The Study of Chicken Manure and Steel Slag Amelioration to Mitigate Greenhouse Gas Emission in Rice Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incubation Experiment
2.1.1. Experimental Design and Set Up for Gas Analysis
2.1.2. GHG Measurements
2.1.3. Soil Analysis for the Incubation Experiment
2.2. Pot Experiment
2.2.1. Treatments and Management Practices
2.2.2. CH4 and N2O Flux Measurements in the Pot Experiment
2.2.3. Global Warming Potential (GWP)
2.2.4. Measurement of Plant Growth Parameters
2.2.5. Rice Biomass and Grain Yield
2.2.6. Ancillary Measurement
2.2.7. Data Analysis and Statistics
3. Results
3.1. Incubation Experiment
3.2. Pot Experiment
4. Discussion
4.1. GHG Emissions in the Incubation and Pot Experiments
4.2. Plant Growth, Biomass, and Rice Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC); Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef]
- Yuan, J.; Yi, X.; Cao, L. Three-source partitioning of methane emissions from paddy soil: Linkage to methanogenic community structure. Int. J. Mol. Sci. 2019, 20, 1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Ali, M.A.; Oh, J.H.; Kim, P.J. Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming. Agric. Ecosyst. Environ. 2008, 128, 21–26. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, C.; Sardans, J.; Wang, C.; Zeng, D.; Peñuelas, J. Amendment with industrial and agricultural wastes reduces surface-water nutrient loss and storage of dissolved greenhouse gases in a subtropical paddy field. Agric. Ecosyst. Environ. 2016, 231, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, Y.; Inubushi, K. Feasible suppression technique of methane emission from paddy soil by iron amendment. Nutr. Cycl. Agroecosyst. 2002, 64, 193–201. [Google Scholar] [CrossRef]
- Singla, A.; Inubushi, K. Effect of slag-type fertilizers on N2O flux from komatsuna vegetated soil and CH4 flux from paddy vegetated soil. Paddy Water Environ. 2015, 13, 43–50. [Google Scholar] [CrossRef]
- Ali, M.A.; Kim, P.J.; Inubushi, K. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils. Sci. Total Environ. 2015, 529, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Nishimura, K.; Takahashi, E. Silicon on the growth of rice plant at different growth stages. Soil Sci. Plant Nutr. 1989, 35, 347–356. [Google Scholar] [CrossRef]
- Toma, Y.; Oomori, S.; Maruyama, A.; Ueno, H.; Nagata, O. Effect of the number of tillages in fallow season and fertilizer type on greenhouse gas emission from a rice (Oryza sativa L.) paddy field in Ehime, southwestern Japan. Soil Sci. Plant Nutr. 2016, 62, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Achtnich, C.; Bak, F.; Conrad, R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Bio Fertil Soil 1995, 19, 65–72. [Google Scholar] [CrossRef]
- Beal, E.J.; House, C.H.; Orphan, V.J. Manganese and iron dependent marine methane oxidation. Science 2009, 325, 184–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, M.S.; Shaaban, M.; Hu, R. N2O, CH4, and CO2 emissions from continuous flooded, wet, and flooded converted to wet soils. J. Soil Sci. Plant Nutr. 2019, 19, 342–351. [Google Scholar] [CrossRef]
- Wang, K.; Li, F.; Dong, Y. Methane emission related to enzyme activities and organic carbon fractions in paddy soil of south china under different irrigation and nitrogen management. J. Soil Sci. Plant Nutr. 2020, 20, 1397–1410. [Google Scholar] [CrossRef]
- Lee, C.H.; Kim, S.Y.; Villamil, M.B. Different response of silicate fertilizer having electron acceptors on methane emission in rice paddy soil under green manuring. Biol Fertil Soils 2012, 48, 435–442. [Google Scholar] [CrossRef]
- Nungkat, P.; Kusuma, Z.; Handayanto, E. Effects of organic matter application on methane emission from paddy fields adopting organic farming system. J. Degrad. Min. LANDS Manag. 2015, 2, 303–312. [Google Scholar] [CrossRef]
- Noubactep, C. On the mechanism of microbe inactivation by metallic iron. J. Hazard. Mater. 2011, 198, 383–386. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Lee, C.H.; Kim, P.J. Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biol Fertil Soils 2008, 44, 597–604. [Google Scholar] [CrossRef]
- Susilawati, H.L.; Setyanto, P.; Makarim, A.K.; Ito, K.; Inubushi, K.; Susilawati, H.L.; Setyanto, P.; Makarim, A.K.; Ariani, M.; Ito, K.; et al. Effects of steel slag applications on CH4, N2O and the yields of Indonesian rice fields: A case study during two consecutive rice-growing seasons at two sites. Soil Sci. Plant Nutr. 2015, 61, 704–718. [Google Scholar] [CrossRef]
- Jones, C.; Brown, B.D.; Engel, B.; Horneck, D.; Olson-Rutz, K. Factors Affecting Nitrogen Fertilizer Volatilization; EB0208; Montana State University: Bozeman, MT, USA, 2013. [Google Scholar]
- Shamshuddin, J.; Panhwar, Q.A.; Alia, F.J.; Shazana, M.A.R.S.; Radziah, O. Formation and Utilisation of Acid Sulfate Soils in Southeast Asia for Sustainable Rice Cultivation. Pertanika J. Trop. Agric. Sci. 2017, 40, 225–246. [Google Scholar]
- Wang, W.; Sardans, J.; Lai, D.Y.F.; Wang, C.; Zeng, C.; Tong, C.; Liang, Y.; Peñuelas, J. Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crop. Res. 2015, 171, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.; Htwe, A.Z.; Thu, T.T.P.; Kajihara, Y.; Yamakawa, T. Effects on NPK status, growth, dry matter and yield of rice (Oryza sativa) by organic fertilizers applied in field condition. Agriculture 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
Treatments | Cumulative Emissions | ||
---|---|---|---|
CH4 (mgC kg−1 Period−1) | N2O (μgN kg−1 Period−1) | CO2 (mgC kg−1 Period−1) | |
CM | 2.35 ± 0.03 d | −0.30 ± 0.10 a | 3.66 ± 0.96 bc |
CM:SS (1:1) | 1.69 ± 0.07 c | −0.81 ± 0.16 a | 4.47 ± 0.43 c |
CM:SS (1:1.5) | 1.03 ± 0.26 b | −0.72 ± 0.82 a | 3.51 ± 0.35 bc |
CM:SS (1:2.5) | 0.01 ± 0.00 a | −0.29 ± 0.08 a | −0.01 ± 0.15 a |
SO | 1.38 ± 0.09 bc | −0.27 ± 0.24 a | 2.04 ± 0.73 ab |
SS (1) | 0.43 ± 0.11 a | 0.10 ± 0.22 a | 2.70 ± 0.08 bc |
SS (1.5) | 0.03 ± 0.01 a | −0.94 ± 0.10 a | 0.07 ± 0.16 a |
SS (2.5) | 0.07 ± 0.02 a | −0.18 ± 0.04 a | −0.04 ± 0.02 a |
Treatments | GHG Production from Chicken Manure | ||
---|---|---|---|
CH4 (mgC kg−1 Period−1) | N2O (μgN kg−1 Period−1) | CO2 (mgC kg−1 Period−1) | |
CM | 0.97 ± 0.08 b | −0.03 ± 0.25 a | 1.62 ± 1.50 a |
CM:SS (1:1) | 1.26 ± 0.04 b | −0.91 ± 0.51 a | 1.77 ± 0.67 a |
CM:SS (1:1.5) | 1.00 ± 0.25 b | 0.21 ± 0.77 a | 3.44 ± 0.42 a |
CM:SS (1:2.5) | −0.06 ± 0.02 a | −0.11 ± 0.05 a | 0.03 ± 0.13 a |
Treatments | ||||
---|---|---|---|---|
Conv | CM:SS (1:1) | CM:SS (1:1.5) | CM:SS (1:2.5) | |
GWPCH4 | 1260 a | 3030 b | 1660 a | 1860 ab |
GWPN2O | 97.7 a | 78.5 a | −44.2 a | 85.5 a |
Total | 1360 a | 3110 b | 1620 ab | 1940 ab |
Treatment | Dry Biomass (g pot−1) | Grain (g pot−1) | ||
---|---|---|---|---|
Above Ground | Root | Fresh Matter | Dry Matter | |
Conv | 29.0 b | 4.87 b | 7.18 b | 7.04 b |
CM:SS (1:1) | 11.7 a | 2.13 a | 3.22 a | 3.16 a |
CM:SS (1:1.5) | 14.6 a | 2.81 a | 3.88 a | 3.81 a |
CM:SS (1:2.5) | 15.9 a | 2.84 a | 4.02 a | 3.94 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzan, M.I.; Anwar, S.; Nugroho, B.; Ueno, H.; Toma, Y. The Study of Chicken Manure and Steel Slag Amelioration to Mitigate Greenhouse Gas Emission in Rice Cultivation. Agriculture 2021, 11, 661. https://doi.org/10.3390/agriculture11070661
Fauzan MI, Anwar S, Nugroho B, Ueno H, Toma Y. The Study of Chicken Manure and Steel Slag Amelioration to Mitigate Greenhouse Gas Emission in Rice Cultivation. Agriculture. 2021; 11(7):661. https://doi.org/10.3390/agriculture11070661
Chicago/Turabian StyleFauzan, Muhammad Iqbal, Syaiful Anwar, Budi Nugroho, Hideto Ueno, and Yo Toma. 2021. "The Study of Chicken Manure and Steel Slag Amelioration to Mitigate Greenhouse Gas Emission in Rice Cultivation" Agriculture 11, no. 7: 661. https://doi.org/10.3390/agriculture11070661
APA StyleFauzan, M. I., Anwar, S., Nugroho, B., Ueno, H., & Toma, Y. (2021). The Study of Chicken Manure and Steel Slag Amelioration to Mitigate Greenhouse Gas Emission in Rice Cultivation. Agriculture, 11(7), 661. https://doi.org/10.3390/agriculture11070661