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Abstract: Crop disease seriously affects food security and causes huge economic losses. In recent
years, the technology of computer vision based on convolutional neural networks (CNNs) has been
widely used to classify crop disease. However, the classification of fine-grained crop disease is
still a challenging task due to the difficult identification of representative disease characteristics.
We consider that the key to fine-grained crop disease identification lies in expanding the effective
receptive field of the network and filtering key features. In this paper, a novel module (DC-DPCA) for
fine-grained crop disease classification was proposed. DC-DPCA consists of two main components:
(1) dilated convolution block, and (2) dual-pooling channel attention module. Specifically, the dilated
convolution block is designed to expand the effective receptive field of the network, allowing the
network to acquire information from a larger range of images, and to provide effective information
input to the dual-pooling channel attention module. The dual-pooling channel attention module
can filter out discriminative features more effectively by combining two pooling operations and
constructing correlations between global and local information. The experimental results show
that compared with the original networks (85.38%, 83.22%, 83.85%, 84.60%), ResNet50, VGG16,
MobileNetV2, and InceptionV3 embedded with the DC-DPCA module obtained higher accuracy
(87.14%, 86.26%, 86.24%, and 86.77%). We also provide three visualization methods to fully validate
the rationality and effectiveness of the proposed method in this paper. These findings are crucial
by effectively improving classification ability of fine-grained crop disease by CNNs. Moreover, the
DC-DPCA module can be easily embedded into a variety of network structures with minimal time
cost and memory cost, which contributes to the realization of smart agriculture.

Keywords: fine-grained crop disease; convolutional neural networks; attention mechanism;
classification

1. Introduction

Crop disease is one of the most serious problems affecting the quality and yield of
agricultural production worldwide [1]. Manual disease control suffers from a lack of
expertise, poor objectivity, visual fatigue and low efficiency [2]. Additionally, the likelihood
of diseases developing and rapidly spreading has increased due to the current state of
rising global temperatures [3]. With the development of big data and machine learning,
agriculture has shifted from the mechanical stage to smart agriculture, and most of the
younger generation has a positive attitude towards using smart agriculture [4]. Crop
disease identification based on machine learning and other technologies is a part of smart
agriculture. It can meet the growing demand for food by reducing agricultural losses
through data modeling [5]. The crop losses could be aggravated due to wrong or excessive
control, as well as pesticide residues can pose serious damage to human health and the
ecological environment. Therefore, it is very necessary to design an automatic and precise
control technology for fine-grained crop disease.
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Since the 1990s, researchers have started to implement the classification of crop disease
using traditional image processing methods, including image of pre-processing, disease
part segmentation, feature selection, and classification [6]. Guan et al. [7] used Bayesian dis-
crimination to identify three common diseases of rice after preprocessing and segmenting
the images, and the highest recognition accuracy reached 97.2%; Jiang et al. [8] also reported
a high accuracy of 95.91% using multiple features of plant leaf images and support vector
machine (SVM). Correlation analysis and the random forest algorithm were coupled by
Huang et al. to increase the precision of wheat stripe rust detection in the early and middle
phases [9]. However, the traditional method of image classification is only applicable to sim-
ple disease classification tasks because it is difficult to manually design and extract effective
features from a complex task [10]. To solve this problem, Hinton et al. [11] proposed deep
belief networks (DBN). Since then, deep learning techniques have developed rapidly due
to their powerful automatic feature extraction capability. Thus, deep learning techniques
have gradually become a research hotspot in the field of crop disease classification [12].
Sladojevic et al. [13] used deep CNNs to classify 13 different types of plant diseases with a
high average accuracy of 96.3%. Lu et al. [14] identified 10 common rice diseases by training
a deep CNN model with an accuracy of 95.48%. Bhatt et al. [15] combined CNNs and deci-
sion tree classifiers to recognize four different types of corn leaf images with an accuracy of
98%, which was 8% higher than using CNNs only. However, since the differences between
fine-grained images are relatively subtle, it is difficult for CNNs to find subtle features that
fully represent the object [16]. In recent years, attention mechanism has been proposed to
inject new inspiration for computer vision tasks, which mimic the human visual system
and can automatically enhance positive information in images without additional com-
ponent labeling information. Therefore, the attention mechanism is embedded in various
CNNs to improve the classification ability of fine-grained crop disease. Gao et al. [17]
proposed a crop disease identification method based on dual-channel effective attention.
Chen et al. [18] improved the identification ability of crop disease networks by combining
the spatial attention module with the efficient channel attention (ECA) module. Wang
et al. [19] solved the problem of serial interference of two kinds of attention by connecting
channel attention and spatial attention in parallel. However, these methods do not consider
the characteristics of crop diseases themselves, and thus these methods perform unstably in
the task of fine-grained classification of crop diseases. Therefore, fine-grained crop disease
classification is still a challenging and realistic task.

In CNNs, receptive field is a very important concept, which is defined as the size of the
region where the pixels on the feature map are mapped on the input image. The size of the
receptive field represents the size of the range of input images that the network can see. The
pixel information outside the receptive field is invisible to the network. CNNs expand the
receptive field by stacking convolution operations. However, the effective receptive field is
only a small fraction of the theoretical receptive field due to the negligible gradient of most
pixels applied to the receptive field [20]. The receptive field can describe the maximum
amount of information of feature points, and the effective receptive field can describe the
effectiveness of information. Just like the human visual system, our eyes can see a large
area, but changes in areas outside the center of vision do not attract much attention. Ding
et al. [21] suggested that the traditional CNNs were generally inferior to Transformer in
downstream tasks due to the small effective receptive field.

In order to improve the recognition ability of CNNs for fine-grained crop diseases, we
focused on the effective receptive field of CNNs and the interaction between global and
local information, and there are few reports on this aspect. We consider that one of the key
factors affecting the ability of CNNs for fine-grained crop disease recognition is that the
effective receptive field of CNNs is too small. This leads to the inability of CNNs to utilize
the overall information of the image, and the modeling process of the network relies only
on the local information of the image. Local information often fails to reflect the differences
between fine-grained crop diseases. In addition, since global and local information are not



Agriculture 2022, 12, 1727 3 of 16

separated and closely related, we believe that learning the correlation between the two is
important to improve the fine-grained crop disease identification capability of CNNs.

Based on the above analysis, in this paper, we propose a novel approach combining
dilated convolution block and dual-pooling channel attention (DC-DPCA) to realize the
expansion of the effective receptive field of CNNs and the interaction of global and local in-
formation. Extensive experiments and model visualization results validate the effectiveness
of the DC-DPCA module. These findings can improve the classification ability of fine-
grained disease by CNNs. Moreover, the DC-DPCA module has low computational and
storage costs and can be used in agricultural terminals to help achieve smart agriculture.

2. Materials and Methods
2.1. Data Set Acquisition and Analysis

The data used in this paper is a partial crop disease dataset from the 2018 AI-Challenger
competition. The dataset contains 27 diseases for 10 crops, and 10 healthy crop categories,
for a total of 59 categories. Most of the diseases were subdivided into general and severe
categories based on their degree of incidence. The dataset contains a total of 36,000 images,
among which the training set and the test set account for 87.4% and 12.6%, respectively.
This is a typical fine-grained classification dataset of crop diseases, where most of the
classification errors are mainly from misclassification of disease severity and similar dis-
eases of the same crop. In addition, the sample distribution of this dataset is extremely
uneven, which may cause the network model to tend to fit categories with more data. The
distribution of the sample images in the training set is shown in Figure 1.
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2.2. Loss Function for Uneven Sample Distribution

To solve the problem of uneven sample distribution, we design a cross-entropy loss
function with a weighting factor (L-balance), which can be expressed as:

L− balance = −∑N
i=0

(
1− Mi

M

)β

∗ P(X, i) ∗ log(Q(X, i)) (1)

where X is the input data, N represents the total number of categories, M and Mi denote the
number of samples in the training set and the number of samples of class i in the training
set, respectively. The hyperparameter β smoothly adjusts the rate at which categories with
larger sample sizes are downgraded. P(X, i) represents the probability that X belongs to
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class i in the labels, and Q(X, i) represents the probability that X belongs to class i in the
model output.

We derive the L-balance loss function to obtain the gradient of the network parameter

update as −
(

1− Mi
M

)β
∗ (Q(i)− P(i)). This indicates that the weight factor

(
1− Mi

M

)β

does not affect the computation of the gradient, maintaining the advantage of fast gradient
computation of the cross-entropy loss function. In addition, categories with more samples
have smaller values of the weight factor and therefore less updates to the parameters of the
network, which prevents overlearning of the network for categories with more samples.
The specific procedure for calculating the gradient is presented in Appendix A.

2.3. Dilated Convolution

In recent years, dilated convolution has been widely used in tasks, such as semantic
segmentation [22] and target detection [23]. Dilated convolution is supposed to expand the
convolution kernel by adding some zero elements between the elements of the convolution
kernel, and the expansion rate is used to express the degree of convolution kernel expansion.
The comparison between normal convolution and dilated convolution operations is shown
in Figure 2. Dilated convolution can greatly increase the effective receptive field of the
convolutional network. The advantages of dilated convolution include fewer parameters,
no change in the feature map size, and high resolution of image. Global information
is important for image understanding, especially for fine-grained disease classification.
The dilated convolution was applied to the classification of fine-grained crop diseases in
this study.
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However, the long-distance dilated convolution from the input layer will make the
sampled signal sparse, destroy the local relevance of the image, and lose the detailed
information learned in the shallow layer of the network, thus affecting the classification
results. Accordingly, dilated convolution only in the deep convolution layer of the network
was used to ensure that the effective receptive field of the network is expanded without
destroying the local response properties in CNNs.

2.4. DC-DPCA Module

Different channels capture different characteristics, and channel attention is used to
measure the importance of these channels. SE-net as a typical network of channel attention
exhibits the strong performance that won the last ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [24]. Therefore, the channel attention module SE module in SE-net is
employed as a prototype of the attention mechanism in this study. As shown in Figure 3,
SE module consists of two main components, including squeeze and excitation. Global
average pooling (GAP) is used to compress the features of a two-dimensional channel into
a real number. Two fully connected layers allow the construction of interdependencies
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between different channels while reducing the number of parameters. Finally, normalized
weights are generated using a sigmoid function to reweight the features. In this way, the
key features can be strengthened, and useless features can be suppressed.
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The traditional SE module uses the real numbers obtained by GAP as the global
response of the channel, but the feature representation capability of GAP is insufficient and
different feature maps may get the same result after GAP [25]. More importantly, GAP
completely ignores the effect of important local responses. Therefore, we introduced dual-
pooling into the squeeze operation of the channel attention module (DPCA). Specifically,
we combined GAP and global max pooling (GMP) to enrich the input of features. GMP
and GAP focus more on important local features and global features, respectively. After
the mapping of fully connected layer, the correlation between global and local features
can be constructed autonomously. For fine-grained disease classification, the network
learns feature maps with subtle differences. Thus, the DC-DPCA module can achieve more
effective fine-grained semantic understanding by learning the interdependence of global
and local information. Since the feature maps in the shallow layer of the network are large
in size and small in number, the information obtained by GMP is not representative and
has negligible impact on feature compression. So, we also apply dual-pooling only to the
attention module in the deep layer of the network.

The DC-DPCA module is a combination of dilated convolution (DC) and DPCA. In this
paper, we replace some of the standard convolutional kernels in convolution blocks with
dilation convolution and embed the DPCA module into the network. Dilated convolution
can provide effective information input to the attention mechanism, and the DPCA module
can perform effective feature reweighting on the feature map to pick out representative
features. It is noteworthy that they are both deployed in the deeper layers of the network.
The structure diagram of embedding the DC-DPCA module in the residual module is
shown in Figure 4. The residual module is mainly composed of two convolution blocks and
a shortcut. We replace the standard convolution in the residual module with the dilated
convolution and embed the DPCA module between the two residual modules.

The overall structure of the DC-DPCA module embedded in ResNet50 [26] is shown
in Figure 5. It mainly contains several residual modules, several SE modules, and several
DC-DPCA modules. The crop disease images are resized to 224 × 224 and fed into the
network. After the features are extracted by the network, they are fed into the classifier
(the fully connected layer) for classification.
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2.5. Experimental Setup

Transfer learning can leverage existing knowledge to train models with better gen-
eralization performance faster [27] and using transfer learning can compensate for the
lack of data volume in the dataset of this paper. We use the CNN models trained on the
ImageNet dataset as pre-trained models, and to retain the already learned generalized
shallow features, such as color, texture, and edges, we freeze the pre-trained weights of the
shallow layers in the CNNs models and only fine-tune the weights of the deep layers.

The configuration of the experimental environment is shown in Table 1. The hyperpa-
rameter settings are shown below. A total of 40 epochs and Adam (as the optimizer) were
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selected in this study. The batch size was set as 32. The initial learning rate is 0.0001 and
a cosine annealing strategy was adopted to periodically adjust the learning rate to help
the model get rid of saddle points [28]. The dilated rate of the dilated convolution was
designed as a sawtooth structure (i.e., dilation rate = [1, 2, 3, 1, 2, 3 . . . . . . ]) to avoid the
gridding effect [29].

Table 1. Configuration of the experimental environment.

Name Parameter

System Windows 10
CPU Intel(R) Core (TM) i5-6200U CPU
GPU NVIDIA GeForce RTX 1080Ti

Deep learning framework Pytorch 1.10.0 + cuda toolkit 10.1
Programming language Python 3.7.0

Environment construction Anaconda 3

2.6. Evaluation Metrics

In order to comprehensively evaluate the performance of the module, we used the
following evaluation metrics: accuracy, precision, recall, and F1-score. The formulas are
as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1− score =
2TP

2TP + FP + FN
(5)

where TP, FP, TN, and FN denote the number of true-positive samples, the number of false-
positive samples, the number of true-negative samples, and the number of false-negative
samples, respectively.

3. Results
3.1. The Impact of L-Balance Loss Function

Using the traditional cross-entropy loss function (Figure 6a), we found that after the
35th epoch, the loss on the training set decreases, but the loss on the test set increases instead,
which is a typical phenomenon of overfitting and seriously affects the learning ability of
the model. The reason for this problem is the unbalanced distribution of the dataset. An
unbalanced data distribution leads to an unbalanced loss distribution. Categories with
more samples will generate a large percentage of losses, and the network will overlearn
these categories with more attention to minimize the overall loss. This leads to poor
generalization of the network and increasing errors on the test set (overfitting phenomenon).
From Figure 6b, we can see that the L-balance loss function can well solve the overfitting
problem caused by unbalanced data distribution. Since the L-balance loss function adds a
weighting factor to the cross-entropy loss function, this weighting factor gives less weight
to the category with a larger number of samples. This treatment balances the distribution
of losses and does not lead to overlearning of the network for certain categories, which
affects the generalization ability of the model.

As shown in Table 2, the accuracy of the ResNet50 with the L-balance loss function was
85.38%, which is 1.72% higher than that of the ResNet50 with cross-entropy loss function.
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one iteration.

Table 2. Comparison of the accuracy of two loss functions.

Loss Function Accuracy

Cross-entropy 83.66%
L-balance 85.38%

3.2. Ablation Experiments

The traditional channel attention module (SE module), channel attention with dilated
convolution module (DC-CA), DPCA module, and DC-DPCA module were embedded into
ResNet50 to demonstrate the superiority of the method. DC-DPCA module is deployed in
the last two stages of ResNet50 with dilated rates of [1, 2, 3, 1, 2, 3, . . . ]. Figure 7 shows
the accuracy of embedding different modules in ResNet50. For the traditional channel
attention module, no significant improvement of accuracy of fine-grained classification
was observed.

The specific results are shown in Table 3, and the ResNet50 + DC-DPCA module has
the best performance in terms of accuracy, precision, recall, and F1-score (87.14%, 87.17%,
87.07%, and 87.10%, respectively). Moreover, the DC-CA module and the DPCA module
are not coupled, and they can both improve the classification accuracy independently.

Table 3. Results of ablation experiments.

Model Accuracy Precision Recall F1-Score

ResNet50 85.38% 85.13% 84.80% 85.06%
ResNet50 + SE 85.70% 85.21% 85.77% 85.48%

ResNet50 + DC-CA 86.25% 86.20% 86.43% 86.33%
ResNet50 + DPCA 86.28% 85.54% 86.32% 86.13%

ResNet50 + DC-DPCA 87.14% 87.17% 87.07% 87.10%
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In order to understand the specific classification of each disease category, we analyzed
the confusion matrix of the classification results for the data in the partial test set, as shown
in the left part of Figure 8. Each column of the confusion matrix represents the predicted
category and each row represents the true category, and only the elements on the diagonal
of the confusion matrix are the elements that are correctly classified. Further, we chose
the 25th category with the highest error rate (general citrus greening) to compare the
classification ability of the network for difficult samples, as shown in the right part of
Figure 8, where TP, TN, FP, and FN represent the number of samples with both labeled and
predicted values of 25, the number of samples with both labeled and predicted values of 26,
the number of samples with labeled values of 26 but predicted values of 25, and the number
of samples with labeled values of 25 but predicted values of 26, respectively. Compared
with the original network, the accuracy of ResNet50 with the embedded DC-DPCA module
is greatly improved. This indicates that the DC-DPCA module has good classification
ability for difficult samples.
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3.3. Experiments on Different Networks

To further demonstrate the robustness of our method, three classical deep CNNs
(i.e., VGG16 [30], MobileNetV2 [31] and InceptionV3 [32]) were compared to avoid the
effect of a single network structure. The DC-DPCA module was deployed in the last six
convolutional layers of VGG16, the last six inverted residuals structures of MobileNetV2,
and the last five inception structures of InceptionV3. As shown in Table 4, the classification
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accuracies of embedding DC-DPCA modules on VGG16, MobileNetV2, and InceptionV3
were improved by 0.84%, 1.06%, and 0.93%, respectively, over those of embedding the
conventional SE modules. These findings demonstrate the strong generalization ability the
DC-DPCA module proposed in this paper.

Table 4. Experimental results on different networks.

Original
Model

Attention
Module Accuracy Precision Recall F1-Score

VGG16
— 83.22% 82.93% 83.25% 82.96%
SE 85.42% 84.72% 85.40% 85.22%

DC-DPCA 86.26% 85.76% 86.41% 86.20%

MobileNetV2
— 83.85% 83.77% 83.93% 83.80%
SE 85.18% 85.02% 85.29% 85.16%

DC-DPCA 86.24% 86.35% 86.22% 86.23%

InceptionV3
— 84.60% 84.30% 84.58% 84.34%
SE 85.84% 85.83% 85.48% 85.59%

DC-DPCA 86.77% 86.73% 86.70% 86.72%

3.4. Visual Verification

We visualized the model from three different perspectives to verify the rationality of
the method proposed in this paper.

3.4.1. Visualization of the Effective Receptive Field

We backpropagated the mean of the feature map to obtain the absolute value of the
gradient of the input tensor, and then display it in a heat map (the yellow area represents
the larger value, i.e., the effective receptive field, and the blue area represents the smaller
value). The larger the gradient value, the greater the influence of the input region changes
on the feature map, i.e., the region is in the effective receptive field of the network. A smaller
gradient value indicates that the region has little impact on the network’s judgment.

We visualized the effective receptive field of the last convolutional block of ResNet50,
as shown in Figure 9, and the yellow area after visualization of ResNet50 with dilated
convolution is larger compared to the original network, indicating that the effective recep-
tive field of the network is larger. This can help the network to obtain a larger range of
information for more effective judgments.
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3.4.2. T-SNE Visualization

We visualized the deep features adopting the t-SNE method [33]. The t-SNE is a
dimensionality reduction method suitable for visualizing high-dimensional data. We use
the t-SNE method to reduce the high-dimensional features extracted by the network into
two dimensions, and different colors represent different kinds.

As shown in Figure 10a, the features of different kinds cannot be separated effectively,
and the features of the same kind are not concentrated enough. This is due to the insufficient
extraction ability of traditional CNNs and channel attention module in fine-grained image
recognition. As shown in Figure 10b, the representations of ResNet50 embedded with
DC-DPCA module are more compact and separable than those of the traditional channel
attention module, proving that the DC-DPCA module allows the network to learn more
discriminative features, which is helpful for fine-grained crop classification.
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3.4.3. Grad-CAM Visualization

The regions of interest of the network for a given category can be visualized using
Grad-CAM [34], which can be used to know whether the network has learned the correct
features or information. In order to further analyze the difference of accuracy, some images
in this experiment were visualized using Grad-CAM (Figure 11). After embedding the
DC-DPCA module, the areas of the network concerned are larger and more continuous,
which can locate the disease areas in the images more accurately.
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4. Discussion

Crop disease is one of the main threats affecting agricultural production. Thus, achiev-
ing the accurate identification of crop disease is a very meaningful task. Deep CNNs have
strong representation learning capabilities, and the integration of deep CNN techniques for
crop disease identification has been widely used.

Because CNNs cannot accurately extract key features from subtle differences, the
identification of fine-grained crop diseases has always been a challenging problem. Global
information is very important for fine-grained crop image recognition, but the effective
receptive field of CNNs is too small to obtain global information due to convolution
operation. Therefore, we propose to expand the effective receptive field of the network
by dilated convolution. In addition, the channel attention mechanism can improve the
performance of the network, but the effect is not obvious in the fine-grained crop disease
classification task. We consider that the reason for this may be that it ignores the response
of local information. Therefore, we propose a dual-pooling channel attention mechanism
to realize the interaction between global information and local information. We combine
the two to form the DC-DPCA module, which is also more in line with the human visual
judgment process, i.e., we first judge what the object is roughly from a whole, and then
combine some important local features to make a more detailed judgment.

We have done abundant experiments to prove the superiority of DC-DPCA module.
ResNet50, VGG16, MobileNetV2, and InceptionV3 embedded with the DC-DPCA module
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have achieved an average accuracy of 87.14%, 86.26%, 86.24%, and 86.77%, respectively,
which is 1.44%, 0.84%, 1.06%, and 0.87% higher than the networks embedded with the
conventional SE module, respectively. At the same time, the classification metrics of preci-
sion, recall and F1-score are also improved. Moreover, we conducted ablation experiments
on the DC-DPCA module, and the experimental results showed that compared with the
original network, the accuracy of ResNet50 with embedded DC module and DPCA module
increased by 0.87% and 0.90%, respectively, and the combination of the two was the best
with 1.76% accuracy improvement. In the identification of difficult samples (general citrus
greening), the DC-DPCA module can help the network achieve higher accuracy. In addition,
we use a variety of visualization methods to fully prove that the DC-DPCA module can
indeed help the network learn representative features in the case of fine-grained images
with subtle differences.

In this study, we compared the results of our experiments on crop disease classification
with those of some other literature, as shown in Table 5. With the same dataset, the accuracy
of our method was 0.16%, 0.21%, and 0.79% higher than that of Wang et al. [19], Sun
et al. [35], and Gao et al. [36], respectively. In addition, the dataset used by Lin et al. [37] is
only a part of the dataset we used, with fewer types of crop diseases, but the accuracy of
our method was still 0.85% higher than theirs, which indicates that our method has good
generalization performance and can be used for large-scale crop disease identification.

Table 5. Comparison of our results with those of other literatures.

Paper Model Classification Accuracy Parameter Time

Wang et al. [19] InResV2 + I_CBAM 61-class 86.98% 122.47 MB 13.4 ms
Sun et al. [35] SMLP_ResNet18 61-class 86.93% 48.6 MB 4.8 ms
Gao et al. [36] DECA_ResNet50 61-class 86.35% 26.16 MB 2.3 ms
Lin et al. [37] GrapeNet 7-class 86.29% 2.15 MB 1.9 ms

Ours DC-DPCA + ResNet 59-class 87.14% 26.13 MB 2.2 ms

We adopt the dilated convolution as a way to expand the effective receptive field
because it does not increase the number of parameters. Moreover, since the DC-DPCA
module is only deployed in the deeper layers of the network, the additional computational
cost is small. Therefore, we tested different models for the number of parameters and the
average time to predict a picture and present the results in Table 5. Our method is not only
more accurate, but also has lower time and storage costs compared to the methods of Wang
et al., Sun et al., and Gao et al. This shows that our method has lower time complexity
and space complexity and can be well applied in agricultural terminals to help achieve
smart agriculture.

Overall, the DC-DPCA module is simple but effective, and successfully enhances
CNNs’ capacity to recognize fine-grained crop diseases.

5. Conclusions

In this study, a DC-DPCA module was proposed to collect a larger range of information,
providing more reasonable input information to the attention module, and DPCA enriches
the feature inputs to the channel attention module and allows the network to construct
correlations between global and local features. The results of comparison experiments and
ablation experiments demonstrated that the method proposed in this paper can improve the
accuracy of fine-grained disease identification and has strong generalization performance.
The visualization results also showed that the DC-DPCA module can help the network
pick out key features that are more discriminative. In addition, the time cost and storage
cost of our model are low, which is conducive to applications in mobile terminals for
precision agriculture.

In the future, we intend to further optimize our approach by realizing the automatic
adjustment of some hyperparameters, such as dilated rate, to accommodate the differences
between different datasets. Meanwhile, we will do some research on model compression
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and embed the model into mobile terminals such as smartphones to achieve crop disease
identification in real agricultural environments.
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Appendix A

The specific procedure for calculating the gradient of L-balance is as follows:
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