Identification of Candidate Genes for Salt Tolerance at the Germination Stage in Japonica Rice by Genome-Wide Association Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Salt Tolerance Identification
2.2. GWAS for Salt Tolerance
2.3. Identification of Important QTL and Haplotype Analysis of Candidate Genes
3. Results
3.1. Identification of Salt Tolerant Japonica Rice at the Germination Stage
3.2. GWAS of Salt Tolerance at the Germination Stage in Japonica Rice
3.3. Haplotype Analyses of the Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.G.; Peng, S. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M.S.; Saleem, M.H.; Adil, M.; Heidari, P.; Chen, J.T. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci. 2019, 21, 148. [Google Scholar] [CrossRef] [Green Version]
- Ishfaq, M.; Akbar, N.; Anjum, S.A.; Anwar-Ul-Haq, M. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. J. Integr. Agric. 2020, 19, 2656–2673. [Google Scholar] [CrossRef]
- Liang, J.L.; Qu, Y.P.; Yang, C.G.; Ma, X.D.; Cao, G.L.; Zhao, Z.W.; Zhang, S.Y.; Zhang, T.; Han, L.Z. Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Euphytica 2015, 201, 441–452. [Google Scholar] [CrossRef]
- Lei, L.; Han, Z.; Cui, B.; Yang, L.; Liu, H.; Wang, J.; Zhao, H.; Xin, W.; Li, X.; Li, J.; et al. Mapping of a major QTL for salinity tolerance at the bud burst stage in rice (Oryza sativa L.) using a high-density genetic map. Euphytica 2021, 217, 167. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, J.; Chen, Z.; Huang, J.; Bao, Y.; Wang, J.; Zhang, H. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor. Appl. Genet. 2012, 125, 807–815. [Google Scholar] [CrossRef]
- Hossain, H.; Rahman, M.; Alam, M.; Singh, R. Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J. Agron. Crop Sci. 2015, 201, 17–31. [Google Scholar] [CrossRef]
- Pang, Y.; Chen, K.; Wang, X.; Wang, W.; Xu, J.; Ali, J.; Li, Z. Simultaneous improvement and genetic dissection of salt tolerance of rice (Oryza sativa L.) by designed QTL pyramiding. Front. Plant Sci. 2017, 8, 1275. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, J.; Zhao, H.; Liu, H.; Sun, J.; Guo, L.; Zou, D. Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stage. Mol. Breed. 2015, 35, 152. [Google Scholar] [CrossRef]
- Yu, J.; Zao, W.; He, Q.; Kim, T.S.; Park, Y.J. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage. Mol. Genet. Genom. 2017, 292, 1391–1403. [Google Scholar] [CrossRef]
- Puram, V.R.R.; Ontoy, J.; Linscombe, S.; Subudhi, P.K. Genetic dissection of seedling stage salinity tolerance in rice using introgression lines of a salt tolerant landrace nona bokra. J. Hered. 2017, 108, 658–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.X.; Zhu, M.Z.; Yano, M.; Gao, J.P.; Liang, Z.W.; Su, W.A.; Hu, X.H.; Ren, Z.H.; Chao, D.Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 2004, 108, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Tamiru, M.; Abe, A.; Yoshida, K.; Uemura, A.; Yaegashi, H.; Obara, T.; Oikawa, K.; Utsushi, H.; Kanzaki, E.; et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 2015, 33, 445–449. [Google Scholar] [CrossRef]
- Huang, X.Y.; Chao, D.Y.; Gao, J.P.; Zhu, M.Z.; Shi, M.; Lin, H.X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes. Dev. 2009, 23, 1805–1817. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, Y.; Wu, W.; Zhan, X.; Anis, G.B.; Rahman, M.H.; Hong, Y.; Riaz, A.; Zhu, A.; Cao, Y.; et al. qSE7 is a major quantitative trait locus (QTL) influencing stigma exsertion rate in rice (Oryza sativa L.). Sci. Rep. 2018, 8, 14523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, J.; Bao, Y.; Wu, Y.; Zhang, H. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 2011, 178, 297–307. [Google Scholar] [CrossRef]
- Hoang, T.M.L.; Tran, T.N.; Nguyen, T.K.T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Wang, Z.-F.; Wang, J.-F.; Bao, Y.-M.; Wu, Y.-Y.; Su, X.; Zhang, H.-S. Inheritance of rice seed germination ability under salt stress. Rice Sci. 2010, 17, 105–110. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, W.; Tong, W.; He, Q.; Yoon, M.Y.; Li, F.P.; Choi, B.; Heo, E.B.; Kim, K.W.; Park, Y.J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int. J. Mol. Sci. 2018, 19, 3145. [Google Scholar] [CrossRef] [Green Version]
- Atwell, S.; Huang, Y.S.; Vilhjálmsson, B.J.; Willems, G.; Horton, M.; Li, Y.; Meng, D.; Platt, A.; Tarone, A.M.; Hu, T.T.; et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010, 465, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Sauvage, C.; Segura, V.; Bauchet, G.; Stevens, R.; Do, P.T.; Nikoloski, Z.; Fernie, A.R.; Causse, M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014, 165, 1120–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Breseghello, F.; Sorrells, M.E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 2006, 172, 1165–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, H.; Liu, K.; Wang, B.; Tian, Y.; Ge, Y.; Zhang, Y.; Tang, W.; Chen, G.; Yu, J.; Wu, W.; et al. Genome-wide association study identifies QTLs conferring salt tolerance in rice. Plant Breed. 2020, 139, 73–82. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, X.; Zhao, Y.; Khan, N.U.; Zhao, Z.; Zhang, Y.; Wen, X.; Tang, F.; Wang, F.; Li, Z. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci. Rep. 2020, 10, 9958. [Google Scholar] [CrossRef]
- Rohila, J.S.; Edwards, J.D.; Tran, G.D.; Jackson, A.K.; McClung, A.M. Identification of Superior Alleles for Seedling Stage Salt Tolerance in the USDA Rice Mini-Core Collection. Plants 2019, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Sun, S.; Yang, B.; Zhao, J.; Li, W.; Huang, Z.; Li, Z.; He, Y.; Wang, Z. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. Plant Biotechnol. J. 2022, 20, 485–498. [Google Scholar] [CrossRef]
- Ji, S.L.; Jiang, L.; Wang, Y.H.; Zhang, W.W.; Liu, X.; Liu, S.J.; Chen, L.M.; Zhai, H.Q.; Wan, J.M. Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breed. 2009, 128, 387–392. [Google Scholar] [CrossRef]
- Li, N.; Zheng, H.; Cui, J.; Wang, J.; Liu, H.; Sun, J.; Liu, T.; Zhao, H.; Lai, Y.; Zou, D. Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage. Rice 2019, 12, 24. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, W.; Xing, H.; Yan, J.; Meng, X.; Li, X.; Fu, X.; Xu, J.; Lian, X.; Yu, S.; et al. Genetic architecture of natural variation in rice Chlorophyll content revealed by a genome-wide association study. Mol. Plant 2015, 8, 946–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.S.; He, W.M.; Ji, J.J.; Zhang, C.; Guo, Y.; Yang, T.L. LDBlockShow: A fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief. Bioinform. 2021, 22, bbaa227. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.B.; Li, J.; Qin, R.Y.; Xu, R.F.; Li, H.; Yang, Y.C.; Ma, H.; Li, L.; Wei, P.C.; Yang, J.B. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol. Biol. 2016, 90, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Cai, Z.; Xia, K.; Wang, Y.; Duan, J.; Zhang, M. Identification and analysis of eight peptide transporter homologs in rice. Plant Sci. 2010, 179, 374–382. [Google Scholar] [CrossRef]
- De Leon, T.B.; Linscombe, S.; Subudhi, P.K. Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 2016, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. Cell Mol. Biol. 2003, 33, 751–763. [Google Scholar] [CrossRef]
- Yu, R.M.; Wong, M.M.; Jack, R.W.; Kong, R.Y. Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.). Planta 2005, 222, 757–768. [Google Scholar] [CrossRef]
- Bañuelos, M.A.; Garciadeblas, B.; Cubero, B.; Rodríguez-Navarro, A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 2002, 130, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, M.M.; Bao, Y.M.; Sun, S.J.; Pan, L.J.; Zhang, H.S. SRWD: A novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.). Gene 2008, 424, 71–79. [Google Scholar] [CrossRef]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Shen, Q.; Wang, X.; Hong, Y. The sulfoquinovosyltransferase-like enzyme SQD2.2 is Involved in flavonoid glycosylation, regulating sugar metabolism and seed setting in rice. Sci. Rep. 2017, 7, 4685. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Sun, Y.; Guo, T.; Shi, C.L.; Zhang, Y.M.; Kan, Y.; Xiang, Y.H.; Zhang, H.; Yang, Y.B.; Li, Y.C.; et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat. Commun. 2020, 11, 2629. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.C.; Zhang, S.M.; Wang, L.P.; Wang, M.D.; Zhang, H. Overexpression of GST gene accelerates the growth of transgenic Arabidopsis under salt stress. J. Plant Physiol. Mol. Biol. 2004, 30, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Lima-Melo, Y.; Carvalho, F.E.; Martins, M.O.; Passaia, G.; Sousa, R.H.; Neto, M.C.; Margis-Pinheiro, M.; Silveira, J.A. Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. J. Integr. Plant Biol. 2016, 58, 737–748. [Google Scholar] [CrossRef]
- Zhang, R.; Hussain, S.; Wang, Y.; Liu, Y.; Li, Q.; Chen, Y.; Wei, H.; Gao, P.; Dai, Q. Comprehensive Evaluation of Salt Tolerance in Rice (Oryza sativa L.) Germplasm at the Germination Stage. Agronomy 2021, 11, 1569. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, L.; Wu, Z.; Zhang, X.; Wang, M.; Zhang, C.; Zhang, F.; Zhou, Y.; Li, Z. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol. 2017, 17, 92. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Tung, C.W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Zheng, T.; Wang, X.; Wang, Y.; Chen, K.; Wang, S.; Wang, Y.; Xu, J.; Li, Z. QTL mapping and candidate gene analysis of peduncle vascular bundle related traits in rice by genome-wide association study. Rice 2018, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Shen, Q.; Chen, J.; Yang, P.; Wang, X.; Hong, Y. Rice sulfoquinovosyltransferase SQD2.1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress. Plant Cell Environ. 2019, 42, 2215–2230. [Google Scholar] [CrossRef]
- Jain, M.; Ghanashyam, C.; Bhattacharjee, A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genom. 2010, 11, 73. [Google Scholar] [CrossRef] [Green Version]
- Moons, A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett. 2003, 553, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Roxas, V.P.; Smith, R.K., Jr.; Allen, E.R.; Allen, R.D. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 1997, 15, 988–991. [Google Scholar] [CrossRef] [PubMed]
Traits | CONC | Mean ± SD (%) | Range (%) | CV (%) |
---|---|---|---|---|
RGP | 100 mM | 97.27 ± 0.03 | 91.84–100 | 3.08 |
200 mM | 79.83 ± 0.14 | 29.57–95.92 | 17.22 | |
300 mM | 27.53 ± 0.18 | 0.98–74.71 | 65.73 | |
400 mM | 0.45 ± 0.01 | 0–3.80 | 206.42 | |
500 mM | --- | --- | --- | |
600 mM | --- | --- | --- | |
RGI | 100 mM | 90.32 ± 0.04 | 78.13–96.82 | 4.92 |
200 mM | 76.02 ± 0.12 | 32.12–88.15 | 15.62 | |
300 mM | 28.34 ± 0.16 | 7.69–65.65 | 55.02 | |
400 mM | 0.27 ± 0.01 | 0–2.54 | 222.86 | |
500 mM | --- | --- | --- | |
600 mM | --- | --- | --- |
Trait | Mean ± SD (%) | Range (%) | CV (%) |
---|---|---|---|
RGP | 63.67 ± 0.14 | 12.96–88.48 | 21.61 |
RGI | 70.65 ±0.18 | 8.91–99 | 25.27 |
ID | Accession Namze | Source | RGP | RGI |
---|---|---|---|---|
Z_17 | Xiuyan | Liaoning Province, China | 0.9082 | 0.8009 |
Z_36 | Huangjiantou | Jilin Province, China | 0.875 | 0.8044 |
Z_39 | Dainandao | Jilin Province, China | 0.9192 | 0.8776 |
Z_45 | Jingou | Jilin Province, China | 0.9175 | 0.8290 |
Z_79 | Dongnong 423 | Heilongjiang Province, China | 0.9709 | 0.834 |
Z_105 | Longhuadahonggu | Heilongjiang Province, China | 0.9417 | 0.8193 |
Z_107 | Wumingzhu | Heilongjiang Province, China | 0.9712 | 0.8720 |
Z_108 | Tangyuan 6 | Heilongjiang Province, China | 0.94 | 0.8024 |
Z_152 | Xingguo | Heilongjiang Province, China | 0.8793 | 0.8121 |
Z_188 | Qiandaijing | Japan | 0.9094 | 0.8507 |
Z_191 | Fengshouguang | Japan | 0.99 | 0.8181 |
Z_194 | WD12468 | Japan | 0.9394 | 0.815 |
Z_195 | Alixiao | Japan | 0.9082 | 0.8395 |
Z_199 | Lige | Japan | 0.9798 | 0.8848 |
Z_234 | Xiannan 1 | Democratic People’s Republic of Korea | 0.9174 | 0.8057 |
Z_250 | Zhenfu32-xuan | Republic of Korea | 0.8274 | 0.8274 |
Z_256 | Taixingdao | Republic of Korea | 0.8199 | 0.8199 |
Z_263 | Wutai | Republic of Korea | 0.8147 | 0.8147 |
Z_264 | Yunchang | Republic of Korea | 0.8361 | 0.8361 |
Z_267 | Chaolin | Republic of Korea | 0.8314 | 0.8314 |
Z_287 | Song 98131 | Heilongjiang Province, China | 0.8128 | 0.8128 |
Traits | QTLs | Lead SNP | Chr. | Position | p Value | R2 | Known QTLs | Known Genes |
---|---|---|---|---|---|---|---|---|
RGP | qRGP1.1 | Chr1__41374494 | 1 | 41374494 | 5.81 × 10−8 | 14.00% | ||
qRGP1.2 | Chr1__4089224 | 1 | 4089224 | 2.48 × 10−7 | 12.71% | qSTL1-1 [25] | ||
qRGP1.3 | Chr1__2204961 | 1 | 2204961 | 7.98 × 10−7 | 11.67% | OsRAV2 [33], OsPTR7 [34] | ||
qRGP1.4 | Chr1__6258829 | 1 | 6258829 | 1.89 × 10−6 | 10.92% | |||
qRGP1.5 | Chr1__7430709 | 1 | 7430709 | 3.62 × 10−6 | 10.44% | qSHL1.7b [35] | ||
qRGP1.6 | Chr1__3338562 | 1 | 3338562 | 3.79 × 10−6 | 10.32% | OsDREB2A [36] | ||
qRGP3.1 | Chr3__10121513 | 3 | 10121513 | 1.38 × 10−6 | 11.19% | qRTL3.1 [35] | ||
qRGP3.2 | Chr3__33560015 | 3 | 33560015 | 2.34 × 10−6 | 10.74% | OsPP2A-2 [37] | ||
qRGP5 | Chr5__8234106 | 5 | 8234106 | 1.44 × 10−6 | 11.16% | |||
qRGP6.1 | Chr6__27775205 | 6 | 27775205 | 3.83 × 10−7 | 10.69% | OsHAK13 [38] | ||
qRGP6.2 | Chr6__25007621 | 6 | 25007621 | 4.13 × 10−6 | 10.25% | qSDS-6 [12] | ||
qRGP7.1 | Chr7__19834473 | 7 | 19834473 | 2.48 × 10−7 | 13.35% | |||
qRGP7.2 | Chr7__21641434 | 7 | 21641434 | 6.37 × 10−7 | 11.87% | |||
qRGP7.3 | Chr7__21142856 | 7 | 21142856 | 6.64 × 10−7 | 11.83% | |||
qRGP7.4 | Chr7__20530338 | 7 | 20530338 | 5.33 × 10−6 | 10.02% | |||
qRGP9 | Chr9__16900648 | 9 | 16900648 | 1.11 × 10−6 | 11.38% | |||
qRGP10 | Chr10__20505386 | 10 | 20505386 | 3.77 × 10−6 | 10.46% | qRNC-9 [12] | ||
qRGP11 | Chr11__6667362 | 11 | 6667362 | 5.37 × 10−6 | 10.49% | |||
qRGP12.1 | Chr12__7766357 | 12 | 7766357 | 1.66 × 10−6 | 12.27% | |||
qRGP12.2 | Chr12__8683103 | 12 | 8683103 | 5.33 × 10−6 | 11.13% | |||
RGI | qRGI1.1 | Chr1__6258829 | 1 | 6258829 | 5.54 × 10−7 | 12.00% | ||
qRGI1.2 | Chr1__41374494 | 1 | 41374494 | 1.07 × 10−6 | 11.42% | |||
qRGI1.3 | Chr1__7445487 | 1 | 7445487 | 1.34 × 10−6 | 11.22% | qSHL1.7b [35] | ||
qRGI1.4 | Chr1__4089224 | 1 | 4089224 | 1.41 × 10−6 | 11.17% | qSTL1-1 [25] | ||
qRGI1.5 | Chr1__2066993 | 1 | 2066993 | 3.44 × 10−6 | 10.40% | OsRAV2 [33], OsPTR7 [34] | ||
qRGI1.6 | Chr1__3338562 | 1 | 3338562 | 4.90 × 10−6 | 10.10% | OsDREB2A [36] | ||
qRGI2 | Chr2__32975597 | 2 | 32975597 | 4.67 × 10−6 | 11.42% | |||
qRGI3 | Chr3__10121513 | 3 | 10121513 | 6.77 × 10−7 | 11.82% | qRTL3.10 [35] | ||
qRGI5.1 | Chr5__8234106 | 5 | 8234106 | 9.49 × 10−7 | 11.52% | |||
qRGI5.2 | Chr5__28367506 | 5 | 28367506 | 2.22 × 10−6 | 10.78% | |||
qRGI5.3 | Chr5__1855627 | 5 | 1855627 | 2.77 × 10−6 | 10.59% | |||
qRGI6 | Chr6__27775205 | 6 | 27775205 | 4.69 × 10−7 | 10.52% | OsHAK13 [38] | ||
qRGI7.1 | Chr7__21641434 | 7 | 21641434 | 1.67 × 10−6 | 11.03% | |||
qRGI7.2 | Chr7__19834473 | 7 | 19834473 | 1.96 × 10−6 | 11.46% | |||
qRGI7.3 | Chr7__21123625 | 7 | 21123625 | 4.18 × 10−6 | 10.23% | |||
qRGI8 | Chr8__19554426 | 8 | 19554426 | 5.22 × 10−6 | 10.26% | qSTL8-1 [25] | SRWD4 [39] | |
qRGI9 | Chr9__16900648 | 9 | 16900648 | 1.37 × 10−7 | 13.23% | qRNC-9 [12] | ||
qRGI10 | Chr10__20505386 | 10 | 20505386 | 3.66 × 10−6 | 10.49% | |||
qRGI12.1 | Chr12__7766357 | 12 | 7766357 | 1.83 × 10−7 | 14.42% | |||
qRGI12.2 | Chr12__8683103 | 12 | 8683103 | 1.47 × 10−6 | 12.36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Zheng, H.; Wen, H.; Qu, D.; Cui, J.; Li, C.; Wang, J.; Liu, H.; Yang, L.; Jia, Y.; et al. Identification of Candidate Genes for Salt Tolerance at the Germination Stage in Japonica Rice by Genome-Wide Association Analysis. Agriculture 2022, 12, 1588. https://doi.org/10.3390/agriculture12101588
Duan Y, Zheng H, Wen H, Qu D, Cui J, Li C, Wang J, Liu H, Yang L, Jia Y, et al. Identification of Candidate Genes for Salt Tolerance at the Germination Stage in Japonica Rice by Genome-Wide Association Analysis. Agriculture. 2022; 12(10):1588. https://doi.org/10.3390/agriculture12101588
Chicago/Turabian StyleDuan, Yuxuan, Hongliang Zheng, Haoran Wen, Di Qu, Jingnan Cui, Chong Li, Jingguo Wang, Hualong Liu, Luomiao Yang, Yan Jia, and et al. 2022. "Identification of Candidate Genes for Salt Tolerance at the Germination Stage in Japonica Rice by Genome-Wide Association Analysis" Agriculture 12, no. 10: 1588. https://doi.org/10.3390/agriculture12101588
APA StyleDuan, Y., Zheng, H., Wen, H., Qu, D., Cui, J., Li, C., Wang, J., Liu, H., Yang, L., Jia, Y., Xin, W., Li, S., & Zou, D. (2022). Identification of Candidate Genes for Salt Tolerance at the Germination Stage in Japonica Rice by Genome-Wide Association Analysis. Agriculture, 12(10), 1588. https://doi.org/10.3390/agriculture12101588