 | (5380, 5400] | (5360, 5380] | <5360 | ||
Texture | Loam | Clay | Sand | Gravelly soil | ||
Soil depth (cm) | ≥150 | [100, 150) | [60, 100) | [30, 60) | <30 | |
Soil moisture content (%) | Loam [15,25), Clay [25,30) | Loam [10,15), Clay [20,25) | Loam <10 or ≥25, Clay <20 or ≥30 | |||
Soil pH | [6.0, 7.9) | [5.5, 6.0) or [7.9, 8.5) | [5.0, 5.5) or [8.5, 9.0) | [4.5, 5.0) | <4.5 or ≥9.0 | |
Clay content (%) | >35 | (25, 35] | (15, 25] | (10, 15] | ≤10 | |
Soil tillage depth (cm) | >20 | (15, 20] | (10, 15] | ≤10 | ||
Aggregate stability | Water stable aggregate > 45% | Water stable aggregate (30%,45%] | Water stable aggregate ≤ 30% | |||
Organic content (g/kg) | ≥40 | [30, 40) | [20, 30) | [10, 20) | [6, 10) | <6 |
Bulk density (g/cm3) | [1, 1.25) | [1.25, 1.35) | [1.35, 1.45) | [1.45, 1.55) | ≥1.55 or <1 | |
Soil configuration | All loam, loam/clay/loam | Loam/sticky/sticky, loam/sand/soil, sand/sticky/sticky | Sand/sticky/sand | Loam/sand/sand, Sticky/sand/sand | All sand, all gravel | |
CEC (cmol/kg) | >20 | [15, 20) | [10,15) | ≤10 | ||
Soil nutrient element | CComprehensive Score of Ntrients ≥ 90 | 90 > CCSN ≥ 75 | 75 > CCSN ≥ 60 | 60 > CCSN ≥ 45 | CCSN < 45 | |
Beneficial trace element | CBeneficial ≥ 90 | 90 > CB ≥ 75 | 90 > CB ≥ 75 | 90 > CB ≥ 75 | 90 > CB ≥ 75 | |
Soluble organic carbon (mg/kg) | ≥100 | [80, 100) | [60, 80) | [40, 60) | [20, 40) | <20 |
Soil respiration (μgCO2/(g·h)) | >1 | (0.8, 1] | (0.4, 0.8] | (0.2, 0.4] | (0.1, 0.2] | ≤0.1 |
Soil earthworm (quantity/m3) | >20 | (15, 20] | (10, 15] | (5, 10] | ≤5 |
Hazard (Restrictive) Indicator | Grading Standard | Description of Hazard Grade | Multiplier | |
---|---|---|---|---|
f1 | f2 | |||
Degree of salinization | No risk of saline-alkaline soil or salinization | No salinization | 1 | 1 |
Soluble salts up to 0.1% | Mild | 0.9 | 0.8 | |
Soluble salts up to 0.3% | Medium | 0.7 | 0.5 | |
Soluble salts up to 0.5% | Severe | 0.4 | 0.2 | |
The depth of barrier layer from surface | >90 cm | No significant effect | 1 | 1 |
60–90 cm | Low risk | 0.9 | 0.8 | |
30–60 cm | Medium | 0.7 | 0.6 | |
<30 cm | High | 0.5 | 0.3 | |
Degree of soil erosion | The profile of three layers of A, B and C maintains complete | No significant erosion | 1 | 1 |
More than half of thickness of A layer is preserved, while the layer of B and C maintain complete | Mild | 0.9 | 0.9 | |
More than one third of thickness of A layer is preserved, while the layer of B and C maintain complete | Medium | 0.7 | 0.7 | |
Nothing of layer A is left, layer B begins to be exposed to erosion, and layer C maintain its completeness | Serious | 0.4 | 0.4 | |
The layer of A and B is entirely denuded, while the layer C is exposed to erosion | Extremely | 0 | 0 | |
White pollution | The residual amount of mulch of agricultural film < 10 kg/hm2 | The small amount of mulch residues of agricultural film | 1 | 1 |
10–60 kg/hm2 | The medium amount of | 0.8 | ||
>60 kg/hm2 | The large amount of | 0.6 | ||
Pesticide residues | No pesticide residues | No pesticide residues | 1 | 1 |
<0.3 mg/kg | Low | 0.8 | ||
0.3–1 mg/kg | Medium | 0.6 | ||
>1 mg/kg | High | 0.3 | ||
Pollution of irrigated water | The comprehensive pollution index of water quality ≤ 0.5 | Clean | 1 | 1 |
0.5–1.0 | Roughly clean | 0.7 | ||
≥1.0 | Polluted | 0.3 | ||
Heavy metal pollution | The comprehensive pollution index p ≤ 0.7 | No pollution, clean soil | 1 | 1 |
0.7 < p ≤ 1.0 | Mild pollution, roughly clean soil | 0.9 | ||
1.0 < p ≤ 2.0 | Mild | 0.7 | ||
2.0 < p ≤ 3.0 | Medium | 0.5 | ||
p > 3.0 | Heavy | 0.3 | ||
Atmospheric pollution | Cd ≤ 3 and Hg ≤ 0.5 (mg m−2 a−1) | Clean | 1 | 1 |
Cd > 3 or Hg > 0.5 (mg m−2 a−1) | Not clean | 0.3 | ||
Crop pollution | Inferior to the standard of green food | Healthy | 1 | 1 |
Between the standards of green food and pollution-free food | Sub-healthy | 0.8 | 0.9 | |
Superior to the pollution-free food | Unhealthy | 0.5 | 0.6 | |
Degree of exposed surface rock | Rock exposure < 2% | No influence on cultivation | 1 | 1 |
Rock exposure 2–10%, the space between outcrops > 35 m | Having an influence on cultivation | 0.8 | 0.9 | |
Rock exposure 10–25%, the space between outcrops 10–35 m | Having an influence on mechanized cultivation | 0.5 | 0.6 | |
Rock exposure ≥ 25%, the space between outcrops 3.5–10 m | Having an influence on small-scale mechanized cultivation | 0.3 | 0.4 | |
Gravel content | The content of gravel > 2 mm in soil particle composition < 1% | Non-gravelly soil | 1 | 1 |
1–30% | Gravelly soil | 0.9 | 0.7 | |
30–50% | Mild gravelly soil | 0.7 | 0.5 | |
50–70% | Medium gravelly soil | 0.5 | 0.3 | |
>70% | Major gravelly soil | 0.3 | 0.1 | |
Soil acidification | Ferralsols, with low soil pH, is insensitive to acid | Low acidification rate | 1 | 1 |
Luvisols, with the soil pH of subacidity or neutrality, is sensitive to acid | Relatively low | 0.9 | ||
Semi-Luvisols, with the soil pH of neutrality or alkalescence, is highly sensitive to acid | Relatively high | 0.7 | ||
Calcareous, with soil pH > 7, is generally insensitive to acid | Generally high | 0.5 | ||
Others, with soil pH varying greatly, is sensitive to acid | Extremely high | 0.3 | ||
Soil compaction | Bulk density 1.00–1.10 (g/cm3) | Low surface soil compaction, directly used as cultivated soil | 1 | 1 |
1.10–1.35 (g/cm3) | Relatively low surface soil compaction, used as cultivated soil | 0.9 | 0.9 | |
1.35–1.50 (g/cm3) | Slightly high soil compaction, used as cultivated soil after improvement | 0.8 | 0.7 | |
1.50–1.60 (g/cm3) | Relatively high soil compaction, used as cultivated soil after improvement in 1–2 year | 0.7 | 0.5 | |
≥1.60 (g/cm3) | High soil compaction, the relatively high time and economic cost of improvement | 0.6 | 0.3 | |
Flood disaster | The flood control standard of farmland ≥ 10 years | No influence on crop growth | 1 | 1 |
5–10 years | Slight | 0.9 | 0.9 | |
3–5 years | Medium | 0.7 | 0.7 | |
<3 years | Great | 0.4 | 0.4 | |
Soil alkalization | The degree of alkalization: <5% | No alkalization | 1 | 1 |
5–10% | Slight | 0.8 | ||
10–15% | Medium | 0.6 | ||
15–20% | High | 0.4 | ||
>20% | Alkali soil | 0.2 |
Gradation of SF | Good | Medium | Poor | Minimum Value | Maximum Value | Average Value | Mid-Value | Standard Deviation |
---|---|---|---|---|---|---|---|---|
I: PP | 58.98–98.03 | 46.51–58.98 | 32.66–46.52 | 32.66 | 98.03 | 53.55 | 50.11 | 10.46 |
II: WPR | 58.54–96.99 | 45.59–58.54 | 32.45–45.59 | 32.45 | 96.99 | 56.46 | 50.09 | 10.61 |
III: CSR | 63.42–100 | 50.01–63.42 | 39.27–50.01 | 39.27 | 100.00 | 59.86 | 55.46 | 10.64 |
IV: PFIB | 55.31–92.78 | 43.71–55.31 | 31.01–43.71 | 31.01 | 92.78 | 46.92 | 45.50 | 10.01 |
V: PCN | 54.74–95.93 | 42.99–54.74 | 30.25–42.99 | 30.25 | 95.93 | 48.77 | 45.74 | 9.95 |
Gradation of SH | Healthy | Sub-Healthy | Unhealthy | Minimum Value | Maximum Value | Average Value | Mid-Value | Standard Deviation |
SH | 57.96–94.83 | 45.70–57.96 | 32.34–45.70 | 32.34 | 94.83 | 50.74 | 49.21 | 10.32 |
Indicators | No Obstacles | Ratio% | Mild Obstacle | Ratio% | Medium Obstacle | Ratio% | Serious Obstacle | Ratio% |
---|---|---|---|---|---|---|---|---|
Organic content | 50,321.28 | 93.56 | 3296.78 | 6.13 | 168.63 | 0.31 | 0.90 | 0.00 |
pH | 17,552.06 | 32.63 | 35,952.78 | 66.84 | 282.75 | 0.53 | 0.00 | 0.00 |
CEC | 13,953.99 | 25.94 | 27,779.17 | 51.65 | 10,868.59 | 20.21 | 1185.83 | 2.20 |
Nutrient element | 0.00 | 0.00 | 10,032.44 | 18.65 | 36,504.17 | 67.87 | 7250.98 | 13.48 |
Beneficial trace element | 0.00 | 0.00 | 11,511.50 | 21.40 | 40,542.74 | 75.38 | 1733.35 | 3.22 |
Soil moisture content | 2213.28 | 4.11 | 50,671.92 | 94.21 | 902.39 | 1.68 | 0.00 | 0.00 |
Soluble organic carbon | 286.80 | 0.53 | 27,393.44 | 50.93 | 24,988.17 | 46.46 | 1119.19 | 2.08 |
Soil respiration | 17,060.90 | 31.72 | 27,200.22 | 50.57 | 9526.48 | 17.71 | 0.00 | 0.00 |
Soil earthworm | 12,609.78 | 23.44 | 9084.38 | 16.89 | 32,093.43 | 59.67 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Wu, K. Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China. Agriculture 2021, 11, 583. https://doi.org/10.3390/agriculture11070583
Zhao R, Wu K. Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China. Agriculture. 2021; 11(7):583. https://doi.org/10.3390/agriculture11070583
Chicago/Turabian StyleZhao, Rui, and Kening Wu. 2021. "Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China" Agriculture 11, no. 7: 583. https://doi.org/10.3390/agriculture11070583
APA StyleZhao, R., & Wu, K. (2021). Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China. Agriculture, 11(7), 583. https://doi.org/10.3390/agriculture11070583