Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Sites
2.2. Growth Degree Day
2.3. Model Development
2.3.1. Artificial Neural Network (ANN)
2.3.2. Gene-Expression Programming (GEP)
2.3.3. Simple Regression Model (REG)
2.4. Model Assessment
3. Results
3.1. Rice Growth Predicted by Growth Degree Day
3.2. Model Results
3.3. Model Performance Evaluation
4. Discussion
4.1. Lifecycle vs. Stage Average vs. Specific Key Stage
4.2. Model Applicability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar]
- Orlando, F.; Alali, S.; Vaglia, V.; Pagliarino, E.; Bacenetti, J.; Bocchi, S. Participatory approach for developing knowledge on organic rice farming: Management strategies and productive performance. Agric. Syst. 2020, 178, 102739. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, Y.; Huang, S.; Zhao, Y. Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers. Sci. Total Environ. 2018, 615, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Assefa, Y.; Yadav, S.; Mondal, M.K.; Bhattacharya, J.; Parvin, R.; Sarker, S.R.; Rahman, M.; Sutradhar, A.; Prasad, P.V.; Bhandari, H. Crop diversification in rice-based systems in the polders of Bangladesh: Yield stability, profitability, and associated risk. Agric. Syst. 2021, 187, 102986. [Google Scholar] [CrossRef]
- Perea, R.G.; Daccache, A.; Díaz, J.R.; Poyato, E.C.; Knox, J.W. Modelling impacts of precision irrigation on crop yield and in-field water management. Precis. Agric. 2018, 19, 497–512. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1–35. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Manila, Philippines, 1981. [Google Scholar]
- Wang, W.G.; Peng, S.Z.; Sun, F.C.; Xing, W.Q.; Luo, Y.F.; Xu, J.Z. Spatiotemporal variations of rice irrigation water requirements in the mid-lower reaches of Yangtze River under changing climate. Adv. Water Sci. 2012, 23, 656–664. [Google Scholar]
- Yao, M.-H.; Chen, S.-H. The impact evaluation of climate change on the growth and yield of rice. Crop Environ. Bioinform. 2009, 6, 141–156. [Google Scholar]
- Hsu, H.-H.; Chen, C.-T. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 2002, 79, 87–104. [Google Scholar] [CrossRef]
- Sharifi, P.; Aminpanah, H.; Erfani, R.; Mohaddesi, A.; Abbasian, A. Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Sci. 2017, 24, 173–180. [Google Scholar] [CrossRef]
- Frizzell, D.; Branson, J.; Wilson, C., Jr.; Norman, R.; Moldenhauer, K.; Gibbons, J. Development of Degree-Day 50 thermal unit thresholds for new rice cultivars. BR Wells Rice Res. Ser.-Ark. Agric. Exp. Stn. Univ. Ark. 2011, 591, 187–193. [Google Scholar]
- Counce, P.; Siebenmorgen, T.; Ambardekar, A. Rice reproductive development stage thermal time and calendar day intervals for six US rice cultivars in the Grand Prairie, Arkansas, over 4 years. Ann. Appl. Biol. 2015, 167, 262–276. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Kropff, M.J.; Tuong, T.P.; Wopereis, M.; ten Berge, H.F.M.; van Laar, H.H. ORYZA2000: Modeling Lowland Rice; International Rice Research Institute and Wageningen University and Research Centre: Manila, Philippines, 2001. [Google Scholar]
- Hoogenboom, G.; Porter, C.; Shelia, V.; Boote, K.; Singh, U.; White, J.; Hunt, L.; Ogoshi, R.; Lizaso, J.; Koo, J. Decision Support System for Agrotechnology Transfer (DSSAT); Version 4.7; DSSAT Foundation: Gainesville, FL, USA, 2017; Available online: https://DSSAT.net (accessed on 14 May 2021).
- Bonhomme, R. Bases and limits to using ‘degree. day’units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Shaykewich, C. An appraisal of cereal crop phenology modelling. Can. J. Plant Sci. 1995, 75, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Stuerz, S.; Shrestha, S.P.; Schmierer, M.; Vu, D.H.; Hartmann, J.; Sow, A.; Razafindrazaka, A.; Abera, B.B.; Chuma, B.A.; Asch, F. Climatic determinants of lowland rice development. J. Agron. Crop Sci. 2020, 206, 466–477. [Google Scholar] [CrossRef]
- Van Oort, P.; Saito, K.; Tanaka, A.; Amovin-Assagba, E.; Van Bussel, L.; Van Wart, J.; De Groot, H.; Van Ittersum, M.; Cassman, K.; Wopereis, M. Assessment of rice self-sufficiency in 2025 in eight African countries. Glob. Food Secur. 2015, 5, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tao, F. Improving rice development and phenology prediction across contrasting climate zones of China. Agric. For. Meteorol. 2019, 268, 224–233. [Google Scholar] [CrossRef]
- Ruml, M.; Vuković, A.; Milatović, D. Evaluation of different methods for determining growing degree-day thresholds in apricot cultivars. Int. J. Biometeorol. 2010, 54, 411–422. [Google Scholar] [CrossRef]
- Gandhi, N.; Petkar, O.; Armstrong, L.J. Rice crop yield prediction using artificial neural networks. In Proceedings of the 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 15–16 July 2016; pp. 105–110. [Google Scholar]
- Traore, S.; Zhang, L.; Guven, A.; Fipps, G. Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel. Agric. Water Manag. 2020, 239, 106242. [Google Scholar] [CrossRef]
- Liu, L.-W.; Hsieh, S.-H.; Lin, S.-J.; Wang, Y.-M.; Lin, W.-S. Rice blast (magnaporthe oryzae) occurrence prediction and the key factor sensitivity analysis by machine learning. Agronomy 2021, 11, 771. [Google Scholar] [CrossRef]
- Killenga, S.; Chuwa, C.; Mvukiye, N.; Zakayo, J.; Paul, I.; Kimaro, D. Rice Production Manual; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2020. [Google Scholar]
- Liu, Y.; Zhu, X.; He, X.; Li, C.; Chang, T.; Chang, S.; Zhang, H.; Zhang, Y. Scheduling of nitrogen fertilizer topdressing during panicle differentiation to improve grain yield of rice with a long growth duration. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Counce, P.A.; Keisling, T.C.; Mitchell, A.J. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 2000, 40, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Taiwan Central Geological Survey. Soil Profile Data, V.3.0; National Geological Data Warehouse; Ministry of Economic Affairs: New Taipei City, Taiwan, 2011. Available online: https://gis3.moeacgs.gov.tw (accessed on 14 February 2020).
- Gao, L.; Jin, Z.; Li, L. Photo-thermal models of rice growth duration for various varietal types in China. Agric. For. Meteorol. 1987, 39, 205–213. [Google Scholar] [CrossRef]
- Gao, L.; Jin, Z.; Huang, Y.; Chen, H.; Li, B. Rice Cultivational Simulation-Optimization-Decision Making System (RCSODS); China Agricultural Scientech Press: Beijing, China, 1992. [Google Scholar]
- Lin, K.H. Study on Using Heat Unit to Construct the Cultivation Calendar of Main Growth Stages in Rice (Oryza sativa L.); National Pingtung University of Science and Technology: Pingtung, Taiwan, 2019. [Google Scholar]
- Zhang, T.; Zhu, J.; Yang, X. Non-stationary thermal time accumulation reduces the predictability of climate change effects on agriculture. Agric. For. Meteorol. 2008, 148, 1412–1418. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. Complex Syst. 2001, 13, 87–129. [Google Scholar]
- Ferreira, C. Gene expression programming in problem solving. In Soft Computing and Industry; Springer: Berlin/Heidelberg, Germany, 2002; pp. 635–653. [Google Scholar]
- Liu, L.-W.; Ma, X.; Wang, Y.-M.; Lu, C.-T.; Lin, W.-S. Using artificial intelligence algorithms to predict rice (Oryza sativa L.) growth rate for precision agriculture. Comput. Electron. Agric. 2021, 187, 106286. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, F.; Zhang, Z. Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China. Eur. J. Agron. 2017, 87, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Ullah, H.; Ferdous, Z. Water management in rice. In Rice Production Worldwide; Springer: Berlin/Heidelberg, Germany, 2017; pp. 255–277. [Google Scholar]
- Fukao, T.; Harris, T.; Bailey-Serres, J. Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice. Ann. Bot. 2009, 103, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Wilson, L. Growth and yield response of rice to rice water weevil injury. Environ. Entomol. 1997, 26, 1191–1201. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Ren, T.; Hussain, S.; Guo, C.; Wang, S.; Cong, R.; Li, X. Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants 2017, 9, plx012. [Google Scholar] [CrossRef] [PubMed]
Stages | GDD | RMSE | |
---|---|---|---|
°C | Gr | 1/Gr (Days) | |
Stage 1 | 308.4 | 0.1234 | 1.9531 |
Stage 2 | 915.7 | 0.1469 | 4.3970 |
Stage 3 | 1442.3 | 0.2791 | 6.8260 |
Stage 4 | 2192.5 | 0.3199 | 11.8907 |
Indices | ANN | GEP | REG |
---|---|---|---|
r | 0.9901 *** | 0.9896 *** | 0.9829 *** |
RMSE | 0.1573 | 0.1591 | 0.2043 |
r-RMSE | 7.21% | 7.30% | 9.37% |
Period | Gr | 1/Gr | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | RMSE | r-RMSE | RMSE (Days) | |||||||||
ANN | GEP | REG | ANN | GEP | REG | ANN | GEP | REG | ANN | GEP | REG | |
Lifecycle | 0.9893‡ | 0.9893 | 0.9812 | 0.1614 | 0.1597 | 0.2117 | 7.32% | 7.24% | 9.60% | 3.8709 | 3.8300 | 5.0776 |
Stage 1 average | 0.9119 | 0.9131 | 0.8969 | 0.1274 | 0.1271 | 0.2464 | 24.06% | 24.00% | 46.52% | 2.0144 | 2.0091 | 3.8951 |
Stage 2 average | 0.9430 | 0.9380 | 0.9441 | 0.1116 | 0.1165 | 0.1154 | 7.36% | 7.69% | 7.61% | 3.3434 | 3.4914 | 3.4572 |
Stage 3 average | 0.8683 | 0.8678 | 0.8624 | 0.1747 | 0.1777 | 0.1784 | 6.93% | 7.05% | 7.08% | 4.2685 | 4.3426 | 4.3604 |
Stage 4 average | 0.8045 | 0.8064 | 0.8163 | 0.2025 | 0.1929 | 0.2803 | 5.76% | 5.49% | 7.98% | 7.5393 | 7.1816 | 10.4375 |
Gr = 1 | - | - | - | 0.1546 | 0.1685 | 0.1237 | 15.47% | 16.85% | 12.37% | 2.4451 | 2.6644 | 1.9561 |
Gr = 2 | - | - | - | 0.1478 | 0.1618 | 0.1475 | 7.39% | 8.09% | 7.38% | 4.4288 | 4.8465 | 4.4199 |
Gr = 3 | - | - | - | 0.2377 | 0.2293 | 0.2807 | 7.92% | 7.64% | 9.36% | 5.8098 | 5.6030 | 6.8610 |
Gr = 4 | - | - | - | 0.2462 | 0.2266 | 0.3212 | 6.16% | 5.66% | 8.03% | 9.1691 | 8.3846 | 11.9623 |
Model | Lifecycle | Stage Average | Specific Key Stage | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Gr = 1 | Gr = 2 | Gr = 3 | Gr = 4 | ||
ANN | 23.77% | 48.28% | 3.29% | 2.11% | 27.77% | −25.00% | 1.20% | 15.32% | 23.35% |
GEP | 24.57% | 48.42% | −0.99% | 0.41% | 31.19% | −36.22% | −9.65% | 18.34% | 29.91% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.-W.; Lu, C.-T.; Wang, Y.-M.; Lin, K.-H.; Ma, X.; Lin, W.-S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture 2022, 12, 59. https://doi.org/10.3390/agriculture12010059
Liu L-W, Lu C-T, Wang Y-M, Lin K-H, Ma X, Lin W-S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture. 2022; 12(1):59. https://doi.org/10.3390/agriculture12010059
Chicago/Turabian StyleLiu, Li-Wei, Chun-Tang Lu, Yu-Min Wang, Kuan-Hui Lin, Xingmao Ma, and Wen-Shin Lin. 2022. "Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms" Agriculture 12, no. 1: 59. https://doi.org/10.3390/agriculture12010059
APA StyleLiu, L. -W., Lu, C. -T., Wang, Y. -M., Lin, K. -H., Ma, X., & Lin, W. -S. (2022). Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture, 12(1), 59. https://doi.org/10.3390/agriculture12010059