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Abstract: Protection of plants against herbivorous pests is an important aspect that guarantees
agricultural efficiency, i.e., food provision to populations. Environmental, water and foodstuff
pollution by toxic pesticides, along with climate changes, highlight the necessity to achieve intensive
development of ecologically safe methods of herbivory control. This review discusses modern
methods of plant protection against insect pests: the biofortification of plants with selenium, treatment
of plants with bulk and nano-silicon, and utilization of garlic extracts. The peculiarities of such
methods of defense are described in relation to growth stimulation as well as increasing the yield and
nutritional value of products. Direct defense methods, i.e., mechanical, hormonal, through secondary
metabolites and/or mineral element accumulation, and indirect defense via predator attraction are
discussed. Examples of herbivorous pest control during plant growth and grain/seed storage are
emphasized. A comparison of sodium selenate, silicon containing fertilizer (Siliplant) and garlic
extract efficiency is analyzed on Raphanus sativus var. lobo infested with the cruciferous gall midge
Contarinia nasturtii, indicating the quick annihilation of pests as a result of the foliar application of
garlic extract or silicon-containing fertilizer, Siliplant.

Keywords: herbivory; selenium; silicon; garlic extracts

1. Introduction

Approximately 40% of crop harvest is lost every year due to herbivory attacks, dis-
eases, weeds and grain infestation [1–3]. Insect pests are known not only to decrease plant
growth and development, causing crop death in extreme cases, but also to act as vectors
of pathogens [4]. These facts result not only in great economical losses but also stimulate
insecticide production, thus increasing the pollution of the environment, water and food
products with toxic compounds. At present, worldwide insecticide production reaches
more than 3 million tons per year. Russian statistics reveal that, during 2016–2020, the
production of these compounds increased by 1.8 times and reached 131 thousand tons.
Taking into account that insect activity is directly affected by temperature as they are poik-
ilothermic organisms, a temperature increase will induce increased herbivory occurrence
in agricultural crops in the near future, a phenomenon connected with the increase in
reproduction, survival and geographical expansion [5,6]. These facts highlight the urgent
necessity to revise the existing methods of pest control, abandon the utilization of chemical
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insecticides and develop new, safe and highly efficient methods of plant protection against
herbivory [7]. In this respect, the utilization of environmentally friendly pesticides, such
as essential oils, plant extracts, special microelements demonstrating growth stimulation
effects and inert powders, may become the main method of herbivory control.

To be successful against herbivorous pests, natural plant defense should be encouraged,
in order to develop ecologically safe and highly efficient methods of crop protection
(Figure 1) [4,8,9]. Apart from mimicry (mimosa) and endophytes (mutualistic fungi), four
approaches may be enhanced artificially: (1) mechanical protection, (2) mineral elements’
hyperaccumulation, (3) increase in secondary metabolite production and (4) predator
attraction. Taking these facts into consideration, we have chosen three topics to develop in
this review: (i) the biofortification of plants with selenium, (ii) the utilization of an ionic
form of silicon and its nanoparticles and (iii) garlic extracts. The last method was first
described many years ago, whereas the utilization of Se and Si should be considered as one
of the latest extremely promising approaches to solving this problem. Although neither of
the mentioned methods has gained profound attention from commercial companies thus
far, such ecofriendly and highly efficient supplements, which also show growth stimulation
effects and the ability to protect plants against other biotic and abiotic stresses, may herald
a new era of modern agriculture.
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2. Selenium Compounds

To date, interest to selenium has mostly been connected with the worldwide problem
of this element deficiency and the importance of agricultural crops’ biofortification to
optimize the human Se status and human immunity [10]. Indeed, besides the well-known,
powerful protection of Se against cardiovascular diseases and cancer, valuable antioxidant
properties and beneficial effects on human fertility and brain activity [11–13], the latest in-
vestigations in China indicated the high potential of Se utilization in COVID-19 prevention.
Epidemiological investigations revealed statistically lower levels of COVID-19 morbid-
ity and mortality among the population in Chinese provinces with high Se status [14].
On 11 March 2021, the lowest COVID-19 morbidity among the European population was
recorded in Finland, the country where Se consumption levels have been optimized due
to the wide utilization of Se-containing fertilizers [15]. On the contrary, Baltic countries,
Slovenia and Great Britain, known as Se-deficient countries, demonstrate significantly
higher levels of COVID-19 morbidity. Though the abundance of grain import from endemic
regions of Canada and the USA with high Se content (500–600 µg Kg−1), the exclusive
utilization of wheat cultivars of native origin with relatively low Se levels (approximately
80 µg Kg−1) in Russia resulted in a decrease in the human Se status [16], which may par-
tially explain the high COVID-19 morbidity in this country. Furthermore, wide Se fertilizer
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utilization in Finland since 1980 led to an outstanding decrease in mortality caused by
cancer and cardiovascular diseases among the population [15].

Against this background, the issue of protecting plants from insect pests using Se
biofortification draws significantly less attention and, in particular, plant biofortification
and reduction in pest attacks are discussed separately.

Situated in the sixth group of the periodic table, Se demonstrates similar properties to
sulfur and is included in compounds with different valences: selenates (+6), selenites (+4),
nano Se (0), selenides (−2) and organic derivatives [17]. Their toxicity to humans decreases
according to: selenites > selenates > organic Se > nano Se. The same sequence of Se toxicity
levels is also recorded for plants, while, for insects, only fragmental data are available. The
investigations of Jensen et al. [18] on the toxicity of different Se derivatives’ chronic appli-
cation to Megaselia scalaris larvae revealed the lowest LC50 level for SeCys (83 µg g−1 f.w.),
while SeMet, selenate (+6) and selenite (+4) LC50 values were 1.6, 3.1 and 4.7 times higher.
Data related to Spodoptera exigue (Hubner) larvae revealed a decrease in LC50 levels from
Se-Met and Se+6 (LC50 < 50 µg g−1 f.w.) to SeCystine (LC50 15 µg g−1 f.w.) and Se+4 (LC50
9.14 µg g−1 f.w) [19,20], which indicate significant species differences regarding diverse
chemical forms of Se. Contrary to organic derivatives, the inorganic ones (especially sele-
nates) generally have anti-feedant activity for insects [21]. Insects’ inability to avoid organic
Se forms results in toxic effects when feeding on Se-supplemented plants [19,20,22,23]. As
far as Se nanoparticles are concerned, the information is rather scant. Indeed, the joint ap-
plication of nano-Se and melatonin to wheat seedlings improved plant resistance to aphids
via an increase in antioxidant levels and activation of the phenylpropane pathway [24].

Notably, among organic Se forms, methylated Se forms containing amino acids
(SeMeSeCys, SeMeSeMet) are the most valuable ones in human society due to their high
anticarcinogenic activity [25]. In plants and insects, the formation of methylated forms may
be considered a protection against Se toxicity. Indeed, such derivatives usually accumulate
in the flowers of Se hyperaccumulators and a few herbivories are able to tolerate high Se
levels [26,27]. On the contrary, non-Se-accumulator plants concentrate Se predominantly in
the leaves, either as inorganic forms or as Se-containing amino acids and proteins, with a
much lower content of amino acids in methylated forms [28]. Volatile chemical forms of
selenium are di- and tri-methyl selenides, which deter herbivories [29]. Observations of
selenate supplementation to herbivories indicate both toxic and repelling effects [30]. The
latter phenomenon was described on Se hyperaccumulator Stanlea piñata (447 mg Se Kg−1

d.w.) and secondary Se accumulator Indian mustard (230 mg Se Kg−1 d.w.) under Mizus
persicae (larvae) [31], Pieris rapae (larvae) [32] and grasshopper and cricket infestation
(adults) [33]. Se may decrease herbivories’ survival and mobility and increase the duration
of the immature stage of insect development.

Selenium may repel herbivories, slow down growth or cause toxicity, thus increasing
plants’ growth. The list of target insects under Se supplementation is rather large and
includes weevils, aphids, white cabbage butterfly, beetles and caterpillars (Figure 2) [34,35].
Investigations of Prins on S. pinnata [36] revealed a protective effect of Se against nema-
todes. Broccoli supplemented with sodium selenate (50 mg L−1) demonstrated anti-feedant
properties towards Delia radicum larvae, which decreased thrice the survival of pupae [37].
In another observation, genetically modified potatoes stable against Colorado beetles con-
tained extremely high levels of selenium in leaves without any artificial Se biofortification
(approximately 1 mg Kg−1 d.w.) [38]. It is well known that grain with high selenium
content is less damaged by pests during storage [35].

The repelling and toxic effects of Se compounds are recorded for herbivories of dif-
ferent taste preferences, such as cell disrupters and phloem and leaf feeders, which is
extremely valuable in field conditions, where plants are subjected to numerous herbivory
species [22,31–33,39,40]. The intensity of the beneficial effect of such treatment is closely
connected to the Se dose applied. Indeed, selenium-biofortified B. napus plants with high Se
concentrations (>800 mg Kg−1) were less infected with a turnip aphid herbivory compared
to plants with low Se levels (<100 mg Kg−1), while feeding by red legged mites was reduced
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by 200% in selenium-biofortified plants [41]. In general, the Se dose should be adopted
experimentally, taking into consideration the significant differences in resistance to high Se
doses in both different plants and herbivory species. Indeed, according to literature data,
aphids are more sensitive to Se than spider mint [32,40].
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Honey from seleniferous areas contains significant amounts of Se (0.4–1 µg Se g−1),
thus becoming a truly functional product enriched with microelements [32,45], though
chronic exposure of bees to high Se levels may result in growth retardation and death [46].

3. Silicon

Similarly to Se, Si is not an essential element to plants and its growth stimulation prop-
erties are connected to its protective role under conditions of biotic and abiotic stress [47–51].
Its accumulation in plants is governed by soil characteristics, water availability and plants’
evapotranspiration [52] and may vary considerably between Si accumulators (predomi-
nantly representatives of the Poaceae family, with Si concentration up to 10% per d.w.),
intermediates (Brassicaceae, Fabaceae representatives, less than 1% content) and excluders
(for instance, tomato plants).

Silicon provides plant protection against herbivories, improving morphological, bio-
chemical and molecular protection and decreasing plant tissue disruption, insects’ growth
intensity and survival. This element causes significant biochemical changes in plants,
activating the biosynthesis of photosynthetic pigments and increasing antioxidants, anti-
stress proteins and phytohormone production [53]. The attraction of natural predators and
parasitoids during a pest attack as a result of Si supplementation is caused by the emission
of herbivore-induced plant volatiles, whose amounts increase in Si-treated plants [47].
Stimulation of plant hormone biosynthesis is considered the most pronounced effect of Si,
inducing ethylene, salicylic and jasmonic acid production [52].

Silicon supplementation stimulates the additional formation of trichomes and wax
accumulation on the surfaces of leaves, and it strengthens cell walls by improving lignin
biosynthesis (Figure 3). Thus, while plant protection against herbivory pests by Se com-
pounds takes place by direct (toxicity of Se derivatives applied) and indirect action (plants’
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Se accumulation and emission of toxic volatiles), Si provides valuable protection of plants
exclusively by changing plants’ physical and biochemical characteristics.

Both ionic forms of Si and Si nanoparticles demonstrate protective effects against
biotic stresses in the case of soil and foliar Si supplementation [47,53–59] and, in particular,
inducing the production of herbivory-induced plant volatiles attracting predators [57].
Despite rather restricted reports on the nano Si effect on herbivories, it is supposed that
the small size of nanoparticles promotes their penetration through cuticle layers, blocking
feed digestion and causing changes in morphology. Numerous publications devoted to Si
application have focused on the prospects of this approach, particularly the possibility to
improve the growth and development of agricultural crops and increase yields. To date,
some investigations have proven the ability of Si to increase plants’ resistance to the attacks
of different herbivory species: Lepidoptera (butterflies and moths) [50], Hemiptera (true
bugs, such as cicadas, aphids, planthoppers) [51,60], Diptera (true flies) [61], Thysanoptera
(thrips) [62] and others [44].

Several examples of silicon protection are presented below (Figure 3) [63].
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Figure 3. Si application against herbivory pests [64–74].

Among these examples, it is worth noting the three-fold decrease in Bemisia tabaci ovipo-
sition as a result of 1% silicic acid foliar application on bean and cucumber plants [64,65]; the
intensive development of trichomes with high Si content under 1% silicic acid supply,
leading to Spodoptera frugiperda larvae mortality in tomatoes, soybean and maize [67];
the possibility of AMF to increase root Si content, causing increased cane beetle larvae
mortality [69]; the protective effect of wheat against Schizaphis graminum [73,74] and the
significant protective effect of granite dust against lily leaf beetle [66]. It is significant that
Si’s beneficial effect takes place both in plant accumulators of Si and in Si excluders [67].

The information shown in Figure 3 indicates that Si may be effective for the protection
of both vegetating plants and grain under storage.

4. Garlic Extracts

Garlic (Allium sativum L.) is one of the most valuable vegetables, in terms of outstand-
ing health-promoting activity, including anti-tumor, cardio-protective, anti-microbial and
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anti-diabetic effects [75], high antioxidant activity (vitamins, polyphenols, flavonoids) and
significant amounts of sulfur-containing derivatives [76]. It is known to possess growth
stimulation properties and the ability to protect plants against pathogens [77]. In practice,
the harvesting, storage and processing of garlic are usually accompanied by the formation
of wastes, including partially damaged cloves, whose utilization in agriculture as a protec-
tion tool against biotic stresses may become highly valuable. The demonstrated insecticidal
activity of garlic is determined by allicin, formed as a result of alliinase activity during
clove crushing and other sulfur derivatives [78]. Interestingly, attacks by herbivorous pests,
pathogens and animals, causing biotic stress, promote allicin biosynthesis [79].

Examples of garlic’s protective effect against herbivories, shown in Table 1, indicate
the high efficiency of this approach in combating caryopsis, scoop, whitefly, weevils, etc.
Furthermore, the investigations of Hardiansyah et al. [80] demonstrated that the foliar
supplementation of garlic extract significantly increased rice yield due to the prevention of
grain losses connected with scaly finch (Lonchura punctulata) attacks.

Table 1. Examples of garlic utilization against insect attack.

Insects, Birds Plant Stage of
Development LC50 (mg L−1) References

Garlic oil

Black cutworm
(Agrotis ipsilon) Rice, beet, cotton, blackberry

Eggs,
Larvae,
Pupae

60
190
90

[81]

Silverleaf whitefly (Benisia tabaci) Tomato, cucumber, pumpkin,
cotton, melon, Brassica Imago 150 [82]

Cacopsylla chinensis Plum Imago 142 [83]
Cowpea weevil

(Calloso-bruchus maculatus) Vigna chinensis Imago 0.25 [84]

Grasshopper
(Heteracris littoralis) Maize, rice, vegetables, cotton First instar

Larvae 670 [85]

Cabbage looper (Trichoplusia ni) Cabbage Larvae 3300 [86]
Rice weevil

(Sitophilus oryzae) Rice Imago 0.017 [87]

Garlic extracts

Kelly’s citrus thrips (Pezothrips
kellyanus) Citrus Larvae Low protection

level [88]

Cowpea weevil
(Callosobruchus maculatus) Chickpea seeds, Vigna unguiculata Imago 0.11 g L−1 [89]

red palm weevil
Rhynchophorus ferrugineus Palms Larvae * 44 µg mL−1 [90]

Diamondback moth (Plutella xylostella),
Cabbage aphid (Brevicoryne brassicae),
Cabbage webworm (Hellula undalis),

Cabbage looper (Trichoplusia ni)

Cabbage (Brassica oleracea) Larvae, imago 200 g L−1 [91]

Coleoptera, Bruchinae Prosopis laevigata seeds soaking in
5% during 3 days at 20 ◦C Larvae, imago [92]

Spontaneous herbivory attacks in field
conditions Cucurbita pepo (1% water extract) - ** [93]

Garlic juice

Maize weevil (Sitophilus zeamais) Storage of maize grain Imago 90% lethal
mortality [94]

Cabbage root fly
(Delium radicum)

Eggs
Larvae
Imago

0.8 % (7 days)
6.8 % (4 days)
0.4 % (2 days)

[95]
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Table 1. Cont.

Insects, Birds Plant Stage of
Development LC50 (mg L−1) References

Housefly
(Musca domestica)

Eggs
Larvae
Imago

1.6 % (7 days)
4.5 % (4 days)
2.2% (2 days)

[95]

Diallyl polysulfides

Cacopsylla chinensis Plum Imago 11.04 DADS
0.640 DATS [83]

Sciarid fly
(Lycoriella ingénue) Mushrooms, herbs Larvae

0.25 DAS
0.087 DADS
0.25 DATS

[96]

Maize weevil
(Sitophilua zeamais) Maize Imago 5.54 DATS

[97]
Red flour beetle

(Tribolium castaneum) Cereals, flour Imago 1.02 DATS

DAS—diallyl sulfide; DADS—diallyl disulfide; DATS—diallyl trisulfide [98]; * onion/garlic extract was used; **
yield and photosynthetic pigments increase.

The powerful insecticidal properties of garlic and Allium cepa essential oil have been
demonstrated. Furthermore, appropriate information has been recorded for sulfur com-
pounds of these plants, allyl disulfides and allyl mercaptane, in the protection of plants
against rice weevil [99]. Allyl mercaptane’s insecticidal properties are based on the inhibi-
tion of insects’ acetylcholine esterase.

Comparison between garlic juice’s effects on two insect species, housefly (Musca domes-
tica) and cabbage root fly (Delia radiculus), indicated the importance of the developmental
stage and species differences in insects’ tolerance [95]. Indeed, the lowest LD50 values
were recorded at the egg and adult stages of development, accompanied by significantly
higher LD50 values for Musca domestica. The opposite situation was demonstrated for LD50
values at the larvae stage of development (Table 1). In a cowpea seed storage experiment
with Callosobruchus maculatus infestation [89], the authors demonstrated lower LD50 values
associated to garlic extract (0.11 g L−1) than to garlic powder (9.66 g Kg−1) and emphasized
the high potential of garlic extract utilization in the protection of chickpea against this very
dangerous herbivory of legumes.

5. Comparative Evaluation of the Efficiency of Raphanus sativus var. Lobo Protection
against Cruciferous Gall Midge (Contariana nastirtii) Using Foliar Application of
Selenium, Silicon and Garlic Extract

Raphanus sativus var. Lobo, or margelan radish, belongs to the cruciferous family and,
thanks to the low content of radish oil, demonstrates a pleasant taste. This crop suitably
grows in most regions of Russia and is widespread in China and Korea.

Cruciferous gall midge, which lays eggs in inflorescences, causes significant damage
to the seed yield of loba, thus preventing seed set.

Gall midges (Diptera: Cecidomyiidae), including more than 6000 species [100], form
a large insect family with high speed of species formation compared to other Diptera
insects [101]. Most of the gall midge species are herbivorous monophages [100] feeding
on a single plant family, plant species or separate parts [102,103]. Most representatives of
Contarinia nasturtii (Kieffer, Diptera: Cecidomyiidae) freely live in flower buds or in folded
leaves or galls of leaf folds [100,104].

The productivity of lobo seeds is sharply reduced when infected by flower gall midge
(Figure 4).
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Single spraying of lobo plants during the period of active gall midge infestation by
(a) sodium selenate solution (50 mg L−1), (b) Siliplant fertilizer as a source of ionic silicon
(5 mL L−1) and (c) garlic extracts (5%) resulted in 100% larvae mortality only one week later
in cases of Siliplant application, either singly or in combination with sodium selenate and
garlic extract supplementation. The lack of a significant positive effect of sodium selenate
supplementation may be connected both to the lower gall midge sensitivity to Se and/or
the necessity for a longer period of exposure.

Among the biochemical parameters tested, a significant disaccharide content increase
was recorded under all treatments, especially intensive in the case of garlic extract (Figure 5).
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Figure 5. Changes in disaccharide content in Raphanus sativus var. lobo treated with Siliplant, Se and
garlic extract.

The detected phenomenon is directly connected with the active participation of car-
bohydrates in plant protection [105] and may be highly significant for increasing the
nutritional value of vegetables.

Other biochemical parameters (Table 2) indicate a statistically significant increase in
polyphenol content in lobo upon garlic extract treatment, contrary to sodium selenate
application, which demonstrated only a slight tendency to this increase. The detected
beneficial effect of garlic extract on phenolic accumulation in lobo (1.22 times compared to
control plants) was in agreement with a similar phenomenon described in tomato [106].
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Table 2. Effect of foliar application of Si (Siliplant), sodium selenate and garlic extract on biochemical
characteristics and infestation of Raphanus sativus var. lobo by Contarinia nasturtii.

Parameter Control Siliplant Se Se +
Siliplant Garlic

Presence of live larvae ++ − + − −
Dry matter, % 12.29a 11.67a 11.25a 12.48a 11.56a

AOA *, mg GAE g−1 d.w. 46.1a 44.1a 48.6a 46.1a 50.5a
TP **, mg GAE g−1 d.w. 14.0b 15.0ab 16.0ab 16.1ab 17.1a

Se, µg Kg−1 d.w. 146d 213c 1080b 1295a 150d
Monosaccharides, % 17.0a 16.9a 12.6b 13.9b 16.5a

Disaccharides, % 0.2d 1.0c 2.2b 2.5b 3.3a
Total sugar, % 16.8bc 17.9ab 14.8c 16.4bc 19.8a

Water-soluble compounds TDS, mg g−1 57.1b 72.8a 70.4a 56.3b 58.0b
Nitrates, mg Kg−1 d.w. 2968b 3112ab 3306a 2326c 2750bc

Ash, % 10.0a 10.9a 11.3a 9.1a 9.1a
* AOA—total antioxidant activity, ** TP—polyphenols. ‘++’—intensive infestation; ‘−’—100% mortality of larvae;
‘+’—50% reduction of live larvae. Along each line, values with the same letters do not differ statistically according
to Duncan test at p < 0.05.

The lower efficiency of sodium selenate treatment compared to that of Siliplant and
garlic extract, and the different intensities in biochemical changes (Table 2, Figure 4) indicate
that Se’s protective effects require more time than those of Si and garlic extracts.

6. Prospects and Constraints of Plant Protection against Herbivory Pests via Se, Si and
Garlic Extract Application

In general, the comparison of Se, Si and garlic extracts’ efficiency against herbivory
attack reveals several peculiarities. First, active elements demonstrating significant toxicity
to insects are Se in sodium selenate, Si in bulk and nano Si particles and sulfur compounds
in garlic extracts. The resulting effect is either toxicity or repellent activity. In all living
organisms, Se may substitute S in appropriate natural compounds as these elements are
considered chemical analogs. In this respect, Se-fortified plants may lead to herbivory
toxicity not only via a direct effect of inorganic derivatives and Se-containing amino acids,
but also via the production of Se analogs of allicin, mono-, di- and tri-sulfides. The highest
efficiency in Se biofortification is recorded for plants that are Se accumulators, which
include Allium, Brassica species and garlic in particular [17].

Contrary to Se and S compounds, Si causes plant mechanical protection, which also
causes toxicity or repellant activity against herbivories, such as: the formation of additional
trichomes, an increase in wax accumulation on the leaves’ surfaces and an abrasiveness
increase in plant tissues, resulting in a reduction in palatability and digestibility for herbi-
vores [107,108].

The strongest beneficial effect of Si supplementation is recorded in plant Si accumula-
tors belonging predominantly to the Poaceae family, while Brassica and Allium representa-
tives (typical accumulators of S and Se) are known to be non-Si accumulators [109].

Furthermore, the protective effects of the three mentioned supplements relate to the
intensive emission of volatiles from the plant tissue of treated plants: di- and trimethyl
selenides for Se, allicine and other mono- di- and tri-sulfides from garlic, and herbivore-
induced plant volatiles upon Si supplementation. While the first two ones show repellent
properties against herbivories, silicon causes biochemical changes in plants, where volatile
production intensifies the attraction of herbivory animals [52].

The protection against herbivories and the growth stimulation effect of all three
preparations relate to hormonal activity. Supplementation of Se and Si induces intensive
hormonal changes in plants. Se actively affects the production of auxins, gibberellins, jas-
monic (JA) and salicylic (SA) acids and ethylene (ET) [110]. Silicon supplementation results
in changes in JA, SA, ET and auxins’ biosynthesis [59]. On the contrary, the growth stimula-
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tion effect of garlic extracts is closely connected to their high content of phytohormones:
SA, auxins and gibberellins [111].

Furthermore, all these treatments for plants’ protection against herbivories are closely
connected with the intensification of plant antioxidant status, either directly (Se and S
antioxidant properties) or indirectly, improving the production of natural antioxidants.

The attractiveness of Se, Si and garlic extracts’ utilization relates to the multiplicity of
their beneficial effects, including pest management, protection against abiotic stress and an
increase in crop yield and nutritional quality (Figure 6).
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In this respect, the development of appropriate preparations is highly significant.
To date, no appropriate registered products with active ingredients derived from garlic,
selenium and silicon are known. Such a situation is connected with the complexity of Se, Si
and garlic extracts’ interaction with plants and insect pests, highlighting the necessity to
find optimal concentrations that are sufficient to both demonstrate protection against pests
and avoid toxicity. Notably, the beneficial protective effects of Se, Si and garlic extracts
against insect pests are not ubiquitous and greatly depend on the plant and insect species,
stage of pest development and supplement concentration. Indeed, silicic acid application
resulted in the most pronounced protective effect against armyworms at the early time
point in soybean and at early and late time points in maize [67]. Granite dust utilization
was shown to be effective in the protection of lily but not squash and cabbage plants [66].

Theoretically, the supplementation of plants with selenium should result in variable
protective effects against herbivorous pests, due to both variations in different Se chemical
forms in fortified plants and differences in these compounds’ toxicity to pests. At present, in
most cases, we are not able to evaluate the composition of Se chemical derivatives present
in plants upon Se supplementation.

As for garlic extract utilization, a serious problem exists in standardizing the prepara-
tions, whose activity will depend either on the concentration used or the chemical composi-
tion of garlic cloves. The allelopathic effect of garlic has been intensively studied [112,113]
and an increase in extract concentration may lead to plant growth inhibition.

Taking into account the species differences in plants/insects’ responses to Se, Si and
garlic extract supply, further investigations will be performed on this topic.

Notably, to date, the joint application of Se, Si and garlic extracts has never been used
in pest management. Literature reports indicate that this approach may become especially
beneficial, providing a growth stimulation effect, improving crops’ quality and protecting
plants against biotic and abiotic stresses. Joint supplementation of plants with Se and Si
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is known to be highly efficient in increasing plants’ tolerance to abiotic stresses [114–118]
and improving yields [119]. Unfortunately, no data are available concerning the effi-
ciency of plants’ protection against insect pests under joint Se and Si treatments. The
joint application of garlic extracts with Se and Si compounds, both for plant growth and
development and pest management, is extremely attractive, but such an approach needs
special investigations.

7. Conclusions

Global economic crisis and climate changes indicate the need for urgent decisions
aimed to ecological equilibrium restoration, the utilization of highly efficient and safe
methods of both plant protection against herbivories, without any harmful effect either
on human health or on the environment, and plant growth stimulation. The present
review covers three possible strategies to address the mentioned issues, and their practical
application will promote sustainable agricultural development. Further investigations
should unveil the interactions of Se, Si and garlic extract with plants and insect pests, which
show remarkable complexity, and the connected effects of climate and soil, the genetic
peculiarities of plants and different biologically active derivatives. However, the broad
possibilities of Se, Si and garlic extracts’ application, both for plant protection against
pests and growth stimulation, suggest the necessity for the commercial production of
appropriate supplements to successfully convert the mentioned innovative approaches
into agricultural practice.
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