Response of Different Potato Genotypes to Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Drought Stress Induction
2.3. Sequential Harvesting
2.4. Relative Water Content, Chlorophyll, and Nitrogen Contents Measurements
2.5. Measurement of Enzymatic Antioxidant Activity
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Pocketbook; FAO: Rome, Italy, 2018. [Google Scholar]
- Salehi-Lisar, S.Y.; Bakhshayeshan-Agdam, H. Drought stress in plants: Causes, consequences, and tolerance. In Drought Stress Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, pp. 1–16. [Google Scholar]
- Watkinson, J.I.; Hendricks, L.; Sioson, A.; Heath, L.S.; Bohnert, H.J.; Grene, R. Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism. Plant Physiol. Biochem. 2008, 46, 34–45. [Google Scholar] [CrossRef]
- Drought Tolerance in Potato (S. tuberosum, L.): Can We Learn from Drought Tolerance Research in Cereals? ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0168945213000204?casa_token=WKsm3FB6g3wAAAAA:jE_YSQ1lHmD3A7LclzFENQ3kUqj252_V4MQMXOKSVji-YVfOd0vmHm68ypjcTO4SeProJNzLWiM (accessed on 6 November 2020).
- Albiski, F.; Najla, S.; Sanoubar, R.; Alkabani, N.; Murshed, R. In vitro screening of potato lines for drought tolerance. Physiol. Mol. Biol. Plants 2012, 18, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Schittenhelm, S.; Sourell, H.; Löpmeier, F.-J. Drought resistance of potato cultivars with contrasting canopy architecture. Eur. J. Agron. 2006, 24, 193–202. [Google Scholar] [CrossRef]
- Hassanpanah, D. Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Res. 2010, 53, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Stark, J.C.; Love, S.L.; King, B.A.; Marshall, J.M.; Bohl, W.H.; Salaiz, T. Potato cultivar response to seasonal drought patterns. Am. J. Potato Res. 2013, 90, 207–216. [Google Scholar] [CrossRef]
- Jefferies, R.; MacKerron, D. Radiation interception and growth of irrigated and droughted potato (Solanum tuberosum). Field Crop. Res. 1989, 22, 101–112. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Van De Waart, M.; Bodlaender, K.B.A. The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Res. 1990, 33, 89–96. [Google Scholar] [CrossRef]
- Yue, B.; Xue, W.; Xiong, L.; Yu, X.; Luo, L.; Cui, K.; Jin, D.; Xing, Y.; Zhang, Q. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics 2006, 172, 1213–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deblonde, P.; Ledent, J. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur. J. Agron. 2001, 14, 31–41. [Google Scholar] [CrossRef]
- Omae, H.; Kumar, A.; Egawa, Y.; Kashiwaba, K.; Shono, M. Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.). Plant Prod. Sci. 2005, 8, 465–467. [Google Scholar] [CrossRef]
- Farshadfar, E.; Elyasi, P. Screening quantitative indicators of drought tolerance in bread wheat (Triticum aestivum, L.) landraces. Eur. J. Experiment. Biol. 2012, 2, 577–584. [Google Scholar]
- Deblonde, P.; Haverkort, A.; Ledent, J. Responses of early and late potato cultivars to moderate drought conditions: Agronomic parameters and carbon isotope discrimination. Eur. J. Agron. 1999, 11, 91–105. [Google Scholar] [CrossRef]
- Khan, M.A.; Saravia, D.; Munive, S.; Lozano, F.; Farfan, E.; Eyzaguirre, R.; Bonierbale, M. Multiple QTLs Linked to agro-morphological and physiological traits related to drought tolerance in potato. Plant Mol. Biol. Rep. 2014, 33, 1286–1298. [Google Scholar] [CrossRef] [Green Version]
- Lahlou, O.; Ouattar, S. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomy 2003, 23, 257–268. [Google Scholar] [CrossRef]
- Iwama, K. Physiology of the Potato: New insights into root system and repercussions for crop management. Potato Res. 2008, 51, 333–353. [Google Scholar] [CrossRef]
- Joshi, M.; Fogelman, E.; Belausov, E.; Ginzberg, I. Potato root system development and factors that determine its architecture. J. Plant Physiol. 2016, 205, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Wishart, J.; George, T.S.; Brown, L.K.; Ramsay, G.; Bradshaw, J.E.; White, P.J.; Gregory, P.J. Measuring variation in potato roots in both field and glasshouse: The search for useful yield predictors and a simple screen for root traits. Plant Soil 2012, 368, 231–249. [Google Scholar] [CrossRef]
- Villordon, A.Q.; Ginzberg, I.; Firon, N. Root architecture and root and tuber crop productivity. Trends Plant Sci. 2014, 19, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.J. Comparative physiological studies on the growth of field crops: I. variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Power, J.F.; Willis, W.O.; Grunes, D.L.; Reichman, G.A. Effect of soil temperature, phosphorus, and plant age on growth analysis of barley 1. Agron. J. 1967, 59, 231–234. [Google Scholar] [CrossRef]
- Barrs, H.D. Determination of water deficits in plant tissues. Water Defic. Plant Growth 1968, 1, 235–368. [Google Scholar]
- Li, L.; Qin, Y.; Liu, Y.; Hu, Y.; Fan, M. Leaf positions of potato suitable for determination of nitrogen content with a SPAD meter. Plant Prod. Sci. 2012, 15, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Yasmeen, A.; Nouman, W.; Basra, S.M.A.; Wahid, A.; Rehman, H.U.; Hussain, N.; Afzal, I. Morphological and physiological response of tomato (Solanum lycopersicum L.) to natural and synthetic cytokinin sources: A comparative study. Acta Physiol. Plant 2014, 36, 3147–3155. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A. Assay of catalases and peroxidases. Methods Enzym. 1955, 2, 764–775. [Google Scholar] [CrossRef]
- Sprenger, H.; Kurowsky, C.; Horn, R.; Erban, A.; Seddig, S.; Rudack, K.; Fischer, A.; Walther, D.; Zuther, E.; Köhl, K.; et al. The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ. 2016, 39, 2370–2389. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Timlin, D.; Reddy, V. Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agric. For. Meteorol. 2008, 148, 1109–1122. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- De Oliveira, J.S.; Brown, H.E.; Gash, A.; Moot, D.J. An explanation of yield differences in three potato cultivars. Agron. J. 2016, 108, 1434–1446. [Google Scholar] [CrossRef] [Green Version]
- Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Eprashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [Green Version]
- Najm, A.; Haj Seyed Hadi, M.; Fazeli, F.; Darzi, M.; Shamorady, R. Effect of Utilization of organic and inorganic nitrogen source on the potato shoots dry matter, leaf area index and plant height, during middle stage of growth. World Acad. Sci. Eng. Technol. 2010, 47, 900–903. [Google Scholar]
- Chang, D.C.; Jin, Y.I.; Nam, J.H.; Cheon, C.G.; Cho, J.H.; Kim, S.J.; Yu, H.-S. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crop. Res. 2018, 215, 156–162. [Google Scholar] [CrossRef]
- Gaur, D.; Singh, S.P.; Sharma, K.; Sharma, S.K.; Dhakad, H.; Dangi, R.S.; Patidar, R.; Sharma, R.; Dixit, J.P.; Rawat, G.S. Effect of different phosphorus levels on growth attributes physiological parameter and grading of tuber in potato crop (Solanum tuberosum, L.). Int. J. Chem. Stud. 2017, 5, 215–219. [Google Scholar]
- Salavati, S.; Valadabadi, S.A.; Parvizi, K.H.; Sayfzadeh, S.; Hadidi Masouleh, E. The effect of super-absorbent polymer and sowing depth on growth and yield indices of potato (Solanum tuberosum L.) in hamedan province, Iran. Appl. Ecol. Environ. Res. 2018, 16, 7063–7078. [Google Scholar] [CrossRef]
- Pourasadollahi, A.; Siosemardeh, A.; Hosseinpanahi, F.; Sohrabi, Y. Physiological and Agro-Morphological Response of Potato to Drought Stress and Hormone Application. J. Plant Physiol. Breed. 2019, 9, 47–61. [Google Scholar]
- Tadesse, M.; Lommen, W.; van der Putten, P.; Struik, P. Development of leaf area and leaf number of micropropagated potato plants. NJAS Wagening J. Life Sci. 2001, 49, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.; Wright, I. The leaf size—Twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 2003, 135, 621–628. [Google Scholar] [CrossRef]
- Ackerly, D.; Knight, C.; Weiss, S.; Barton, K.; Starmer, K. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia 2002, 130, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Bragg, J.G.; Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 2002, 16, 633–639. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.G.; Fonseca, C.R.; Overton, J.M.; Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Funct. Ecol. 2003, 17, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Kebede, Z.; Mekbib, F.; Abebe, T.; Asfaw, A. Evaluation of leaf-water relation traits, as selection criterion for developing drought resistant potato (Solanum tuberosum, L.) genotypes. Rev. Plant Stud. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Mandisodza, F.C.; Mashingaidze, A.B.; Bhebhe, E. Influence of plant population and seed tuber size on growth and yield components of potato (Solanum tuberosum). Int. J. Agric. Biol. 2012, 14, 7. [Google Scholar]
- Zarzyńska, K.; Boguszewska-Mańkowska, D.; Nosalewicz, A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017, 63, 159–164. [Google Scholar]
- Banik, P.; Zeng, W.; Tai, H.; Bizimungu, B.; Tanino, K. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environ. Exp. Bot. 2016, 126, 76–89. [Google Scholar] [CrossRef]
- Anithakumari, A.M.; Dolstra, O.; Vosman, B.; Visser, R.G.F.; van der Linden, C.G. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica 2011, 181, 357–369. [Google Scholar] [CrossRef]
- Anithakumari, A.M.; Nataraja, K.N.; Visser, R.G.F.; Van Der Linden, C.G. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 2012, 30, 1413–1429. [Google Scholar] [CrossRef] [Green Version]
- Vasquez-Robinet, C.; Mane, S.; Ulanov, A.V.; Watkinson, J.I.; Stromberg, V.K.; De Koeyer, D.; Schafleitner, R.; Willmot, D.B.; Bonierbale, M.; Bohnert, H.J.; et al. Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 2008, 59, 2109–2123. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Yasmeen, A.; Basra, S.M.A.; Farooq, M.; Rehman, H.U.; Hussain, N.; Athar, H. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2012, 69, 225–233. [Google Scholar] [CrossRef]
- Yang, T.; Poovaiah, B.W. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J. Biol. Chem. 2000, 275, 38467–38473. [Google Scholar] [CrossRef] [Green Version]
36 DAS | 54 DAS | 72 DAS | 90 DAS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Square | F | p | Mean Square | F | p | Mean Square | F | p | Mean Square | F | p | ||
Plant Height | Genotype | 1008.0 | 19.4 | 0.00 | 1056.2 | 12.0 | 0.00 | 992.2 | 6.1 | 0.02 | 637.5 | 3.9 | 0.06 |
Water levels | 324.0 | 6.2 | 0.02 | 576.0 | 6.5 | 0.02 | 2070.2 | 12.7 | 0.00 | 3108.0 | 19.3 | 0.00 | |
Genotype × Water levels | 420.2 | 8.1 | 0.01 | 2500.0 | 28.5 | 0.00 | 4225.0 | 26.0 | 0.00 | 1425.0 | 8.8 | 0.01 | |
No. of leaves per plant | Genotype | 4128.0 | 53.1 | 0.00 | 6380.0 | 111.6 | 0.00 | 1225.0 | 22.5 | 0.00 | 3766.8 | 29.0 | 0.00 |
Water levels | 33.0 | 0.4 | 0.52 | 50.7 | 0.9 | 0.36 | 272.2 | 5.0 | 0.04 | 534.7 | 4.1 | 0.06 | |
Genotype × Water levels | 25.0 | 0.3 | 0.58 | 13.1 | 0.2 | 0.64 | 264.0 | 4.8 | 0.04 | 244.1 | 1.8 | 0.19 | |
Foliage fresh weight | Genotype | 3048.4 | 2.1 | 0.16 | 626.4 | 0.3 | 0.59 | 13,343.1 | 13.7 | 0.00 | 349.2 | 0.1 | 0.69 |
Water levels | 138.3 | 0.1 | 0.75 | 356.4 | 0.1 | 0.68 | 20,934.5 | 21.5 | 0.00 | 36,945.6 | 16.8 | 0.00 | |
Genotype × Water levels | 1407.1 | 0.9 | 0.33 | 11,357.7 | 5.5 | 0.03 | 19,164.9 | 19.7 | 0.00 | 5950.2 | 2.7 | 0.12 | |
Foliage Dry Matter | Genotype | 125.6 | 23.3 | 0.00 | 196.0 | 16.0 | 0.00 | 2.8 | 0.4 | 0.51 | 96.3 | 4.8 | 0.04 |
Water levels | 6.0 | 1.1 | 0.31 | 23.5 | 1.9 | 0.19 | 152.6 | 23.8 | 0.00 | 169.9 | 8.5 | 0.01 | |
Genotype × Water levels | 1.0 | 0.2 | 0.66 | 1.0 | 0.1 | 0.77 | 147.2 | 22.9 | 0.00 | 43.2 | 2.1 | 0.16 | |
No. of tubers per plant | Genotype | 34.5 | 2.0 | 0.18 | 19.1 | 1.8 | 0.19 | 62.0 | 9.8 | 0.00 | 203.0 | 23.1 | 0.00 |
Water levels | 92.66 | 5.4 | 0.03 | 43.8 | 4.2 | 0.06 | 1.2 | 0.2 | 0.66 | 9.0 | 1.0 | 0.33 | |
Genotype × Water levels | 70.1 | 4.1 | 0.06 | 87.8 | 8.5 | 0.01 | 0.1 | 0.02 | 0.88 | 1.0 | 0.1 | 0.74 | |
Tuber yield | Genotype | 18.9 | 1.9 | 0.18 | 424.9 | 0.3 | 0.58 | 53,113.0 | 35.3 | 0.00 | 159,251 | 10.6 | 0.00 |
Water levels | 25.0 | 2.6 | 0.13 | 6812.4 | 5.1 | 0.04 | 10,678.6 | 7.1 | 0.02 | 2977 | 0.2 | 0.66 | |
Genotype × Water levels | 30.4 | 3.2 | 0.09 | 22,264.4 | 16.7 | 0.00 | 9450.3 | 6.3 | 0.02 | 35,245 | 2.4 | 0.15 | |
Leaf Area Index | Genotype | 11.5 | 7.0 | 0.02 | 13.9 | 4.8 | 0.04 | 0.01 | 0.0 | 0.96 | 0.2 | 0.07 | 0.80 |
Water levels | 0.1 | 0.1 | 0.80 | 1.1 | 0.4 | 0.53 | 8.5 | 0.9 | 0.34 | 38.1 | 13.1 | 0.00 | |
Genotype × Water levels | 1.2 | 0.7 | 0.40 | 19.4 | 6.7 | 0.02 | 80.1 | 9.1 | 0.01 | 9.2 | 3.2 | 0.09 | |
Leaf Area Duration | Genotype | - | - | - | 4132.2 | 14.0 | 0.00 | 1212.3 | 1.0 | 0.33 | 7.5 | 0.01 | 0.92 |
Water levels | - | - | - | 160.0 | 0.5 | 0.47 | 1296.9 | 1.1 | 0.31 | 6708.4 | 7.7 | 0.01 | |
Genotype × Water levels | - | - | - | 2455.9 | 8.3 | 0.01 | 14,447.4 | 12.1 | 0.00 | 11,639.2 | 13.4 | 0.00 | |
Root length | Genotype | 9.0 | 0.8 | 0.38 | 6.2 | 1.0 | 0.33 | 52.5 | 3.2 | 0.09 | 132.2 | 2.9 | 0.11 |
Water levels | 2.2 | 0.2 | 0.66 | 9.0 | 1.4 | 0.25 | 33.0 | 2.0 | 0.18 | 1.0 | 0.02 | 0.88 | |
Genotype × Water levels | 1.5 | 0.1 | 0.71 | 4.437 × 10−31 | 0.0 | 1.00 | 0.5 | 0.03 | 0.85 | 6.2 | 0.1 | 0.71 | |
Root fresh weight | Genotype | 147.0 | 0.9 | 0.35 | 777.7 | 12.5 | 0.00 | 1611.0 | 109.7 | 0.00 | 643.8 | 30.5 | 0.00 |
Water levels | 1139.0 | 7.2 | 0.01 | 5.1 | 0.0 | 0.77 | 65.4 | 4.4 | 0.05 | 191.1 | 9.1 | 0.01 | |
Genotype × Water levels | 50.7 | 0.3 | 0.58 | 40.1 | 0.6 | 0.43 | 0.2 | 0.01 | 0.91 | 16.0 | 0.7 | 0.40 | |
Nitrogen content in foliage | Genotype | 2.3 | 4.9 | 0.04 | 1.9 | 18.2 | 0.00 | 1.1 | 30.8 | 0.0 | 0.2 | 4.4 | 0.05 |
Water levels | 0.2 | 0.5 | 0.46 | 0.01 | 0.06 | 0.81 | 0.0 | 0.06 | 0.8 | 0.7 | 012.2 | 0.00 | |
Genotype × Water levels | 1.3 | 2.8 | 0.11 | 0.1 | 1.6 | 0.22 | 0.1 | 3.4 | 0.08 | 0.1 | 2.27 | 0.15 |
Plant Height (cm) | No. of Leaves | Foliage Fresh Weight (g) | Foliage Dry Matter (g) | Leaf Area Index | Root Length (cm) | Root Fresh Weight (g) | Number of Tubers | Tuber Fresh Weight (g) | Foliage Nitrogen Content (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Tuber Initiation Stage (36 DAS) | ||||||||||
G1 [1] | 78.375 a | 69.938 a | 307.13 a | 21.796 a | 7.2186 a | 29.438 a | 80.969 a | 9.3750 a | 4.2938 a | 4.49 b |
G2 [2] | 62.500 b | 37.813 b | 279.52 a | 16.192 b | 5.5163 b | 27.938 a | 87.031 a | 6.4375 a | 2.1175 a | 5.26 a |
W1 [3] | 74.938 a | 55.313 a | 296.27 a | 18.380 a | 6.4500 a | 29.063 a | 92.438 a | 5.500 b | 4.4562 a | 5.0 a |
W2 [4] | 65.938 b | 52.438 a | 290.39 a | 19.609 a | 6.2849 a | 28.313 a | 75.563 b | 10.313 a | 1.9550 a | 4.74 a |
G1W1 | 88.000 a | 72.625 a | 319.45 a | 20.927 a | 7.5764 a | 29.500 a | 87.625 ab | 4.875 b | 1.6625 b | 4.91 ab |
G1W2 | 68.750 b | 67.250 a | 294.81 a | 22.665 a | 6.8608 ab | 29.375 a | 74.313 b | 13.875 a | 6.9250 a | 4.06 b |
G2W1 | 61.875 b | 38.000 b | 273.09 a | 15.832 b | 5.3237 b | 28.625 a | 97.250 a | 6.125 b | 2.2475 ab | 5.09 ab |
G2W2 | 63.125 b | 37.625 b | 285.96 a | 16.552 b | 5.709 ab | 27.250 a | 76.813 b | 6.750 b | 1.9875 b | 5.42 a |
Flowering Stage (54 DAS) | ||||||||||
G1 | 99.000 a | 87.813 a | 355.94 a | 32.015 a | 9.5286 a | 30.500 a | 39.169 a | 15.000 a | 242.81 a | 2.94 b |
G2 | 82.750 b | 47.875 b | 343.43 a | 25.015 b | 7.6595 b | 29.250 a | 25.225 b | 17.188 a | 253.12 a | 3.64 a |
W1 | 96.875 a | 69.625 a | 344.96 a | 27.301 a | 8.8629 a | 30.625 a | 32.763 a | 14.438 a | 227.33 b | 3.27 a |
W2 | 84.875 b | 66.063 a | 354.40 a | 29.729 a | 8.3252 a | 29.125 a | 31.631 a | 17.750 a | 268.60 a | 3.31 a |
G1W1 | 117.50 a | 90.500 a | 377.86 a | 30.550 ab | 10.899 a | 31.250 a | 27.375 bc | 11.000 b | 184.88 c | 3.03 bc |
G1W2 | 80.50 b | 85.125 a | 334.01 a | 33.480 a | 8.158 b | 29.750 a | 23.075 c | 19.000 a | 300.75 a | 2.86 c |
G2W1 | 76.25 b | 48.750 b | 312.06 a | 24.052 c | 6.827 b | 30.000 a | 38.150 ab | 19.000 a | 269.79 ab | 3.51 ab |
G2W2 | 89.25 b | 47.000 b | 374.79 a | 25.977 bc | 8.492 ab | 28.500 a | 40.188 a | 16.500 a | 236.45 bc | 3.76 a |
Plant Height (cm) | No. of Leaves | Foliage Fresh Weight (g) | Foliage Dry Matter (g) | Leaf Area Index | Root Length (cm) | Root Fresh Weight (g) | Number of Tubers | Tuber Fresh Weight (g) | Foliage Nitrogen Content (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Tuber Bulking Stage (72 DAS) | ||||||||||
G1 [1] | 99.63 a | 66.68 a | 302.73 b | 28.00 a | 10.51 a | 26.50 a | 15.88 b | 12.69 b | 378.43 b | 2.44 b |
G2 [2] | 83.88 b | 49.18 b | 360.49 a | 27.16 a | 10.44 a | 30.12 a | 35.95 a | 16.62 a | 493.66 a | 2.97 a |
W1 [3] | 103.13 a | 62.06 a | 367.78 a | 30.67 a | 11.21 a | 26.87 a | 27.94 a | 14.94 a | 461.88 a | 2.73 a |
W2 [4] | 80.38 b | 53.81 b | 295.44 b | 24.49 b | 9.74 a | 29.75 a | 23.90 a | 14.38 a | 410.21 b | 2.70 a |
G1W1 | 127.25 a | 74.87 a | 373.51 a | 34.13 a | 13.48 a | 25.25 b | 17.80 b | 12.87 b | 379.96 c | 2.54 b |
G1W2 | 72.00 b | 58.50 b | 231.95 b | 21.88 c | 7.54 b | 27.75 ab | 13.97 b | 12.50 b | 376.90 c | 2.34 b |
G2W1 | 79.00 b | 49.25 b | 362.05 a | 27.21 b | 8.94 ab | 28.50 ab | 38.08 a | 17.00 a | 543.80 a | 2.89 a |
G2W2 | 88.75 b | 49.12 b | 358.93 a | 27.10 b | 11.95 ab | 31.75 a | 33.82 a | 16.25 ab | 443.53 b | 3.05 a |
Senescence (90 DAS) | ||||||||||
G1 | 95.13 a | 70.31 a | 215.99 a | 26.12 a | 5.588 a | 32.37 a | 17.39 b | 11.75 b | 497.82 b | 1.40 a |
G2 | 82.50 a | 39.62 b | 206.64 a | 21.22 b | 5.806 a | 26.62 a | 30.08 a | 18.87 a | 631.54 a | 1.65 a |
W1 | 102.75 a | 60.75 a | 259.37 a | 26.93 a | 7.241 a | 29.75 a | 27.19 a | 14.56 a | 583.95 a | 1.73 a |
W2 | 74.88 b | 49.18 a | 163.26 b | 20.41 b | 4.154 b | 29.25 a | 20.28 b | 16.06 a | 545.42 a | 1.32 b |
G1W1 | 118.50 a | 80.00 a | 283.32 a | 31.03 a | 7.892 a | 33.25 a | 19.85 bc | 11.25 b | 503.06 b | 1.70 a |
G1W2 | 71.75 b | 60.62 b | 148.65 c | 21.22 b | 3.286 c | 31.50 a | 14.94 c | 12.25 b | 492.59 b | 1.11 b |
G2W1 | 87.00 b | 41.50 c | 235.41 ab | 22.83 b | 6.590 ab | 26.25 a | 34.54 a | 17.87 a | 664.84 a | 1.77 a |
G2W2 | 78.00 b | 37.75 c | 177.88 bc | 19.60 b | 5.022 bc | 27.00 a | 25.62 b | 19.88 a | 598.25 ab | 1.54 a |
Tuber Yield | Above-Ground Biomass | |||||||
---|---|---|---|---|---|---|---|---|
36 DAS | 54 DAS | 72 DAS | 90 DAS | 36 DAS | 54 DAS | 72 DAS | 90 DAS | |
Tuber yield | 1 | 1 | 1 | 1 | −0.337 | −0.563 * | 0.482 | 0.191 |
Plant height | −0.231 | −0.738 ** | −0.365 | −0.1 | 0.523 * | 0.759 ** | 0.548 * | 0.836 ** |
Number of leaves per plant | 0.337 | −0.196 | −0.341 | −0.411 | 0.528 * | 0.302 | 0.151 | 0.566 * |
Number of tubers per plant | 0.897 ** | 0.603 * | 0.508 * | 0.606 * | −0.239 | −0.14 | 0.229 | 0.023 |
Leaf area index | −0.308 | −0.774 ** | −0.241 | 0.362 | 0.765 ** | 0.729 ** | 0.509 * | 0.962 ** |
Above-ground dry matter | 0.338 | −0.072 | 0.118 | −0.078 | 0.683 ** | 0.514 * | 0.833 ** | 0.908 ** |
Root length | 0.295 | 0.006 | 0.09 | −0.433 | −0.05 | 0.161 | −0.144 | 0.041 |
Root fresh weight | −0.431 | −0.124 | 0.838 ** | 0.695 ** | 0.014 | 0.269 | 0.566 * | 0.331 |
Foliage N % | −0.499 * | −0.173 | 0.508 * | 0.328 | 0.124 | 0.005 | 0.500 * | 0.174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir, M.W.; Toth, Z. Response of Different Potato Genotypes to Drought Stress. Agriculture 2021, 11, 763. https://doi.org/10.3390/agriculture11080763
Nasir MW, Toth Z. Response of Different Potato Genotypes to Drought Stress. Agriculture. 2021; 11(8):763. https://doi.org/10.3390/agriculture11080763
Chicago/Turabian StyleNasir, Muhammad Waqar, and Zoltan Toth. 2021. "Response of Different Potato Genotypes to Drought Stress" Agriculture 11, no. 8: 763. https://doi.org/10.3390/agriculture11080763
APA StyleNasir, M. W., & Toth, Z. (2021). Response of Different Potato Genotypes to Drought Stress. Agriculture, 11(8), 763. https://doi.org/10.3390/agriculture11080763