Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Feed
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Task Force on Reactive Nitrogen. Available online: http://www.clrtap-tfrn.org/ (accessed on 18 July 2021).
- Giannakis, E.; Kushta, J.; Bruggeman, A.; Lelieveld, J. Costs and Benefits of Agricultural Ammonia Emission Abatement Options for Compliance with European Air Quality Regulations. Environ. Sci. Eur. 2019, 31, 1–13. [Google Scholar] [CrossRef] [Green Version]
- IIR. Hungary Informative Inventory Report 1990–2019. Available online: https://www.ceip.at/status-of-reporting-and-review-results/2021-submission (accessed on 18 July 2021).
- European Parliament. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC. Brussels: European Council. Off. J. Eur. Union 2016, 344, 1–34. [Google Scholar]
- Kamran, Z.; Aslam Mirza, M.; Mahmood, S. Effect of Decreasing Dietary Protein Levels with Optimum Amino Acids Profile on the Performance of Broilers. Pak. Vet. J. 2004, 24, 165–168. [Google Scholar]
- Dublecz, K.; Koltay, I.A.; Such, N.; Dublecz, F.; Husvéth, F.; Wágner, L.; Péterné Farkas, E.; Márton, A.; Farkas, V.; Pál, L. Lehetőségek a Takarmányok Nyersfehérje Tartalmának Csökkentésére Monogasztrikus Állatokban. Állatteny. Takarm. 2018, 67, 273–286. [Google Scholar]
- Belloir, P.; Lessire, M.; Berri, C.; Lambert, W.; Corrent, E.; Tesseraud, S. Revisiting Amino Acid Nutrition. In Proceedings of the 20th ESPN, Prague, Czech Republic, 24–27 August 2015; pp. 27–34. [Google Scholar]
- Belloir, P.; Lessire, M.; Van Milgen, J.; Schmidley, P.; Corrent, E.; Tesseraud, S. Reducing Dietary Crude Protein of Broiler: A Meta-Analysis Approach. In Proceedings of the 11émes Jourmées de la Researche Avicoles et Palmipédes a Foie Gras, Tours, France, 25–26 March 2015; pp. 1–6. [Google Scholar]
- Giner Santonja, G.; Georgitzikis, K.; Scalet, B.; Montobbio, P.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); EUR 28674 EN; European Comission: Brussels, Belgium, 2017. [Google Scholar]
- Sterling, K.G.; Vedenov, D.V.; Pesti, G.M.; Bakalli, R.I. Economically Optimal Dietary Crude Protein and Lysine Levels for Starting Broiler Chicks. Poult. Sci. 2005, 84, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kamran, Z.; Sarwar, M.; Nisa, M.; Mahmood, M. Effect of Low Levels of Dietary Crude Protein with Constant Metabolizable Energy on Nitrogen Excretion, Litter Composition and Blood Parameters of Broilers. Int. J. Agric. Biol. 2010, 12, 401–405. [Google Scholar]
- De Sousa, F.C.; de Tinôco, I.F.F.; da Silva, J.N.; de Jesus Fôlgoa Baptista, F.; Souza, C.F.; Lopes Silva, A. Gas Emission in the Poultry Production. J. Anim. Behav. Biometeorol. 2017, 5, 49–55. [Google Scholar] [CrossRef]
- Angus, A.J.; Hodge, I.D.; Sutton, M.A. Ammonia Abatement Strategies in Livestock Production: A Case Study of a Poultry Installation. Agric. Syst. 2006, 89, 204–222. [Google Scholar] [CrossRef] [Green Version]
- Battye, R.; Battye, W.; Overcash, C.; Fudge, S. Development and Selection of Ammonia Emission Factors; Final Report; U.S. Environmental Protection Agency: Washington, DC, USA, 1994.
- O’dell, B.L.; Woods, W.D.; Laerdal, O.A.; Jeffay, A.M.; Savage, J.E. Distribution of the Major Nitrogenous Compounds and Amino Acids in Chicken Urine. Poult. Sci. 1960, 39, 426–432. [Google Scholar] [CrossRef]
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook 2019—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/ce310211-4bc5-11ea-8aa5-01aa75ed71a1/language-en (accessed on 19 July 2021).
- De Oliveira, M.C.; Almeida, C.V.; Andrade, D.O.; Rodrigues, S.M.M. Teor de Matéria Seca, PH e Amônia Volatilizada Da Cama de Frango Tratada Ou Não Com Diferentes Aditivos. Rev. Bras. Zootec. 2003, 32, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP Content in Broiler Feeds: Impact on Animal Performance, Meat Quality and Nitrogen Utilization. Animal 2017, 11, 1881–1889. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.L.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods for Manure Analysis. In Proceedings of the ASA-CSSA-SSSA Annual Meeting Abstracts, Denver, CO, USA, 2–6 November 2003; ASA-CSSA-SSSA: Madison, WI, USA, 2003. [Google Scholar]
- Marquardt, R.R.; Ward, A.T.; Campbell, L.D. A Rapid High-Performance Liquid Chromatographic Method for the Quantitation of Uric Acid in Excreta and Tissue Samples. Poult. Sci. 1983, 62, 2099–2105. [Google Scholar] [CrossRef]
- Bregendahl, K.; Sell, J.; Zimmerman, D. Effect of Low-Protein Diets on Growth Performance and Body Composition of Broiler Chicks. Poult. Sci. 2002, 81, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Namroud, N.; Shivazad, M.; Zaghari, M.; Shahneh, A.Z. Effects of Glycine and Glutamic Acid Supplementation to Low Protein Diets on Performance, Thyroid Function and Fat Deposition in Chickens. S. Afr. J. Anim. Sci. 2010, 40, 238–244. [Google Scholar] [CrossRef]
- Aletor, V.A.; Hamid, I.I.; Nieß, E.; Pfeffer, E. Low-Protein Amino Acid-Supplemented Diets in Broiler Chickens: Effects on Performance, Carcass Characteristics, Whole-Body Composition and Efficiencies of Nutrient Utilisation. J. Sci. Food Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Dublecz, K.; Husvéth, F.; Wágner, L.; Márton, A.; Koltay, I.; Such, N.; Rawash, M.A.; Mezőlaki, Á.; Pál, L.; Molnár, A. Feeding Low Protein Diets Poultry and Pig Diets—Physiological, Economic and Environmental Aspects. In Proceedings of the International Symposium on Animal Science, Herceg Novi, Montenegro, 3–8 June 2019; pp. 20–29. [Google Scholar]
- Bailey, M. The water requirements of poultry. In Recent Developments in Poultry Nutrition 2; Nottingham University Press: Nottingham, UK, 1999; pp. 321–335. [Google Scholar]
- Borges, S.A.; Da Silva, A.V.F.; Maiorka, A. Acid-Base Balance in Broilers. World’s Poult. Sci. J. 2007, 63, 73–81. [Google Scholar] [CrossRef]
- Koreleski, J.; Swiatkiewicz, S.; Arczewska-Włosek, A. The Effect of Different Dietary Potassium and Chloride Levels on Performance and Excreta Dry Matter in Broiler Chickens. Czech J. Anim. Sci. 2011, 56, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Ziaei, N.; Guy, J.H.; Edwards, S.A.; Blanchard, P.J.; Ward, J.; Feuerstein, D. Effect of Gender on Factors Affecting Excreta Dry Matter Content of Broiler Chickens. J. Appl. Poult. Res. 2007, 16, 226–233. [Google Scholar] [CrossRef]
- Van Emous, R.A.; Winkel, A.; Aarnink, A.J.A. Effects of Dietary Crude Protein Levels on Ammonia Emission, Litter and Manure Composition, N Losses, and Water Intake in Broiler Breeders. Poult. Sci. 2019, 98, 6618–6625. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.J. Nutritional strategies for waste reduction management. In Nitrogen: New Horizons in Animal Nutrition and Health; The Institution of Nutrition of the University of North Carolina: Chapel Hil, NC, USA, 1995; pp. 47–68. [Google Scholar]
- Lopez, G.; Leeson, S. Response of Broiler Breeders to Low-Protein Diets. Poult. Sci. 1995, 74, 685–695. [Google Scholar] [CrossRef]
- Lopez, G.; Leeson, S. Nitrogen of Manure from Older Broiler Breeders Fed Varying Quantities of Crude Protein. J. Appl. Poult. Res. 1995, 4, 390–394. [Google Scholar] [CrossRef]
- Hernandez, F.; Megias, M.; Orengo, J.; Martinez, S.; López, M.J.; Madrid, J. Effect of Dietary Protein Level on Retention of Nutrients, Growth Performance, Litter Composition and NH3 Emission Using a Multi-Phase Feeding Programme in Broilers. Span. J. Agric. Res. 2013, 11, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Ishibashi, K.; Day, D.L. Experimental Study of Microbial Decomposition in Liquid Swine Manure, and Generation Rates of Ammonia. In Proceedings of the Livestock Waste Management Conference, American Society of Agricultural Engineers, St. Joseph, MI, USA, 16–21 June 1991. [Google Scholar]
- Varel, V.H.; Wells, J.E.; Miller, D.N. Combination of a Urease Inhibitor and a Plant Essential Oil to Control Coliform Bacteria, Odour Production and Ammonia Loss from Cattle Waste. J. Appl. Microbiol. 2007, 102, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Santoso, U.; Ohtani, S.; Tanaka, K.; Sakaida, M. Dried Bacillus Subtilis Culture Reduced Ammonia Gas Release in Poultry House. Asian-Australas. J. Anim. Sci. 1999, 12, 806–809. [Google Scholar] [CrossRef]
- Nahm, K.H. Evaluation of the Nitrogen Content in Poultry Manure. World’s Poult. Sci. J. 2003, 59, 77–88. [Google Scholar] [CrossRef]
Ingredient | Starter | Grower | Finisher | ||
---|---|---|---|---|---|
Control | LP | Control | LP | Control | |
Corn | 370 | 436 | 409 | 473 | 436 |
Wheat | 100 | 100 | 100 | 100 | 100 |
Extracted soybean meal | 356 | 113.5 | 243 | 77.2 | 217 |
Sunflower meal | 50 | 150 | 100 | 150 | 100 |
DDGS corn | 30 | 100 | 50 | 100 | 50 |
Sunflower oil | 49.0 | 56.1 | 58.8 | 56.7 | 61.4 |
MCP | 9.95 | 5.52 | 6.80 | 4.48 | 5.70 |
Limestone | 18.6 | 17.3 | 16.4 | 16.8 | 15.8 |
L-lysine | 3.71 | 8.48 | 4.06 | 8.27 | 3.42 |
DL-methionine | 2.94 | 2.36 | 2.12 | 2.13 | 1.82 |
L-threonine | 0.87 | 1.62 | 0.72 | 1.54 | 0.53 |
L-valine | 0.47 | 1.07 | 0.12 | 0.90 | - |
L-isoleucine | - | 1.17 | - | 1.32 | - |
L-arginine | - | 0.42 | - | 0.59 | - |
Premix | 5.00 | 4.00 | 4.00 | 5.00 | 5.00 |
Salt | 2.85 | 2.36 | 2.67 | 2.35 | 2.67 |
Sodium bicarbonate | 0.71 | 0.18 | 0.64 | 0.21 | 0.66 |
Phytase (Quantum blue) | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Xylanase (Econase XT25) | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 |
Ingredient | Starter | Grower | Finisher | ||
---|---|---|---|---|---|
Control | Control | LP | Control | LP | |
AMEn (MJ/kg) | 12.65 | 13.00 | 13.00 | 13.20 | 13.20 |
Crude protein | 23.95 | 21.31 | 19.49 | 20.43 | 18.38 |
Crude fat | 7.03 | 8.68 | 8.81 | 8.01 | 8.05 |
Crude fiber | 4.7 | 5.84 | 6.79 | 5.99 | 6.44 |
Ca | 1.05 | 0.94 | 0,97 | 0.9 | 0.87 |
P | 0.75 | 0.77 | 0,74 | 0.71 | 0.67 |
Lys | 1.47 | 1.19 | 1.22 | 1.11 | 1.17 |
Met | 0.60 | 0.53 | 0.56 | 0.51 | 0.51 |
Cys | 0.36 | 0.33 | 0.31 | 0.32 | 0.30 |
Control | LP | Pooled SEM | p-Values | ||
---|---|---|---|---|---|
Daily gain | Starter | 237.6 | 227.3 | 3.696 | 0.112 |
Grower | 901.8 | 842.3 | 10.386 | 0.500 | |
Finisher | 1593.9 | 1538.3 | 17.206 | 0.983 | |
Cumulative | 2495.8 | 2380.7 | 24.168 | 0.756 | |
Feed intake | Starter | 314.5 | 301.4 | 3.455 | 0.346 |
Grower | 1370.2 | 1332.0 | 17.079 | 0.753 | |
Finisher | 2770.0 | 2786.0 | 28.394 | 0.815 | |
Cumulative | 4140.3 | 4118.9 | 42.244 | 0.963 | |
Feed conversion ratio | Starter | 1.32 | 1.33 | 0.030 | 0.757 |
Grower | 1.52 | 1.58 | 0.023 | 0.405 | |
Finisher | 1.74 | 1.81 | 0.022 | 1.240 | |
Cumulative | 1.66 | 1.73 | 0.020 | 1.264 |
Treatments | Dry Matter | Total-N | NH4+-N | Uric Acid N | Fecal-N | Urinary-N | |
---|---|---|---|---|---|---|---|
% | mg/g DM | ||||||
day 24 | C | 16.18 | 46.70 a | 3.86 a | 15.34 a | 27.50 a | 19.20 a |
LP | 17.00 | 28.24 b | 2.59 b | 9.53 b | 16.13 b | 12.11 b | |
day 40 | C | 16.81 | 32.25 b | 3.47 ab | 11.44 b | 17.35 b | 14.90 b |
LP | 18.10 | 25.50 b | 2.68 b | 8.99 b | 13.83 b | 11.67 b | |
Diet effect | |||||||
Diet | C | 16.49 | 39.48 a | 3.65 a | 13.39 a | 22.43 a | 17.05 a |
LP | 17.54 | 26.87 b | 2.63 b | 9.26 b | 14.49 b | 11.89 b | |
Age effect | |||||||
Age | day 24 | 16.58 | 37.47 a | 3.23 | 12.43 a | 21.81 a | 15.66 a |
day 40 | 17.45 | 28.87 b | 3.07 | 10.21 b | 15.58 b | 13.29 b | |
Pooled SEM | 0.378 | 2.129 | 0.164 | 0.639 | 6.940 | 3.779 | |
Diet | 0.179 | * 0.000 | * 0.001 | * 0.000 | * 0.001 | * 0.000 | |
Age | 0.262 | * 0.005 | 0.561 | * 0.012 | * 0.004 | * 0.000 | |
Age x Diet | 0.760 | * 0.045 | 0.359 | * 0.048 | * 0.056 | * 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Such, N.; Pál, L.; Strifler, P.; Horváth, B.; Koltay, I.A.; Rawash, M.A.; Farkas, V.; Mezőlaki, Á.; Wágner, L.; Dublecz, K. Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens. Agriculture 2021, 11, 781. https://doi.org/10.3390/agriculture11080781
Such N, Pál L, Strifler P, Horváth B, Koltay IA, Rawash MA, Farkas V, Mezőlaki Á, Wágner L, Dublecz K. Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens. Agriculture. 2021; 11(8):781. https://doi.org/10.3390/agriculture11080781
Chicago/Turabian StyleSuch, Nikoletta, László Pál, Patrik Strifler, Boglárka Horváth, Ilona Anna Koltay, Mohamed Ali Rawash, Valéria Farkas, Ákos Mezőlaki, László Wágner, and Károly Dublecz. 2021. "Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens" Agriculture 11, no. 8: 781. https://doi.org/10.3390/agriculture11080781
APA StyleSuch, N., Pál, L., Strifler, P., Horváth, B., Koltay, I. A., Rawash, M. A., Farkas, V., Mezőlaki, Á., Wágner, L., & Dublecz, K. (2021). Effect of Feeding Low Protein Diets on the Production Traits and the Nitrogen Composition of Excreta of Broiler Chickens. Agriculture, 11(8), 781. https://doi.org/10.3390/agriculture11080781