Supporting the Bidding Decisions of Smallholder Farmers in Public Calls in Brazil
Abstract
:1. Introduction
1.1. Purpose and Structure
1.2. Literature Review
Decision Support and Data Envelopment Analysis (DEA)
2. Materials and Methods
2.1. Case Study Context
2.1.1. The National School Feeding Program (PNAE)
2.1.2. The Settlement of Canudos
2.2. Methodology
2.2.1. HN-DEA Models
2.2.2. Proposed HN-SBM DEA Model
2.2.3. Efficiency Decomposition and Information about the Empirical Application
- Priority in the selection process (using an inverted scale, the higher the priority, the lower the measure).
- Perception of the chance of losing (the lower, the better).
- The necessity of hiring third-party transportation for product distribution (the lower, the better).
- Difficulty of Crop Production (the lower, the better).
- Perishability of the Crop (the lower, the better).
- Necessity of required equipment (the lower, the better).
- Necessity of initial investment (the lower, the better).
- Inability to reduce the cost of transportation by delivering products collectively (the lower, the better).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Kao’s HN-DEA Model
Appendix B. Dual Formulation of the HN-SBM Model
Appendix C. Formulation of the Proposed Inverted HN-SBM Model
References
- World Food Program. UN agency honours Brazilian President for efforts against hunger. Available online: https://news.un.org/en/story/2010/05/338092-un-agency-honours-brazilian-president-efforts-against-hunger (accessed on 27 December 2021).
- IPC-IG. Structured Demand and Smallholder Farmers in Brazil: The Case of PAA and PNAE. 2013. Available online: http://www.ipc-undp.org/pub/IPCTechnicalPaper7.pdf (accessed on 27 December 2021).
- Federative Republic of Brazil. Resolution 26, of June 17, 2013 [Resolução No 26, de 17 de Junho de 2013]. 2003. Available online: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/30683767/do1-2013-06-18-resolucao-n-26-de-17-de-junho-de-2013-30683763 (accessed on 27 December 2021).
- Asian, S.; Hafezalkotob, A.; John, J.J. Sharing economy in organic food supply chains: A pathway to sustainable development. Int. J. Prod. Econ. 2019, 218, 322–338. [Google Scholar] [CrossRef]
- Cowie, P.; Townsend, L.; Salemink, K. Smart Rural Futures: Will Rural Areas Be Left behind in the 4th Industrial Revolution? J. Rural. Stud. 2020, 79, 169. [Google Scholar] [CrossRef] [PubMed]
- Ancarani, A.; Guccio, C.; Rizzo, I. The role of firms’ qualification in public contracts execution: An empirical assessment. J. Public Procure. 2017, 16, 554–582. [Google Scholar] [CrossRef]
- Mohemad, R.; Noor, N.M.M.; Hamdan, A.R.; Othman, Z.A. A Comprehensive Review of Decision Support Systems in Con-struction Tender Management. Int. J. Civ. Eng. Technol. 2018, 9, 1871. Available online: https://iaemecom/MasterAdmin/Journal_uploads/IJCIET/VOLUME_9_ISSUE_7/IJCIET_09_07_198pdf (accessed on 27 November 2021).
- Sonmez, R.; Sözgen, B. A support vector machine method for bid/no bid decision making. J. Civ. Eng. Manag. 2017, 23, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I. Decision-Support System for Modeling Bid/No-Bid Decision Problem. J. Constr. Eng. Manag. 1990, 116, 595. [Google Scholar] [CrossRef]
- Polat, G.; Bingol, B. Data Envelopment Analysis (DEA) Approach for Making the Bid/No Bid Decision: A Case Study in a Turkish Construction Contracting Company. Sci. Iran. 2017, 24, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.Y.; Hsiang, C.C.; Tsai, H.C.; Do, H.L. Bidding Decision Making for Construction Company Using a Multi-Criteria Prospect Model. J. Civ. Eng. Manag. 2011, 17, 424. [Google Scholar] [CrossRef] [Green Version]
- Wanous, M.; Boussabaine, A.H.; Lewis, J. To bid or not to bid: A parametric solution. Constr. Manag. Econ. 2000, 18, 457–466. [Google Scholar] [CrossRef]
- Wanous, M.; Boussabaine, H.A.; Lewis, J. A neural network bid/no bid model: The case for contractors in Syria. Constr. Manag. Econ. 2003, 21, 737–744. [Google Scholar] [CrossRef]
- Liang, Z.H.; Sun, Y.W.; Yang, K. Study on Incentive Regulation Model of Electricity Distribution and Supply Price Based on the Method of DEA and Malmquist Indices, Zhongguo Dianji Gongcheng Xuebao. Proc. Chin. Soc. Electr. Eng. 2007, 27, 84. [Google Scholar]
- Chu-Chun-Lin, S. Bidding Efficiencies for Rights to Car Ownership in Singapore. Omega 1998, 26, 297. [Google Scholar] [CrossRef]
- Lin, C.T.; Chen, Y.T. Bid/No-Bid Decision-Making-A Fuzzy Linguistic Approach. Int. J. Proj. Manag. 2004, 22, 585. [Google Scholar] [CrossRef]
- Leśniak, A.; Plebankiewicz, E. Modeling the Decision-Making Process Concerning Participation in Construction Bidding. J. Manag. Eng. 2015, 31, 4014032. [Google Scholar] [CrossRef]
- Leśniak, A.; Radziejowska, A. Supporting bidding decision using multi-criteria analysis methods. Procedia Eng. 2017, 208, 76–81. [Google Scholar] [CrossRef]
- Chisala, M.L. Quantitative Bid or No-Bid Decision-Support Model for Contractors. J. Constr. Eng. Manag. 2017, 143, 4017088. [Google Scholar] [CrossRef]
- Egemen, M.; Mohamed, A. SCBMD: A knowledge-based system software for strategically correct bid/no bid and mark-up size decisions. Autom. Constr. 2008, 17, 864–872. [Google Scholar] [CrossRef]
- Ahmad, I.; Minkarah, I. Questionnaire Survey on Bidding in Construction. J. Manag. Eng. 1988, 4, 229–243. [Google Scholar] [CrossRef]
- Ballesteros-Pérez, P.; González-Cruz, M.C.; Cañavate-Grimal, A. On competitive bidding: Scoring and position probability graphs. Int. J. Proj. Manag. 2013, 31, 434–448. [Google Scholar] [CrossRef]
- Bahta, Y.T.; Jordaan, H.; Sabastain, G. Agricultural Management Practices and Factors Affecting Technical Efficiency in Zimbabwe Maize Farming. Agriculture 2020, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, K. AHP versus DEA: A comparative analysis for the gradual improvement of unsustainable suppliers. Benchmark. Int. J. 2020, 27, 2283–2321. [Google Scholar] [CrossRef]
- Munier, N.; Hontoria, E. The Need for Improvement of the MCDM Modeling. In Uses and Limitations of the AHP Method; Management for Professionals; Springer: Cham, Switzerland, 2021; pp. 91–95. [Google Scholar] [CrossRef]
- Cook, W.D.; Tone, K.; Zhu, J. Data envelopment analysis: Prior to choosing a model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Gattoufi, S.; Oral, M.; Reisman, A. A taxonomy for data envelopment analysis. Soc-Econom. Plan. Sci. 2004, 38, 141–158. [Google Scholar] [CrossRef]
- Mengui, K.C.; Oh, S.; Lee, S.H. The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision, Cameroon. Agriculture 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Branco, J.E.H.; Bartholomeu, D.B.; Alves Junior, P.N.; Filho, J.V.C. Mutual analyses of agriculture land use and transportation networks: The future location of soybean and corn production in Brazil. Agric. Syst. 2021, 194, 103264. [Google Scholar] [CrossRef]
- Alves Junior, P.N.; Melo, I.C.; Santos, R.D.M.; da Rocha, F.V.; Caixeta-Filho, J.V. How did COVID-19 affect green-fuel supply chain?–A performance analysis of Brazilian ethanol sector. Res. Transp. Econ. 2021, 101137, 101137. [Google Scholar] [CrossRef]
- Campoli, J.S.; Júnior, P.N.A.; Rossato, F.G.F.D.S.; Rebelatto, D.A.N. The efficiency of Bolsa Familia Program to advance toward the Millennium Development Goals (MDGs): A human development indicator to Brazil. Soc-Econ. Plan. Sci. 2020, 71, 100748. [Google Scholar] [CrossRef]
- Fuchigami, H.Y.; Tuni, A.; Barbosa, L.Q.; Severino, M.R.; Rentizelas, A. Supporting Brazilian smallholder farmers decision making in supplying institutional markets. Eur. J. Oper. Res. 2021, 295, 321–335. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Mariano, E.B.; Sobreiro, V.A.; Rebelatto, D.A.N. Human Development and Data Envelopment Analysis: A Structured Literature Review. Omega 2015, 54, 33–49. [Google Scholar] [CrossRef]
- Kao, C. Efficiency measurement for hierarchical network systems. Omega 2015, 51, 121–127. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- El-Mashaleh, M.S. Decision to bid or not to bid: A data envelopment analysis approach. Can. J. Civ. Eng. 2010, 37, 37–44. [Google Scholar] [CrossRef]
- McCabe, B.; Tran, V.; Ramani, J. Construction prequalification using data envelopment analysis. Can. J. Civ. Eng. 2005, 32, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Leta, F.R.; de Mello, J.C.C.B.S.; Gomes, E.G.; Meza, A.L. Métodos de Melhora de Ordenação Em DEA Aplicados à Avaliação Estática de Tornos Mecânicos. Investig. Oper. 2005, 25, 229. Available online: https://www.researchgate.net/publication/228375009_Metodos_de_melhora_de_ordenacao_em_DEA_aplicados_a_avaliacao_estatica_de_tornos_mecanicos (accessed on 27 November 2021).
- Melo, I.C.; Alves Junior, P.N.; Perico, A.E.; Guzman, M.G.S.; Rebelatto, D.A.N. Benchmarking freight transportation corridors and routes with data envelopment analysis (DEA). Benchmark. Int. J. 2018, 25, 713–742. [Google Scholar] [CrossRef]
- Rentizelas, A.; Melo, I.C.; Alves Junior, P.N.; Campoli, J.S.; Rebelatto, D.A.N. Multi-criteria efficiency assessment of international biomass supply chain pathways using Data Envelopment Analysis. J. Clean. Prod. 2019, 237, 117690. [Google Scholar] [CrossRef]
- Nourbakhsh, S.M.; Bai, Y.; Maia, G.D.; Ouyang, Y.; Rodriguez, L. Grain supply chain network design and logistics planning for reducing post-harvest loss. Biosyst. Eng. 2016, 151, 105–115. [Google Scholar] [CrossRef]
- Melo, I.C.; Alves Junior, P.N.; Kodama, T.K.; da Silva, K.A.; Chimirri, M.W.; Rebelatto, D.A.N. B2C E-Commerce for Home Appliance in The Brazilian Market: A Cost Efficiency Investigation through a DEA-OCT Model. Internext 2020, 15, 72–89. [Google Scholar] [CrossRef] [Green Version]
- INEP. School Census Data [Dados Do Censo Escolar]. Available online: http://portal.inep.gov.br/artigo/-/asset_publisher/B4AQV9zFY7Bv/content/dados-do-censo-escolar-ensino-fundamental-brasileiro-tem-quase-duas-escolas-de-anos-iniciais-para-cada-escola-de-anos-finais/21206 (accessed on 27 November 2021).
- Kleine, D.; Brightwell, M.D.G. Repoliticising and scaling-up ethical consumption: Lessons from public procurement for school meals in Brazil. Geoforum 2015, 67, 135–147. [Google Scholar] [CrossRef]
- Belik, W.; Fornazier, A. Public Policy and the Construction of New Markets to Family Farms: Analyzing the Case of School Meals in São Paulo, Brazil. Adv. Food Secur. Sustain. 2017, 2, 69–86. [Google Scholar] [CrossRef]
- Soares, P.; Martinelli, S.; Davó-Blanes, M.; Fabri, R.; Clemente-Gómez, V.; Cavalli, S. Government Policy for the Procurement of Food from Local Family Farming in Brazilian Public Institutions. Foods 2021, 10, 1604. [Google Scholar] [CrossRef]
- INCRA. Settlements [Assentamentos]. Available online: http://painel.incra.gov.br/sistemas/index.php (accessed on 27 December 2021).
- Yamada, Y.; Matsui, T.; Sugiyama, M. An Inefficiency Measurement Method for Management Systems. J. Oper. Res. Soc. Jpn. 1994, 37, 158–168. [Google Scholar] [CrossRef]
- Taleb, M.; Ramli, R.; Khalid, R. Developing a two-stage approach of super efficiency Slack-Based Measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis. Expert Syst. Appl. 2018, 103, 14–24. [Google Scholar] [CrossRef]
- Adler, N.; Golany, B. PCA-DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2007; pp. 139–153. [Google Scholar] [CrossRef]
- Fang, H.-H.; Lee, H.-S.; Hwang, S.-N.; Chung, C.-C. A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach. Omega 2013, 41, 731–734. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Mariano, E.B.; Rebelatto, D.A.N. Transformation of Wealth Produced into Quality of Life: Analysis of the Social Efficiency of Nation-States with the DEA’s Triple Index Approach. J. Oper. Res. Soc. 2014, 65, 1664. [Google Scholar] [CrossRef]
- Alves Junior, P.N.; Costa Melo, I.; Severino, M.R.; Yamanaka, L.; Tuni, A. A Data Envelopment Approach to Support the Bid/No-Bid Decision of Smallholder Farmers on Public Calls Participation. In Proceedings of the International Joint Conference on Industrial Engineering and Operations Management, IJCIEOM 2019, Novi Sad, Serbia, 15–17 July 2019; pp. 1–7. [Google Scholar]
- Varella, W.A.; Oliveira Neto, G.C.; Sousa, T.B. Adoption of Cleaner Production in a Pupunha Palm Heart Factory: A Systematic Literature Review and a Case Study. Food Sci. Technol. 2021. epub ahead of print. [Google Scholar] [CrossRef]
Town (To.) | School (Sc.) | Product (Pr.) |
---|---|---|
Guapó | State school (SS) Teacher Liodosia | Pineapple, garlic, banana nanica, lettuce, and cassava flour |
State school (SS) José de Assis | Garlic and banana | |
State school (SS) José Feliciano | Pineapple, garlic, banana nanica, and cassava flour | |
Palmeiras de Goiás | State school (SS) Baron of Rio Branco | Pineapple, garlic, banana nanica, lettuce, and cassava flour |
Indiara | State school (SS) of Indiara | Pineapple, garlic, banana nanica, lettuce, and cassava flour |
Nova Veneza | State school (SS) Francisco Alves | Pineapple, banana nanica, and lettuce |
Aparecida de Goiânia | Municipal call (all schools) of Aparecida de Goiânia | Pineapple, garlic, banana nanica, lettuce, and cassava flour |
Pirenópolis | Municipal call (all schools) of Pirenópolis | Pineapple, garlic, banana nanica, lettuce, and cassava flour |
Product Level | School Level | Town Level | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Products | Ef_Std | 1-Ef_Inv | CI | Rank | Schools | Ef_Std | 1-Ef_Inv | CI | Rank | Towns | Ef_Std | 1-Ef_Inv | CI | Rank |
Pineapple | 1 | 0.0001 | 1 | 1 | Municipal call | 2.6740 | 0.00002 | 1 | 1 | Aparecidade Goiânia | 2.6740 | 0.00002 | 1 | 1 |
Garlic | 0.4249 | 0.0002 | 0.7124 | 3 | ||||||||||
Banana nanica | 1 | 0.0001 | 1 | 2 | ||||||||||
Lettuce | 0.392 | 0.0001 | 0.696 | 4 | ||||||||||
Cassava Flour | 0.2527 | 0.0002 | 0.6263 | 5 | ||||||||||
Pineapple | 0.0371 | 0.0015 | 0.5178 | 10 | SS Teacher Liodosia | 0.1526 | 0.00039 | 0.3136 | 3 | Guapó | 0.2895 | 0.00024 | 0.3509 | 2 |
Garlic | 0.0399 | 0.0024 | 0.5188 | 9 | ||||||||||
Banana nanica | 0.0271 | 0.002 | 0.5126 | 13 | ||||||||||
Lettuce | 0.0315 | 0.0019 | 0.5149 | 12 | ||||||||||
Cassava Flour | 0.0214 | 0.0016 | 0.5099 | 14 | ||||||||||
Garlic | 0.0443 | 0.0022 | 0.5211 | 8 | SS José de Assis | 0.0640 | 0.00123 | 0.2893 | 5 | |||||
Banana nanica | 0.0163 | 0.003 | 0.5067 | 16 | ||||||||||
Pineapple | 0.0071 | 0.0053 | 0.5009 | 20 | SS José Feliciano | 0.06096 | 0.00107 | 0.2885 | 6 | |||||
Garlic | 0.0172 | 0.0049 | 0.5061 | 17 | ||||||||||
Banana nanica | 0.0184 | 0.0027 | 0.5079 | 15 | ||||||||||
Cassava Flour | 0.0058 | 0.0039 | 0.5009 | 19 | ||||||||||
Pineapple | 0.008 | 0.0033 | 0.5024 | 18 | Municipal call | 0.2260 | 0.00022 | 0.3337 | 2 | Pirenópolis | 0.2260 | 0.00022 | 0.3337 | 3 |
Garlic | 0.1038 | 0.0005 | 0.5517 | 6 | ||||||||||
Banana naninca | 0.0694 | 0.0007 | 0.5344 | 7 | ||||||||||
Lettuce | 0.0028 | 0.0038 | 0.4995 | 21 | ||||||||||
Cassava Flour | 0.0313 | 0.0009 | 0.5152 | 11 | ||||||||||
Pineapple | 0.0209 | 0.0364 | 0.4923 | 25 | SS of Indiara | 0.0848 | 0.0101 | 0.2925 | 4 | Indiara | 0.0848 | 0.0101 | 0.2925 | 4 |
Garlic | 0.0206 | 0.0383 | 0.4911 | 26 | ||||||||||
Banana nanica | 0.0106 | 0.0641 | 0.4733 | 28 | ||||||||||
Lettuce | 0.0187 | 0.0396 | 0.4896 | 27 | ||||||||||
Cassava Flour | 0.0088 | 0.0765 | 0.4662 | 29 | ||||||||||
Pineapple | 0.0046 | 0.0071 | 0.4988 | 22 | SS Francisco Alves | 0.0184 | 0.0028 | 0.2764 | 7 | Nova Veneza | 0.0184 | 0.0028 | 0.2764 | 5 |
Banana nanica | 0.0034 | 0.0079 | 0.4978 | 23 | ||||||||||
Lettuce | 0.0015 | 0.0105 | 0.4955 | 24 | ||||||||||
Pineapple | 0.0051 | 1 | 0.0025 | 33 | SS Baron of Rio Branco | 0.0501 | 0.1285 | 0.2508 | 8 | Palmeiras de Goiás | 0.0501 | 0.1285 | 0.2508 | 6 |
Garlic | 0.0129 | 1 | 0.0065 | 31 | ||||||||||
Banana nanica | 0.024 | 0.2642 | 0.3799 | 30 | ||||||||||
Lettuce | 0.0055 | 1 | 0.0028 | 32 | ||||||||||
Cassava Flour | 0 | 1 | 0 | 34 |
Product Level | School Level | Town Level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ranks | Profit | Ranks | Profit | Ranks | Profit | ||||||
Products | CI | Profit | Value | Schools | CI | Profit | Value | Towns | CI | Profit | Value |
Pineapple | 1 | 1 | 22,481.25 | Municipal call | 1 | 1 | 61001.25 | Aparecida de Goiânia | 1 | 1 | 61,080 |
Garlic | 3 | 3 | 9061.25 | ||||||||
Banana nanica | 2 | 2 | 18,641.25 | ||||||||
Lettuce | 4 | 4 | 7421.25 | ||||||||
Cassava Flour | 5 | 5 | 3081.25 | ||||||||
Pineapple | 10 | 13 | 410.3 | SS Teacher Liodosia | 3 | 3 | 2058.3 | Guapó | 2 | 3 | 3646.07 |
Garlic | 9 | 9 | 488.3 | ||||||||
Banana nanica | 13 | 17 | 300 | ||||||||
Lettuce | 12 | 11 | 436.2 | ||||||||
Cassava Flour | 14 | 19 | 213.5 | ||||||||
Garlic | 8 | 8 | 543 | SS José de Assis | 5 | 6 | 775.47 | ||||
Banana nanica | 16 | 24 | 179.97 | ||||||||
Pineapple | 20 | 29 | 78.7 | SS José Feliciano | 6 | 7 | 707.3 | ||||
Garlic | 17 | 21 | 210.1 | ||||||||
Banana nanica | 15 | 22 | 203.5 | ||||||||
Cassava Flour | 19 | 31 | 57.5 | ||||||||
Pineapple | 18 | 23 | 190 | Municipal call | 2 | 2 | 5439 | Pirenópolis | 3 | 2 | 5628 |
Garlic | 6 | 6 | 2327 | ||||||||
Banana nanica | 7 | 7 | 1719 | ||||||||
Lettuce | 21 | 32 | 55 | ||||||||
Cassava Flour | 11 | 14 | 392 | ||||||||
Pineapple | 25 | 12 | 418 | SS of Indiara | 4 | 4 | 1739.8 | Indiara | 4 | 4 | 1788.8 |
Garlic | 26 | 14 | 392 | ||||||||
Banana nanica | 28 | 20 | 212 | ||||||||
Lettuce | 27 | 16 | 374 | ||||||||
Cassava Flour | 29 | 25 | 147.8 | ||||||||
Pineapple | 22 | 28 | 92.87 | SS Francisco Alves | 7 | 8 | 371.87 | Nova Veneza | 5 | 6 | 462 |
Banana nanica | 23 | 30 | 68.87 | ||||||||
Lettuce | 24 | 33 | 29.87 | ||||||||
Pineapple | 33 | 27 | 98.75 | SS Baron of Rio Branco | 8 | 5 | 984.85 | Palmeiras de Goiás | 6 | 5 | 1007.6 |
Garlic | 31 | 18 | 239.85 | ||||||||
Banana nanica | 30 | 10 | 467.25 | ||||||||
Lettuce | 32 | 26 | 110.75 | ||||||||
Cassava Flour | 34 | 34 | −22.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves Junior, P.N.; Costa Melo, I.; Yamanaka, L.; Severino, M.R.; Rentizelas, A. Supporting the Bidding Decisions of Smallholder Farmers in Public Calls in Brazil. Agriculture 2022, 12, 48. https://doi.org/10.3390/agriculture12010048
Alves Junior PN, Costa Melo I, Yamanaka L, Severino MR, Rentizelas A. Supporting the Bidding Decisions of Smallholder Farmers in Public Calls in Brazil. Agriculture. 2022; 12(1):48. https://doi.org/10.3390/agriculture12010048
Chicago/Turabian StyleAlves Junior, Paulo Nocera, Isotilia Costa Melo, Lie Yamanaka, Maico Roris Severino, and Athanasios Rentizelas. 2022. "Supporting the Bidding Decisions of Smallholder Farmers in Public Calls in Brazil" Agriculture 12, no. 1: 48. https://doi.org/10.3390/agriculture12010048
APA StyleAlves Junior, P. N., Costa Melo, I., Yamanaka, L., Severino, M. R., & Rentizelas, A. (2022). Supporting the Bidding Decisions of Smallholder Farmers in Public Calls in Brazil. Agriculture, 12(1), 48. https://doi.org/10.3390/agriculture12010048