Interaction and Coupling Mechanism between Recessive Land Use Transition and Food Security: A Case Study of the Yellow River Basin in China
Abstract
:1. Introduction
2. Theoretical Framework
3. Data Sources and Methods
3.1. Study Area
3.2. Data Sources
3.3. Methods
3.3.1. The Evaluation Index System
3.3.2. The Entropy Method
3.3.3. The Improved Coupling Coordination Degree Model (ICCDM)
3.3.4. The Spatial Autocorrelation Model
3.3.5. The Geographic Detector Model
4. Results
4.1. Evolution Characteristics of RLUT and FS
4.1.1. Evolution Characteristics of RLUT
4.1.2. Evolution Characteristics of FS
4.2. Coupling Coordination Degree between RLUT and FS
4.2.1. Temporal Evolution Characteristics of the CCD
4.2.2. Spatial Evolution Characteristics of the CCD
4.3. Coupling and Coordination Mechanism of RLUT and FS
5. Discussion
5.1. The Influence of RLUT on FS
5.2. Effects of Different Factors on the CCD of RLUT and FS
5.3. Policy Implications and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-Use Choices: Balancing Human Needs and Ecosystem Function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Long, H.; Li, X. Analysis on regional land use transition: A case study in transect of the Yangtze River. J. Nat. Resour. 2002, 17, 144–149. [Google Scholar]
- Long, H. Land use transition and rural transformation development. Prog. Geogr. 2012, 31, 131–138. [Google Scholar]
- Foley, J.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zeng, S.; Zhang, Z.; Zhu, F.; Xu, T.; Zhang, S. The effect of rural land consolidation on rural transformation: A case study of whole village restructuring program in Jiangsu Province. China Land Sci. 2018, 32, 50–58. [Google Scholar]
- Jadin, I.; Meyfroidt, P.; Lambin, E.F. International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition. Environ. Res. Lett. 2016, 11, 035005. [Google Scholar] [CrossRef]
- Meyfroidt, P. Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions. Glob. Food Secur. 2018, 16, 9–16. [Google Scholar] [CrossRef]
- Long, H.; Chen, K. Urban-rural integrated development and land use transitions: A perspective of land system science. Acta Geogr. Sin. 2021, 76, 295–309. [Google Scholar]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agr. Econ. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
- Fischer, A.; Eastwood, A. Coproduction of ecosystem services as human–nature interactions—An analytical framework. Land Use Policy 2016, 52, 41–50. [Google Scholar] [CrossRef]
- Ma, E.; Cai, J.; Lin, J.; Guo, H.; Han, Y.; Liao, L. Spatio-temporal evolution of global food security pattern and its influencing factors in 2000–2014. Acta Geogr. Sin. 2020, 75, 332–347. [Google Scholar]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat. Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Long, H.; Heilig, G.; Li, X.; Zhang, M. Socio-economic development and land-use change: Analysis of rural housing land transition in the Transect of the Yangtse River, China. Land Use Policy 2007, 24, 141–153. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Song, X. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487. [Google Scholar]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Song, X.Q.; Huang, Y.; Wu, Z.F.; Ouyang, Z. Does cultivated land function transition occur in China? J. Geogr. Sci. 2015, 25, 817–835. [Google Scholar] [CrossRef]
- Hu, S.; Tong, L.; Long, H. Land use transition potential and its assessment framework. Geogr. Res.-Aust. 2019, 38, 1367–1377. [Google Scholar]
- Ferreira, M.P.; Alves, D.S.; Shimabukuro, Y.E. Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: The case of sugarcane expansion. Reg. Environ. Chang. 2015, 15, 365–377. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H. Land use transitions and their dynamic mechanism in the Huang-Huai-Hai Plain. Acta Geogr. Sin. 2016, 71, 666–679. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.; Zia, A.; Koliba, C.; Bucini, G.; Guilbert, J.; Beckage, B. An interactive land use transition agent-based model (ILUTABM): Endogenizing human-environment interactions in the Western Missisquoi Watershed. Land Use Policy 2015, 49, 161–176. [Google Scholar] [CrossRef]
- Nourqolipour, R.; Shariff, A.R.B.M.; Balasundram, S.K.; Ahmad, N.B.; Sood, A.M.; Buyong, T. Predicting the Effects of Urban Development on Land Transition and Spatial Patterns of Land Use in Western Peninsular Malaysia. Appl. Spat. Anal. Policy 2016, 9, 1–19. [Google Scholar] [CrossRef]
- Yin, D.; Li, X.; Li, G.; Zhang, J.; Yu, H. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River Basin, China. Land 2020, 9, 514. [Google Scholar] [CrossRef]
- Nizalov, D.; Thornsbury, S.; Loveridge, S.; Woods, M.; Zadorozhna, O. Security of property rights and transition in land use. J. Comp. Econ. 2016, 44, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Long, H. Spatial differentiation of the recessive morphology of urban land use and its influential factors: A case study of 289 prefecture-level cities in China. Econ. Geogr. 2016, 36, 1–8. [Google Scholar]
- Kong, D.; Chen, H. Spatio-temporal patterns of land use transitions and related influencing factors—Comparative analysis based on three counties of north, middle and south Jiangsu province, China. Chin. J. Soil Sci. 2020, 51, 300–307. [Google Scholar]
- Tateishi, H.R.; Bragagnolo, C.; Almeida, A.N.D. Forest, agriculture and land conversion: Environmental efficiency in Brazilian Amazon rainforest. For. Policy Econ. 2021, 133, 102615. [Google Scholar] [CrossRef]
- Grainger, A. National land use morphology: Patterns and possibilities. Geography 1995, 3, 235–245. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, F.; Zhang, L.; Li, H. Dynamic of Farmland Landscape and Its Socioeconomic Driving Forces in the Middle Reaches of the Heihe River. Sci. Geogr. Sin. 2017, 37, 920–928. [Google Scholar]
- Tu, X.S.; Sun, Q.R.; Xu, G.L.; Wu, X.F. Functional transformation of rural homesteads: A field survey of poyang county, Jiangxi Province, China. J. Resour. Ecol. 2021, 12, 214–224. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, J. The Spatio-Temporal Pattern, Driving Forces and Transformation Mode of Inter-provincial Recessive Land Use Morphology in China. China Land Sci. 2017, 31, 60–68. [Google Scholar]
- Ge, D.; Long, H.; Tu, S.; Zhang, Y. Coupling relationship between land use transitions and grain yield in Huang-Huai-Hai Plain, China. J. Agric. Resour. Environ. 2017, 34, 319–327. [Google Scholar]
- Skaf, L.; Buonocore, E.; Dumontet, S.; Capone, R.; Franzese, P.P. Applying network analysis to explore the global scientific literature on food security. Ecol. Inform. 2020, 56, 101062. [Google Scholar] [CrossRef]
- Al-Ansari, T.; Korre, A.; Nie, Z.; Shah, N. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustain. Prod. Consum. 2015, 2, 52–66. [Google Scholar] [CrossRef]
- Lu, D.; Sun, D. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion. Acta Geogr. Sin. 2019, 74, 2431–2436. [Google Scholar]
- Lu, X.; Qu, Y.; Sun, P.; Yu, W.; Peng, W. Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- de Grenade, R.; House-Peters, L.; Scott, C.A.; Thapa, B.; Mills-Novoa, M.; Gerlak, A.; Verbist, K. The nexus: Reconsidering environmental security and adaptive capacity. Curr. Opin. Environ. Sust. 2016, 21, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Miao, C. Spatiotemporal changes and driving forces of land use in the Yellow River Basin. Resour. Sci. 2020, 42, 460–473. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Ma, T. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy 2010, 27, 313–323. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2021, 806, 150718. [Google Scholar] [CrossRef]
- Song, J.; Chen, S. Coupling relationship and coordination between recessive land use morphology and land eco-security in Fujian province. Res. Soil Water Conserv. 2020, 27, 301–307. [Google Scholar]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Internet use help reduce rural cropland abandonment? Evidence from China. Land Use Policy 2019, 89, 104243. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, Y. Coupling and coordination between new urbanization and agricultural modernization in Central China. J. Nat. Resour. 2021, 36, 702–721. [Google Scholar] [CrossRef]
- Luo, H.; Yu, Z.; Zou, N. The empirical study on the spatial coupling of ecology and food security in major grain-producing areas in China. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 32–39. [Google Scholar]
- Zhao, J.; Liu, Y.; Zhu, Y.; Qin, S.; Wang, Y.; Miao, C. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. [Google Scholar] [CrossRef]
- Bian, Z.; Yu, H.; Lei, S.; Yin, D.; Zhu, G.; Mu, S.; Yang, D. Strategic consideration of exploitation on coal resources and its ecological restoration in the Yellow River Basin, China. J. China Coal Soc. 2021, 46, 1378–1391. [Google Scholar]
- Liu, X.; Zhang, Y.; Leng, X.; Yang, Q.; Chen, H.; Wang, X.; Cui, N. Exploring the optimisation of mulching and irrigation management practices for mango production in a dry hot environment based on the entropy weight method. Sci. Hortic.-Amst. 2022, 291, 110564. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.; Sun, F. Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China’s province. Ecol. Model. 2021, 462, 109794. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, X.; Jin, Z.; Wang, L.; Wang, Y. Spatiotemporal differentiation and influencing mechanism of urban land development intensity in the Yangtze River Delta. Resour. Sci. 2020, 42, 723–734. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
- Guo, F.; Tong, L.; Qiu, F.; Li, Y. Spatio-temporal differentiation characteristics and influencing factors of green development in the eco-economic corridor of the Yellow River Basin. Acta Geogr. Sin. 2021, 76, 726–739. [Google Scholar]
- Ma, L.; Cheng, J.; Cheng, J.; Fei, L. Analysis of the influencing factors for recessive transformation of land use. China Land Sci. 2019, 33, 81–90. [Google Scholar]
- Yu, H.; Zeng, S.; Wang, Q.; Dai, J.; Bian, Z.; Chen, F. Forecast on China’s cultivated land protection baseline in the new era by multi-scenario simulations. Resour. Sci. 2021, 43, 1222–1233. [Google Scholar]
- Fang, C. Spatial Organization Pattern and High-Quality Development of Urban Agglomeration in the Yellow River Basin. Econ. Geogr. 2020, 40, 1–8. [Google Scholar] [CrossRef]
- Wang, Y. Changes Unseen in a Century, High-Quality Development, and the Construction of a New Development Pattern. Manag. World 2020, 36, 1–13. [Google Scholar]
- Chen, F.; Yu, H.; Bian, Z.; Yin, D. How to handle the crisis of coal industry in China under the vision of carbon neutrality. J. China Coal Soc. 2021, 46, 1808–1820. [Google Scholar]
- Zhang, Y.; Zhang, C.B.; Wang, Z.Q.; Chen, Y.Z.; Gang, C.C.; An, R.; Li, J.L. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef] [PubMed]
Target Layer | Criterion Layer | Index Layer | Unit | Direction | Weight |
Recessive land use transition (RLUT) | Factor input | Investment in fixed assets per capita | 104 yuan/km2 | + | 0.1566 |
Land average agricultural employees | People/km2 | + | 0.1076 | ||
Average amount of chemical fertilizer application | kg/hm2 | + | 0.0500 | ||
Proportion of effective irrigated area | % | + | 0.0456 | ||
Land average use of agricultural machinery | 103 w/hm2 | + | 0.0381 | ||
Output benefit | GDP per capita | 104 yuan/km2 | + | 0.1368 | |
Output value of secondary and tertiary industries per capita | 104 yuan/km2 | + | 0.1424 | ||
Gross agricultural output value per capita | 104 yuan/km2 | + | 0.1135 | ||
Utilization intensity | Multiple crop index | % | + | 0.0160 | |
Population density | People/km2 | + | 0.0723 | ||
Ground average energy consumption | t standard coal/km2 | + | 0.1210 |
Target Layer | Criterion Layer | Index Layer | Unit | Direction | Weight |
Food security (FS) | Production safety | Per capita grain output | kg/people | + | 0.1284 |
Per capita cultivated land area | hm2/people | + | 0.1607 | ||
Per capita meat output | kg/people | + | 0.0289 | ||
Consumption safety | Engel coefficient of rural residents | % | − | 0.0242 | |
Grain consumer price index | − | 0.0852 | |||
Per capita net income of farmers | Yuan/people | + | 0.2676 | ||
Circulation security | Change of grain circulation cost | − | 0.1757 | ||
Grain self-sufficiency rate | % | + | 0.1284 |
Class | Evaluation | Classes |
---|---|---|
Primary division of development stages | Value range | Secondary division of development stages |
Unbalanced development | (0.00, 0.45) | Serious imbalance |
(0.45, 0.50) | Moderate imbalance | |
Transitional development | (0.50, 0.55) | Near imbalance |
(0.55, 0.60) | Basic coordination | |
Balanced development | (0.60, 0.70) | Moderate coordination |
(0.70, 1.00) | High coordination |
Category | Influence Factor | Variable | Factor Interpretation |
---|---|---|---|
Natural environment | Temperature | x1 | Average annual temperature |
Precipitation | x2 | Average annual precipitation | |
Elevation | x3 | Average elevation | |
Population growth | Urbanization rate | x4 | Proportion of resident urban population |
Population density | x5 | Number of people living on land per unit area | |
Industrial upgrading | Development of tertiary industry | x6 | Ratio of the output value of the tertiary industry to the GDP |
Economic development | GDP | x7 | Total per capita GDP of the whole city |
Government regulation and control | Expenditure | x8 | Total financial expenditure of the whole city |
Technological progress | Science and technology expenditure | x9 | Science and technology expenditure of the whole city |
Domain Segment | AT | AP | AE | UR | PD | TIR | GDP | FE | STE |
---|---|---|---|---|---|---|---|---|---|
B | A↘ | B↘ | A↘ | C↗ | A↗ | C↗ | B↗ | B↗ | B↗ |
U | C↘ | C↘ | C↘ | B↗ | A↗ | B↗ | A↗ | B↘ | B↗ |
M | B↘ | C↗ | C↘ | B↘ | A↗ | B↗ | B↗ | C↘ | A↗ |
D | C↘ | C↘ | C↘ | C↗ | A↗ | B↗ | C↘ | B↘ | C↗ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Yu, H.; Ma, J.; Liu, J.; Liu, G.; Chen, F. Interaction and Coupling Mechanism between Recessive Land Use Transition and Food Security: A Case Study of the Yellow River Basin in China. Agriculture 2022, 12, 58. https://doi.org/10.3390/agriculture12010058
Yin D, Yu H, Ma J, Liu J, Liu G, Chen F. Interaction and Coupling Mechanism between Recessive Land Use Transition and Food Security: A Case Study of the Yellow River Basin in China. Agriculture. 2022; 12(1):58. https://doi.org/10.3390/agriculture12010058
Chicago/Turabian StyleYin, Dengyu, Haochen Yu, Jing Ma, Junna Liu, Gangjun Liu, and Fu Chen. 2022. "Interaction and Coupling Mechanism between Recessive Land Use Transition and Food Security: A Case Study of the Yellow River Basin in China" Agriculture 12, no. 1: 58. https://doi.org/10.3390/agriculture12010058
APA StyleYin, D., Yu, H., Ma, J., Liu, J., Liu, G., & Chen, F. (2022). Interaction and Coupling Mechanism between Recessive Land Use Transition and Food Security: A Case Study of the Yellow River Basin in China. Agriculture, 12(1), 58. https://doi.org/10.3390/agriculture12010058