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Abstract: The national-scale evaluation and modeling of the impact of agricultural management
and climate change on soils, crop growth, and the environment require soil information at a spatial
resolution addressing individual agricultural fields. This manuscript presents a data science approach
that agglomerates the soil parameter space into a limited number of functional soil process units
(SPUs) that may be used to run agricultural process models. In fact, two unsupervised classification
methods were developed to generate a multivariate 3D data product consisting of SPUs, each being
defined by a multivariate parameter distribution along the depth profile from 0 to 100 cm. The two
methods account for differences in variable types and distributions and involve genetic algorithm
optimization to identify those SPUs with the lowest internal variability and maximum inter-unit
difference with regards to both their soil characteristics and landscape setting. The high potential of
the methods was demonstrated by applying them to the agricultural German soil landscape. The
resulting data product consists of 20 SPUs. It has a 100 m raster resolution in the 2D mapping space,
and its resolution along the depth profile is 1 cm. It includes the soil properties texture, stone content,
bulk density, hydromorphic properties, total organic carbon content, and pH.

Keywords: digital soil mapping; soil process units; soil parameter space; machine learning;
unsupervised classification

1. Introduction

Global food security, the protection of our groundwater resources, and our efforts
to combat climate change largely depend on the sustainable use of soils. This concerns
the strategic planning of an adequate crop rotation, the careful use of fertilizers, and the
restricted use of pesticides. To maintain the soils’ high productivity, we need to provide
crops with sufficient and easily accessible nutrients. However, the soils’ storage potential
is limited. Surplus fertilizer contaminates valuable water resources when it percolates to
the groundwater. It enhances global warming while released as greenhouse gases into the
atmosphere. Furthermore, crops also require sufficient plant-available soil water resources
in their respective development stages. Irrigation needs to be crop- and soil-specific but
may not be the best solution as it restricts water for other uses. In consequence, it requires
thoughtful planning of an adapted crop cycle involving drought-tolerant cultivars [1] and
respective soil water management by alternative means [2,3].

All decisions and their consequences with regards to soil productivity and environ-
mental impact ultimately depend on the soil characteristics on site. Accordingly, the
national-scale evaluation and modeling of the impact of agricultural management and
climate change on agricultural soils, yields, and the environment require information on
the multivariate 3D soil parameter space at a spatial resolution addressing individual agri-
cultural fields [4,5]. This concerns the assessment of the soils’ agricultural productivity [6]
and the restrictions and required adaptations due to prolonged drought periods. Crop
phenology models [7] and the evaluation and modeling of soil-related drought [8–10] and
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corresponding irrigation requirements [11] could be improved to a large extent by adequate
soil information at a high spatial resolution. The same applies to the evaluation of the soils’
storage potential for soil organic carbon [12,13], the modeling of the complex processes
causing the release of greenhouse gases to combat climate change [14], and the modeling of
mitigation options to reduce nitrate pollution [15,16].

Running agricultural process models at national scale requires information about the
multivariate 3D soil parameter space at a spatial resolution targeting individual agricultural
fields. With a spatial resolution of 100 m, this already amounts to about 20 million raster
cells for the agricultural soils of Germany. Process models require high computing capacities
to run repeated simulations considering agricultural management and climate scenarios on
this number of raster cells. Unfortunately, this also goes along with an unnecessarily high
amount of energy consumption, counteracting our efforts to combat climate change. Hence,
a creative data science approach is required to agglomerate the information contained
in the raster cells to a limited number of spatially allocated functional soil process units
(SPUs). This enables us to reduce the required resources without having to accept a lower
spatial resolution.

One might argue why not rather use the spatial map units (SMUs) contained in
conventional soil maps as SPUs? For Germany, there are mainly three reasons why the
contained soil information is inappropriate: (1) The best conventional soil map available
at national scale for Germany is the BÜK at a map scale of 1:250.000 [17]. Its SMUs each
define a paragenesis of soil systematic units (SUs) with highly differing characteristics.
The spatial allocation of these SUs within the SMUs is unknown. Hence, the contained
information is not site-specific when it comes to addressing individual agricultural fields.
(2) Important soil properties guiding soil functionality are only distinguished at a low
hierarchical level of the German soil classification system KA [18]. Rather similar soils
concerning their properties and functionality are assigned to different upper-level SUs.
This particularly applies to the particle size distribution, which is one of the most important
properties guiding soil functionality. (3) Last but not least, the BÜK is uncertain. All soil
maps are. However, on the one hand, the BÜK’s uncertainty is unknown. On the other
hand, its uncertainty likely differs between the federal states as the map was developed by
slightly differing approaches at the regional soil survey institutions and then later joined
and harmonized concerning inconsistencies at the regional boundaries.

The development of creative data science approaches to provide spatially continuous
soil information relates to the research field pedometrics. Pedometrics is an interdisciplinary
science that integrates soil science with geoinformatics and data science. Pedometric
modeling approaches are used to investigate the spatial-temporal variation of the soil
landscape and derive spatially continuous soil information from soil profile data. They rely
on the conceptual model of pedogenesis, with soils and their vertical profile differentiation
and characteristics being the product of the site-specific interaction of the soil-forming
factors through long periods of time [19]. The conceptual approach was extended by
McBratney et al. [20] to include geographic location and proxies for soil itself. The resulting
SCORPAN factors include proxies to soil (S), climate (C), organisms including land use,
agricultural management, etc. (O), relief (R), parent material (P), age (A), and geographic
location (N). They are each approximated by spatially continuous gridded data proxies
from either remote sensing, by conducting a digital terrain analysis, and/or by including
expert knowledge. Padarian et al., Arrouays et al., and Chen et al. [21–23] provide recent
reviews. Many studies refer to pedometric modeling for landscape-scale predictions by
the terms ‘digital soil mapping’ or ‘predictive soil mapping’. I prefer the term pedometric
modeling since digital soil maps are also created by other approaches, and any map is
two-dimensional and, therefore, does not necessarily include 3D data products.

Current approaches in pedometric modeling to generate nationwide soil informa-
tion predominantly address the prediction of individual soil properties. Žížala et al.
and Gebauer et al. [24,25] provide recent 2D applications, Malone and Searle and
Reddy et al. [26,27] 2.5D applications, and Padarian et al. and Ma et al. [28,29] 3D applica-
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tions. However, the separate modeling of individual soil properties and their respective
joint consideration as input to agricultural process models may result in constructed soil
profile information that does not occur in reality and may be unrealistic according to the
underlying pedogenetic processes and dependencies between the properties. Ließ et al. [4]
provide a promising alternative for the joint modeling of multiple soil properties in 3D.
The resulting data product represents the multivariate 3D soil parameter space of the
nationwide agricultural landscape of Germany in terms of spatially allocated SPUs, each
being described by a multivariate parameter distribution along the depth profile from 0 to
100 cm. It includes depth- and property-wise uncertainty estimates.

Here, a data science approach shall be developed that serves to generate such mul-
tivariate 3D data products consisting of spatially allocated functional SPUs. In contrast
to Ließ et al. [4], it involves the development of unsupervised classification methods that
account for differences in variable types and distributions and involve optimization to
identify those SPUs with the lowest internal variability and maximum inter-unit difference
with regards to both their soil characteristics and landscape setting. The approach shall
be evaluated by applying it to the German agricultural soil landscape to improve the
previously mentioned data product.

2. Materials and Methods
2.1. Data
2.1.1. Soil Profile Data—Consistency Check and Gap Filling

The soil profile data from the agricultural soil inventory of Germany [30] were used
for this study. The data were collected by systematic sampling along an 8 km × 8 km grid at
3104 sites. Each soil profile has an identifier and geographic coordinates. The data comprise
field data (dataF) in terms of a soil profile description according to the German soil survey
system KA5 [18], and laboratory data (dataL). From dataF, the horizon-wise texture class,
stone content, and the horizon symbol of all profiles were considered. From dataL, the
particle-size distribution (3 particle-size separates), the bulk density, stone content, total
organic carbon content (TOC), and the pH value of all profiles were considered. In the
following, I describe the consistency check, subsequent data modification, and gap-filling
procedure that were applied prior to any further analysis.

The sampling protocol for the Agricultural Soil Inventory states that samples for sub-
sequent laboratory analysis ought to be taken for the depth increments 0–10, 10–30, 30–50,
50–70, and 70–100 cm while taking into account horizon boundaries, i.e., including multiple
samples per depth increment for each corresponding soil horizon present with five or more
centimeters [31]. However, as could be expected for such a large soil survey campaign
involving multiple teams, the dataset contains some inconsistencies. To combine dataF and
dataL, the two datasets were checked for mismatches in absolute profile depth and horizon
sequence notation (term used for dataF and dataL), as well as non-compliant data entries,
duplicates or gaps in the horizon sequence notation. After correcting non-compliant data
entries, the next correction step concerned the mismatches in profile depth and horizon
sequence notation. For their correction, I tested whether mismatches concerning depth and
horizon sequence notation corresponded to additional layers (or horizons) and whether the
difference was minor, up to 5 cm, i.e., mismatches in line with the sampling protocol. After
adjusting the layer boundaries accordingly, all other mismatches were corrected stepwise
by favoring the profile depth of dataF over dataL in case the difference was not caused
by additional layers (or horizons), and by splitting layers of dataL if they included one or
more horizon boundaries that differed from the upper or lower layer boundary by five
or more centimeters. This procedure resulted in matching horizon sequence notation and
profile depth between dataF and dataL, and the two datasets were combined using the
profile identifier. From now on, these joint depth divisions will be referred to as horizons.

The modifications in the horizon sequence notation in dataL and dataF resulted in
data gaps concerning all laboratory or field data of a certain depth interval. Further,
using interpolation methods to fill these gaps may not be the best option due to the
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geological stratification, i.e., discontinuities in the soil profiles. In addition, the data gaps
relating to the uppermost and last soil horizon cannot be filled in this way. Therefore, the
following procedures were applied: The resulting texture data gaps in dataL were filled by
additionally considering texture data from dataF. The mean value of the sand, silt and clay
content (dataL) from other horizons with matching texture classes (dataF) was used. This
happened stepwise. If the prerequisites were met, only data from the same profile were
used. Otherwise the complete dataset’s respective class-wise mean values were assigned.
Finally, the remaining texture classes were filled by the KA5 texture class’s mean sand, silt,
and clay content. The latter corresponds to layers with uncommon soil texture classes and
hence too few data entries (less than five). For data gaps in the TOC of organic soil horizons,
a similar approach was followed considering horizon symbols and organic texture classes.
For TOC in the mineral soil horizons, as well as the pH, bulk density and stone content of all
horizons, random forest (RF) models were trained. Model training, tuning, and evaluation
were conducted with nested stratified cross-validation (CV), as explained in Section 2.3.2.
As predictors, the same property’s values from upper and lower horizons as well as related
soil properties of over- and underlying horizons were used. Related properties of the same
horizon could not be used unless for those where dataF was used to fill gaps in dataL.

After gap filling, some additional variables were created. For the stone content, the
data from dataF and dataL were combined by assigning the maximum of the two values.
This was done since on the one hand, dataL underestimates the stone content with regards
to large rock fragments beyond the size of the steel cores used for sampling. On the other
hand, the visual method applied to estimate the stone content in dataF may neglect smaller
rock fragments. Concerning hydromorphic features, one variable was created for each, the
presence (value = 1) or absence (value = 0) of stagnic and gleyig properties, and named
symbol_S and symbol_G. The information was derived from the horizon symbology of
dataF. An additional variable ‘mob’ was included in the dataset assigning each horizon to
either ‘mineral’, ‘organic’, or ‘bedrock’ by considering the TOC, horizon symbology, and
the availability of texture data. Each profile was then subdivided into 1 cm slices up to a
depth of 100 cm.

2.1.2. Data Cube of Covariates

The covariates included to train and apply the machine learning models for nationwide
spatial prediction were grouped according to the SCORPAN factor they represent. Table 1
gives an overview. Ließ et al. [4] provide a description of the German landscape setting.

Concerning SCORPAN C, seasonal averages of air temperature and drought and the
sum of precipitation of the winter (Dec., Jan., and Feb.) and the summer (Jun., Jul., and Aug.)
months were derived from the German Weather Service (DWD). The seasonal averages of
the drought index were calculated from DWD temperature in degrees centigrade (T) and
precipitation in millimeters (P) grids as P/(T + 10).
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Table 1. Covariates.

Soil Forming Factor Abbreviation Description Data Source

Climate

PRESU Average seasonal precipitation (summer) [raster, 1000 m]
[32]PREWI Average seasonal precipitation (winter) [raster, 1000 m]

TEMSU Average seasonal temperature (summer) [raster, 1000 m] [33]TEMWI Average seasonal temperature (winter) [raster, 1000 m]

DINSU Average seasonal drought index (summer) [raster, 1000 m]
[34]DINWI Average seasonal drought index (winter) [raster, 1000 m]

Organisms/Soil

B0118, 0218, . . . B0818, B8A18, B1118, B1218 Sentinel-2 spectral bands B1, B2, . . . B8, B8A, B11, and B12
composites of the 2nd yearly quartile of the year 2018

B0121, 0221, . . . B0821, B8A21, B1121, B1221 Sentinel-2 spectral bands B1, B2, . . . B8, B8A, B11, and B12
composites of the 2nd yearly quartile of the year 2021

EVI18, EVI21

Enhanced vegetation index, calculated from Sentinel 2 band composites
of 2nd quartile 2018 & 2021 (S2-Q2-18/21),

EVI = G ∗ (B8A − B04)/(B8A + C1 ∗ B04 − C2 ∗ B02 + L),
with G = 2.5, C1 = 6, C2 = 7.5 and L = 1

MSI18, MSI21 Moisture index: S2-Q2-18/21, MSI = B11/B08

NDM18, NDM21 Normalized difference moisture index: S2-Q2-18/21,
NDMI = (B08 − B11)/(B08 + B11)

NDV18, NDV21 Normalized difference vegetation index: S2-Q2-18/21,
NDVI = (B08 − B04)/(B08 + B04)

NDW18, NDW21 Normalized difference water index: S2-Q2-18/21,
NDWI = (B03 − B08)/(B03 + B08)

PSR18, PSR21 Plant senescence reflectance index: S2-Q2-18/21, PSRI = (B04 − B02)/B06

DMP16 Dry matter productivity, June 2016 [raster, 300 m] [35]DMP18 Dry matter productivity, June 2018 [raster, 300]

VPI16 Vegetation Productivity Index, June 2016 [raster, 300 m]
[36]VPI18 Vegetation Productivity Index, June 2018 [raster, 300 m]
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Table 1. Cont.

Soil Forming Factor Abbreviation Description Data Source

Topography

GMK00 Geomorphographic map of Germany [raster, 250 m resolution,
map scale 1:1,000,000] [37]

DEM00 Digital elevation model [raster, 25 m resolution]

[38]

SLO01, SLO05, SLO10 Slope: calculated from DEM (cfD) with a search radius of 1, 5, 10 cells,
using SAGA module Morphometric features

NOR01, NOR05, NOR10 Northness: derived from aspect cfD with a search radius of 1, 5, 10 cells,
using SAGA module Morphometric features

EAS01, EAS05, EAS10 Eastness: derived from aspect cfD with a search radius of 1, 5, 10 cells,
using SAGA module Morphometric features

TST01, TST05, TST10 Terrain surface texture: cfD with a search radius of 1, 5, 10 cells, using
SAGA module Terrain Surface Texture

TSR01, TSR05, TSR10 Terrain surface ruggedness: cfD with a search radius of 1, 5, 10 cells,
using SAGA module Terrain Ruggedness Index

CON01, CON05, CON10 Convergence index: cfD with a search radius of 1, 5, 10 cells, using SAGA
module Convergence Index (Search Radius)

SLH00 Slope height: cfD using SAGA module Relative Heights and Slope Positions

VAD00 Valley depth: cfD using SAGA module Relative Heights and Slope Positions

NOH00 Normalized height: cfD using SAGA module Relative Heights and
Slope Positions

WIN00 Wind exposure: cfD using SAGA module Wind Effect

NOP00 Negative openness: cfD using SAGA module Topographic Openness

POP00 Positive openness: cfD using SAGA module Topographic Openness

VOF0S Vertical overland flow distance to all river segments: cfD using SAGA
module Terrain analysis/Channels

VOF0M Vertical overland flow distance to major rivers: cfD using SAGA module
Terrain analysis/Channels

HOF0S Horizontal overland flow distance to all river segments: cfD using SAGA
module Terrain analysis/Channels

HOFOM Horizontal overland flow distance to major rivers: cfD using SAGA
module Terrain analysis/Channels

SWI00 SAGA wetness index: cfD using SAGA module SAGA Wetness Index
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Table 1. Cont.

Soil Forming Factor Abbreviation Description Data Source

Parent material

LIT00 Lithology, Hydrogeological map of Germany, HÜK
[polygon shapefile, map scale 1:250,000]

[39]
STR00 Stratigraphy, Hydrogeological map of Germany, HÜK

[polygon shapefile, map scale 1:250,000]

BAG00 Groups of soil parent material in Germany [polygon shapefile,
map scale 1:5,000,000] [40]

Soil

BGL00 Soil scapes in Germany [map scale 1:5,000,000] [41]

DMP86 Dry matter productivity, DMP18–DMP16 [raster, 300 m]

VPI86 Vegetation Productivity Index, VPI18–VPI16 [raster, 300 m]

Geographic location LAT00 INSPIRE Latitude
[42]LON00 INSPIRE Longitude
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To approximate SCORPAN O, the following covariates were included: Sentinel-2 data
composites of the second yearly quartile of 2018 and 2021 of the bands B01, B02, B03, B04,
B05, B06, B07, B08, B8a, B11, and B12, as well as the vegetation indices EVI, MSI, NDMI,
NDVI, NDWI, and PSRI (please see Table 1 for the details). The composites were compiled
using the Sentinel-Hub on behalf of the surface reflectance values, from the Level 2A
product. The composites were downloaded as multiple tiles in 20 m spatial resolution, then
mosaicked and resampled to the 100 m Infrastructure for Spatial Information in Europe
(INSPIRE) grid topology [42] before calculating the vegetation indices. Additionally, remote
sensing products on dry matter productivity (DMP) and the Vegetation Productivity Index
(VPI) of the time slot June 11th–20th of the years 2016 and 2018 were derived from the
Copernicus Global Land Service. All SCORPAN O covariates seek to capture the main
annual phase of agricultural productivity.

SCORPAN R was represented by the geomorphographic map of Germany and terrain
parameters derived by digital terrain analysis with the System for Automated Geoscientific
Analyses (SAGA) [43] from the EU–DEM digital elevation model.

The map of the “Groups of soil parent material” was included to approximate SCOR-
PAN P. Lithology and stratigraphy according to the hydrogeological map of Germany were
additionally incorporated.

Proxies to soil itself (SCORPAN S) can generally be included in the form of conven-
tional soil polygon maps, and remote sensing products relating to soil properties. Regarding
the former, the map of the German soil scapes was included. Concerning the latter, dif-
ferences in DMP and VPI between the dry year 2018 and the rather wet year 2016 were
included. They relate to crop phenology affected by drought and, therefore, to the root
zone plant-available soil water capacity.

All covariates were resampled to the INSPIRE grid topology at 100 m resolution [42].
This resolution was chosen as a compromise between the ambition to provide soil infor-
mation for individual agricultural fields and a restrictive use of computing capacities. The
nearest-neighbor method was used for categorical predictors, and B-spline interpolation
was applied for numeric predictors. INSPIRE latitude and longitude were additionally
included to represent the geographic location (SCORPAN N), and particularly to represent
spatial patterns not captured by the other data proxies. The national border and coastline of
Germany were derived from the digital land model at map scale of 1:250,000 (version 2.0)
provided by the Federal Agency for Cartography and Geodesy (©GeoBasis-DE/BKG, 2020).

2.2. Differentiation of Functional SPUs

The nationwide data product is composed of a limited number of spatially allocated
functional SPUs, each being defined by a multivariate parameter distribution along the
depth profile. Each SPU’s internal variability is described by a probability density distribu-
tion of all considered soil properties in all 1 cm depth slices. Two data science approaches
were developed to derive SPUs with the lowest possible internal variability and maximum
inter-unit difference with regards to both their soil characteristics and landscape setting.
They are unsupervised classification methods, rely on the partitioning-around-medoids
(PAM) algorithm [44] and involve optimization. Furthermore, they address the major
concern that the joint consideration of mixed variable types (categorical and numerical)
and variables of different distribution and scale have on the clustering result. Ahmad and
Khan [45] and Van Mechelen et al. [46] provide an overview. In this particular case, there are
variables with 1–0 coding for presence–absence type variables (symbol_S, symbol_G), vari-
ables with many zero values (stone content), variables with a threefold distribution (texture
represented by sand, silt, and clay content), and variables with a bimodal distribution (TOC,
bulk density) due to the inclusion of profiles that are all-mineral and profiles composed of
mineral and organic horizons. PAM clustering after a mere data transformation did not
yield satisfying results.
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The two approaches will be described in the following sections. However, two aspects
concern the methodology of both approaches:

1. The gap-filled, sliced (1 cm slices) profile data were used to calculate individual
property distance matrices. First, the data were normalized to a range between 0 and
1, considering all slices in all profiles except for texture. For texture, the composites’
relation of sand, silt, and clay content were kept summing up to 1. Then, the mean of
the slice-wise Euclidian profile distance was calculated for each variable and stored
in separate distance matrices. Non-defined distances in case of differences in soil
material causing missing data, e.g., missing texture data for organic horizons or slices
assigned to bedrock, were assigned the maximum distance occurring between any two
profile slices for the respective soil property. These property-wise distance matrices
were then again normalized, resulting in a minimum distance of 0 and a maximum
distance of 1. Hereafter, they will be referred to as normalized single-property distance
matrices (nSPdist).

2. The respective input parameter vectors of the involved optimization process to extract
the SPUs are evaluated on behalf of a complex objective function. It seeks to identify
those SPUs with the lowest possible internal variability and maximum inter-unit
difference with regards to both their soil characteristics and landscape setting. The
former is evaluated by using the Silhouette Index [47]. The latter requires the training
of machine learning models to capture the soil-landscape relation and evaluate their
predictive performance. A simple and fast learner is required to reduce the required
computation time. The random forest (RF) algorithm [48] was chosen to suit this
purpose. It is described in Section 2.3.1.

2.2.1. Approach 1 (PAMp)—SPU Extraction by P Weights Optimization

Approach 1 seeks to obtain the optimal SPUs in terms of the lowest property-wise pre-
dictive RMSE from pedometric model training by simultaneously optimizing the number
of clusters nclus and the weights Pw1, Pw2, Pw3, . . . , Pwp (p = number of soil properties)
applied to the nSPdist. The weights give the inter-profile distances with regards to certain
soil properties higher or lower importance compared to others. To avoid confusion, the
weights will hereafter be termed P weights (property weights). Approach 1 will, therefore,
be named PAMp. The objective function evaluated for each of the number of n parameter
vectors of z = 8 components (seven P weights and nclus) evaluated in each iteration step of
the optimization is shown in Figure 1. It consists of the following parts:

1. Pw1, Pw2, Pw3, . . . , Pwp in the range [0.1, 1] are assigned to each nSPdist, which are
then combined by calculating the weighted average (dist). The values of the resulting
distance matrix are normalized to the range [0, 1].

2. PAM clustering is conducted on the normalized distance matrix (ndist) with
nclus = 8, 9, . . . , 100. The nclus minimum value was selected according to Ließ et al. [4].
For each input parameter vector including Pw1, Pw2, Pw3, . . . , Pwp and nclus, the
best cluster solution is selected on behalf of the Silhouette Index.

3.1. The resulting clustering solution Rdatain, which assigns each soil profile to one cluster,
is then combined with the respective l covariates’ values x1, x2, . . . , xl of each profile
(Pdata) to compile the predictor-response dataset (PRdata). The data were subdivided
into 5 folds for a stratified 5-fold CV (Section 2.3.2). Categorical covariate values with
zero data instances in any of the folds were removed.

3.2. Each profile’s property-wise mean along the depth profile, Rdatain [y1, y2, . . . , yp],
was used to compute property-wise means per cluster.

4. An RF model was trained by 5-fold stratified CV using the PRdata [3.1] as input. The
function ‘rfsrc’ of R package ‘randomForestSRC’ [49] was used with 1000 trees, a
node size of five, and the default setting for the mtry parameter, while imputing no
data values.

5.1. The previously computed property-wise cluster means [3.2] were assigned to each profile
on behalf of the test set RF predictions (Rdatapred) generating Rdatapred [y1, y2, . . . , yp].
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5.2. The property-wise RMSE was calculated using Rdatain [y1, y2, . . . , yp] and Rdatapred
[y1, y2, . . . , yp]. The objective function value corresponds to the negative mean of the
property-wise RMSE values. It is maximized in the optimization process.
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function. Each ndist was calculated as the normalized average of the nSPdist of the soil
properties considered in the respective step.

In Step 1, PAM is applied to ndist1 testing a number of 2 to nclu clusters. The cluster
solution with the best Silhouette Index value is chosen unless there are cluster solutions
with a sufficiently good Silhouette Index value equal to or above the threshold sil1. In that
case, the cluster solution with the maximum number of clusters from all cluster solutions
with a Silhouette Index value greater than or equal to sil1 is chosen. In Step 2, PAM is
conducted for each cluster resulting from Step 1. This requires subsetting ndist2 according
to the profile IDs that were assigned to the respective higher-level Step 1 clusters cl1, cl2, . . .
and normalizing the distance matrix subsets, which were then named ndcl1, ndcl2, etc. The
clusters resulting from Step 2 receive a 2nd cluster identifier, e. g., cl1|1, cl1|2, cL2|1, cl2|2
indicate that the two clusters from Step 1 were each subdivided into two clusters in Step 2.
This procedure is repeated likewise for Step 3 and Step 4.
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Figure 2. Multistep clustering part of the objective function of the optimization process for SPU
differentiation with PAMm. All white boxes are required input data. White ovals reflect parameters
that are optimized. ndist = normalized distance matrix, nclu = maximum number of clusters to test in
each step, sil = threshold of the Silhouette Index, silmin minimum Silhouette Index value, pmin mini-
mum number of profiles in each cluster, nd = normalized distance matrix subset, PAM = partitioning
around medoids clustering, Rdata = response data, nclus number of clusters.

In order not to force unreasonable splitting into a high number of clusters supported
by only a low number of profiles, two criteria are tested after each step: (1) The Silhouette
Index value of the ndz cluster solution needs to be greater than or equal to the threshold
value silmin, and (2) the number of profiles in each resulting cluster from ndz needs to have a
minimum number of profiles pmin. If any of the criteria are not fulfilled, then no subdivision
is conducted for the respective higher-level cluster in this step, and all profiles receive the
identifier 0. pmin is also considered to check whether the upper parameter limit of nclu
needs to be reduced before running PAM on ndz. PAM is run in parallel for the respective
profile subsets starting from Step 2. A stopping criterion is included to stop in case Step
2 or Step 3 leads to an overall number of clusters nclus of 100 or more. Seven parameters
were optimized in PAMm:

• nclu: The maximum number of clusters considered in each step.
• sil1,2,3,4: One Silhouette Index threshold value per step.
• silmin: The minimum Silhouette Index value tolerated to accept a lower-level cluster-

ing solution.
• pmin: The minimum number of profiles per cluster.

Table 2 displays the respective parameter ranges. The ranges were chosen according
to some test runs.
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Table 2. Parameter ranges for SPU differentiation by Approach 2.

Parameter Lower Limit Upper Limit

nclu 3 10

sil1, 0.3 0.4

sil2,3,4 0.4 0.8

silmin 0.25 0.4

pmin 5 10

2.3. Modeling

The multivariate parameter distributions of the SPUs obtained by PAMp and PAMm
are defined by the respective groups of assigned soil profiles. To regionalize the SPUs to
the continuous space and to further enhance the extraction of the already-considered soil-
landscape relation, two machine learning models were trained for each of the PAMp and
PAMm results using the RF algorithm and the support vector machine (SVM) algorithm.
Thus, model training by machine learning was applied for three scopes:

1. for gap filling,
2. for SPU differentiation, and
3. to train the pedometric model fathoming the soil–landscape relation to obtain nation-

wide and spatially continuous predictions (regionalization task).

2.3.1. Machine Learning Algorithms

The RF algorithm [48] was applied for all three scopes. It is a recursive partitioning
method. Depending on the supervised learning task at hand, it grows either multiple
regression or classification trees. The results of all trees are averaged. In each tree, the
data are subsequently partitioned by the predictor variables into preferably homogeneous
subsets regarding the response variable. The mean of each data subset (regression task) or
the dominating class (classification task) is then used as the predicted response value. A
partition gateway is defined by the predictor and the threshold value in its range, which
achieves the most homogeneous partition into two subsets (tree branches). Overall, the
stability of the tree ensemble is obtained by training each tree model with a data subset
and by using a subset of all predictors. RF is known to achieve reasonable results without
tuning, an important characteristic to make it the perfect choice to act as the simple and
fast learner for the objective function of the optimization task for Scope (2).

The function ‘cforest’ of R package ‘party’, an RF implementation employing condi-
tional inference trees as base learners [50], was used to train the models for gap filling.
Model training involved 500 trees (training 1000 trees did not improve model perfor-
mance in this particular case). The size of the predictor subset (mtry) was tuned via a
one-dimensional grid search including one to all predictors. The function ‘rfsrc’ of R pack-
age ‘randomForestSRC’ [49] was used for the tasks of Scopes (2) and (3). It provides a fast
parallel computing implementation of RF. In both cases, 1000 trees were trained. However,
while for Scopes (1) and (3) the mtry parameter was tuned, for Scope (2), the mtry parameter
was set to the default to speed up computation time, i.e., use RF as a fast and simple learner.

The SVM algorithm [51] was applied for the regionalization task (Scope (3)) and
compared to the RF models. While RF was applied to pay tribute to the fact that the
optimization might have favored an SPU differentiation whose soil–landscape relation is
well captured with RF (learner in the objective function), the SVM algorithm was chosen as
a powerful algorithm, which led to promising results when capturing the soil–landscape
relation to generate the data product of Ließ et al. [4].

SVMs were developed by Cortes and Vapnik [51]. In binary classification tasks, they
search for the hyperplane that maximizes the margin between the two classes’ closest
points. The properties of this decision surface ensure the SVM’s high generalization ability.
Points along the boundary are called support vectors. The data are projected to the higher
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dimensional space via kernel techniques to allow for separation in case of nonlinearity.
The radial basis function kernel was applied for this purpose. It helps to build complex
decision boundaries and includes two parameters: C and γ, which need to be tuned. The γ
parameter can be interpreted as the inverse of the radius of influence of the support vectors.
C is the cost or penalty parameter. With a small C, the penalty for misclassified points is
low; high values increase the risk of overfitting. Finally, it balances the misclassification of
training samples against the simplicity of the hyperplane. R package “e1071” provides the
R interface to the LIBSVM library for SVM [52,53]. To allow for multi-class classification, it
uses the one-against-one technique by fitting all binary classifiers and finding the correct
class by a voting mechanism. The two-dimensional parameter space to search for the
optimal parameter combination expands in the following ranges: C [0.01, 100], γ [0.01, 10].

2.3.2. Model Training, Tuning, and Evaluation

For the gap-filling task, the predictor-response dataset consists of horizon-wise data
(horizon sequence notation after combining dataL and dataF). For the SPU differentiation
and regionalization tasks, it consists of profile-wise data. All numerical predictors were
scaled to the range 0, 1 to avoid misbalance. Categorical data were kept for RF and
recoded into dummy variables for SVM. To generate the predictor-response dataset for
Scopes (2) and (3), the predictor values were extracted at the soil profile sites, and each soil
profile was assigned to an SPU. Concerning SPU differentiation, the latter was performed
in each iteration step of the objective function, as explained in Figure 1. Concerning the
regionalization task, the final SPUs obtained respectively by PAMp and PAMm were used.

Model training and evaluation were conducted by a 5-times repeated 5-fold stratified
CV [54] to obtain robust models. For the machine learning applications (Scope (1) and
Scope (3)) involving model tuning via grid search (RF) or optimization (SVM), the CV
was nested. The predictor-response dataset was subdivided into five folds of equal size
using the response variable for stratification. Of these five folds, then always one fold was
kept out as a test set while the other four were combined to form the model training set,
leading to five separate test set evaluations (one per data instance). Each of the outer CVs’
training sets was again subdivided to provide the datasets for parameter tuning in the
inner CV cycle. Concerning the categorical predictors, categories not present in all data
subsets were removed before model training, tuning, and evaluation. To evaluate model
performance, the test set predictions were compared to the measured data to calculate the
slice-wise RMSE for each of the considered soil properties. The interquartile ranges of the
SPUs’ multivariate distributions were used for this purpose, i.e., for each considered soil
property and depth slice, it was tested whether the test set profile measurements fall within
the interquartile range of the slice- and property-wise density distributions of the predicted
SPU (residual of zero), whether they are smaller than the 25% quantile and how much
(positive residual), or whether they are larger than the 75% quantile (negative residual).
The five repetitions of the 5-fold CV resulted in 25 models and five RMSE values.

For the RF models to conduct gap-filling, a repeated 5-fold stratified group CV was
applied, i.e., all horizons of a profile were assigned to the same fold to avoid overoptimistic
test set estimates due to spatial autocorrelation. Concerning the regionalization task with
SVM, the parameter tuning involving optimization was in a first step only conducted on
behalf of one out of the 25 training sets of the outer CV cycle to check whether this provided
satisfying results, while the obtained tuning parameter values were applied to all other
training sets. Altogether, for the regionalization with RF and SVM of the SPUs obtained
by PAMp and PAMm, four pedometric models were trained. They will be referred to as
RF–PAMp, RF–PAMm, SVM–PAMp, and SVM–PAMm.

2.3.3. Variable Importance

Concerning gap filling (Scope (1)) with cforest, the package’s internal variable impor-
tance (VI) measures were used. Concerning the regionalization task (Scope (3)), a different
procedure was followed to allow for the comparison between SVM and RF. For model
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interpretation, each predictor’s importance was obtained by permuting the predictor in
the test set before model application. In this way, any predictor-response relationship with
regards to that predictor was eliminated. The resulting relative decrease in model perfor-
mance was then attributed as vVI to the respective predictor. Values of five permutations
were averaged. The VI values for the dummy variables created from each of the categorical
predictors (SVM) were summed. Due to the five times repeated 5-fold CV approach (outer
CV cycle), the VI plots display boxplots of 25 VI values for each predictor.

2.4. Genetic Algorithm Optimization

Genetic algorithm (GA) optimization was applied to differentiate the SPUs (Scope (2))
and to conduct parameter tuning in machine learning (Scope (3)). The GAs’ operational
structure is inspired by the general principles of biological evolution involving mutation,
crossover, selection, and elitism [55]. The objective function for Scope (2) was described in
Section 2.2 (Figures 1 and 2). The objective function for SVM parameter tuning (Scope (3))
was defined as indicated by Figure 1, Parts 3–5 while replacing Part 4 with SVM. It corre-
sponds to the inner CV cycle (Section 2.3.2). RF (Scope (1) and Scope (3)) does not require
optimization for parameter tuning [4].

The parameter space to be searched for the optimal combination of parameter values
had to be predefined by providing a minimum and maximum value for each parameter.
Then, a random number of n parameter vectors, the parent population, was evaluated by
a problem-specific objective function. Weights were assigned to each parameter vector
according to its objective function value before starting to modify them by conducting
‘selection’, ‘mutation’ and ‘crossover’ to form a new population of parameter vectors, which
was again evaluated. This process was iterated until either (1) an initially defined objective
function value was achieved by any of the vectors, (2) a maximum number of iterations
was reached, or (3) the overall best objective function value did not improve for a certain
number of consecutive iterations. GA optimization was run in parallel, subdividing the
parent population of size 500 into subpopulations and allowing for limited exchange of
population individuals (parameter vectors) between the so-defined islands. Twenty-five
islands (20 parameter vectors per island) were used for the differentiation of the SPUs with
PAMp (Scope (2)) and the tuning of the SVM models (Scope (3)). For the differentiation
of the SPUs with PAMm (Scope (2)), the number of islands was reduced to 5, resulting in
a subpopulation size of 100 per island. The search on the islands was not run in parallel
but sequentially due to conflicts that were otherwise caused by the parallelization of the
objective function.

3. Results and Discussion
3.1. Gap Filling

Gap-filling of the soil profile data was needed to calculate the slice-wise distance
matrices and run PAMp and PAMm. The gaps originated from the correction for horizon
sequence notation mismatches between dataL and dataF. With an average R2 between 0.86
and 0.95, all gap-filling models displayed very good predictive performance (Figure 3B).
The RMSE amounted to a mean value of 0.12 g cm−3 for bulk density, 5.9 Vol-% for stonesF,
3.7 Vol-% for stonesL, 5.9 g kg−1 for TOC, and 0.22 for pH (Figure 3A1–A4). The respective
gap-filling of dataL with dataF for the particle size distribution and TOC of organic horizons
remains unevaluated. It consists of the consideration of field estimates for those depth
increments where laboratory data is missing, a common practice in soil science. The data
are of course less precise since the KA5 soil survey instructions identify property classes
instead of precise values. Errors in the class assignment were corrected by the approach
presented here.



Agriculture 2022, 12, 1784 15 of 31

Agriculture 2022, 12, x FOR PEER REVIEW 14 of 31 
 

 

Twenty-five islands (20 parameter vectors per island) were used for the differentiation of 
the SPUs with PAMp (Scope (2)) and the tuning of the SVM models (Scope (3)). For the 
differentiation of the SPUs with PAMm (Scope (2)), the number of islands was reduced to 
5, resulting in a subpopulation size of 100 per island. The search on the islands was not 
run in parallel but sequentially due to conflicts that were otherwise caused by the paral-
lelization of the objective function. 

3. Results and Discussion 
3.1. Gap Filling 

Gap-filling of the soil profile data was needed to calculate the slice-wise distance ma-
trices and run PAMp and PAMm. The gaps originated from the correction for horizon 
sequence notation mismatches between dataL and dataF. With an average R2 between 0.86 
and 0.95, all gap-filling models displayed very good predictive performance (Figure 3B). 
The RMSE amounted to a mean value of 0.12 g cm−3 for bulk density, 5.9 Vol-% for stonesF, 
3.7 Vol-% for stonesL, 5.9 g kg−1 for TOC, and 0.22 for pH (Figure 3A1–A4). The respective 
gap-filling of dataL with dataF for the particle size distribution and TOC of organic hori-
zons remains unevaluated. It consists of the consideration of field estimates for those 
depth increments where laboratory data is missing, a common practice in soil science. The 
data are of course less precise since the KA5 soil survey instructions identify property 
classes instead of precise values. Errors in the class assignment were corrected by the ap-
proach presented here. 

 
Figure 3. Predictive model performance of the RF models for gap filling. (A) RMSE boxplots of 25 
models, (B) R2 boxplots of 25 models. BD = bulk density, stonesF = stone content from dataF, stonesL 
= stone content from dataL, and TOC = total organic carbon content. 

Data gaps in soil profile data are a common feature. Multiple approaches have been 
applied, including extrapolation to estimate soil properties in deeper soil horizons, gap-
filling to provide estimates on behalf of expert knowledge, or assigning values from asso-
ciated databases [56,57]. I am unaware, though, of any other publication documenting the 
use of multiple soil properties from over- and underlying horizons to train machine learn-
ing models to conduct gap filling. However, machine learning algorithms are readily ap-
plied to fill spatial data gaps in remote sensing data [58,59] and temporal gaps in time 
series data [60,61]. Another related field is the development of pedotransfer functions to 
estimate missing data of soil properties that are laborious to determine from other, readily 
available properties using machine learning. Ghanbarian and Pachepsky [62] provide a 
review. 

Figure 4 displays the relative VI values for the respective gap-filling models for bulk 
density (Figure 4a), stonesL (Figure 4b), stonesF (Figure 4c), TOC (Figure 4d), and pH 
(Figure 4e). The minimum and maximum profile values, the horizon’s material, the hori-
zon’s sand and silt content, as well as the underlying horizon’s TOC value, were the most 
important predictors for gap-filling bulk density data. The stonesF data were gap-filled 
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25 models, (B) R2 boxplots of 25 models. BD = bulk density, stonesF = stone content from dataF,
stonesL = stone content from dataL, and TOC = total organic carbon content.

Data gaps in soil profile data are a common feature. Multiple approaches have
been applied, including extrapolation to estimate soil properties in deeper soil horizons,
gap-filling to provide estimates on behalf of expert knowledge, or assigning values from
associated databases [56,57]. I am unaware, though, of any other publication documenting
the use of multiple soil properties from over- and underlying horizons to train machine
learning models to conduct gap filling. However, machine learning algorithms are readily
applied to fill spatial data gaps in remote sensing data [58,59] and temporal gaps in time
series data [60,61]. Another related field is the development of pedotransfer functions to
estimate missing data of soil properties that are laborious to determine from other, readily
available properties using machine learning. Ghanbarian and Pachepsky [62] provide
a review.

Figure 4 displays the relative VI values for the respective gap-filling models for
bulk density (Figure 4a), stonesL (Figure 4b), stonesF (Figure 4c), TOC (Figure 4d), and
pH (Figure 4e). The minimum and maximum profile values, the horizon’s material, the
horizon’s sand and silt content, as well as the underlying horizon’s TOC value, were the
most important predictors for gap-filling bulk density data. The stonesF data were gap-
filled detecting the horizon’s dataL stone content, the horizon’s material and the stonesF
values of the over- and underlying horizons as main predictors. For stonesL, the most
important predictors were the horizon material and the horizon’s dataF stone content. Gap-
filling the TOC data indicated the first horizon’s TOC value, the underlying horizon’s TOC
value (below gap), the profile’s minimum TOC value, and the horizon’s sand content as
the most important predictors, followed by the horizon’s symbol annotation as A-horizon
or H-horizon. Although the gap filling was applied for mineral horizons only, there were
still horizons assigned as organic (symbol_H), indicating some questionable assignments
during soil profile description in the field. Gap-filling pH data indicated the horizon’s sand
content, the underlying horizon’s TOC value, and the profile’s maximum total inorganic
carbon content as the most important predictors. Overall, several soil properties related to
the target property were detected as important predictors in all cases. Still, for each of the
target properties, there were some non-important predictors or predictors with very low VI
values. Ultimately, all information which could be of any help for filling gaps with regards
to the respective property were included to make sure the result with the lowest predictive
uncertainty was obtained.
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Figure 4. Relative variable importance values (VI) of the RF models for gap filling. (A) Bulk density,
(B) stonesF (stone content from dataF), (C) stonesL (stone content from dataL), (D) TOC, and (E) pH.
P_ * = value corresponding to the whole profile (* stands for any following variable indicator).
H_ * = property values of the horizon to be gap-filled. Ha_ * property values of the overlying horizon,
Hb_ * property values of the underlying horizon, H1 = value of the uppermost horizon, Hl = value of
the last horizon, porg = percentage of organic horizons, thick = thickness, mat = horizon material
(mineral, organic, bedrock).

3.2. Differentiation of Functional SPUs

The optimization to differentiate the SPUs resulted in 20 SPUs for PAMp and 47 SPUs
for PAMm. Table 3 displays the resulting parameter values for PAMp, and Table 4 reports
the values for PAMm. None of the parameter values was close to the upper or lower
boundary of the respective parameter range, indicating that they were chosen well.

Table 3. PAMp parameters resulting from optimization to differentiate SPUs.

Parameter
P weights

nclus
Texture Stone Content Bulk Density Symbol_S Symbol_G TOC pH

value 0.24 0.56 0.70 0.51 0.44 0.64 0.86 20

Table 4. PAMm parameters resulting from optimization to differentiate SPUs.

Parameter nclu sil1 sil2 sil3 sil4 silmin pmin

value 6 0.31 0.74 0.62 0.53 0.34 13

The different P weights indicate that the profile distances with regards to the respective
soil properties were assigned differing importance by PAMp. The profile distance with
regards to texture was given the overall lowest importance, the distance with regards to
TOC, bulk density and pH the highest, and the importance of the distance with regards
to stone content, symbol_S, and symbol_G ranged somewhere in between. The P weights
as such were a result of three aspects: (1) the variable types and multivariate distribution
in the available soil profile data and considered soil properties, (2) the importance of the
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profile distances concerning the respective properties for differentiating the clusters, and
(3) how well the clusters separate in space on behalf of the available data proxies of the
soil-forming factors. Aspect (1) was the reason to develop PAMp, Aspect (2) was due to
the fact that for each PAMp input parameter vector, the best PAM clustering solution was
chosen according to the Silhouette Index, and Aspect (3) concerned the evaluation of the
respective cluster solution by the RF predictive performance. As a consequence, the P
weights cannot be interpreted as a mere soil property importance for clustering.

The optimized parameter values in the second approach, PAMm, did not allow for
such a direct interpretation, either. The corresponding parameters sil1, sil2, sil3, and sil4
merely provided the chance to increase the number of clusters in the respective clustering
step of the multistep clustering procedure. Instead of choosing the best cluster solution in
each step according to the Silhouette Index, solutions with a sufficiently good Silhouette
Index value were accepted. This then, of course, also had an impact on the clustering in
all subsequent steps. Figure 5 displays the subdivision tree of the step-wise procedure.
Step 1 subdivided the profile data into six clusters. The best Silhouette value for this step
would have led to a cluster solution with two clusters only. Hence, the sil1 threshold of
0.31 led to this higher number of clusters obtained on behalf of the profiles’ texture data.
In Step 2, the subdivision with regards to symbol_S and symbol_G resulted in six clusters
for Cluster 1, four for Cluster 3, three for Cluster 4, and six for Cluster 5, while there was
no subdivision for Clusters 2 and 6. Six of the overall 21 clusters present after Step 2 were
not further subdivided in the subsequent steps. Then, after Step 3, the dataset was already
that much subdivided that further subdivision resulted in a maximum of two clusters
for each of the Step 3 clusters in Step 4. During the optimization process, very different
tree structures were tested, leading to this overall result. The variables in each step were
selected according to their estimated importance for soil functionality. Furthermore, only
variables of similar variable type and distribution were considered in each step. Applying
the four steps in a different sequence would certainly have resulted in a different solution.
However, previous test runs had shown this sequence to be the most promising.
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high variability of soils in SPU 1 cannot be further subdivided by PAMp, allowing for a 
maximum of 100 clusters. Additionally, some of the profiles including organic horizons 
are still included in the other SPUs (compare, e.g., Figure 6A12,A14). The same was also 
reported by Ließ et al. [4]. Likewise, a perfect separation into all-mineral and partly min-
eral soils in the first step of PAMm was also not successful, while the mere assignment to 
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such as TOC (previous test runs) were included. However, a further subdivision of this 
SPU could likely be achieved by increasing the dataset of these partly mineral soils. Mean-
while, an alternative could be to conduct a previous subdivision into all-mineral and 
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Figure 5. PAMm subdivision tree of the step-wise procedure. The light grey color indicates that the
cluster obtained by the respective step is already a final cluster, which will not be further subdivided
in the subsequent clustering steps.

Figure 6 shows the multivariate parameter distributions along the depth profile for
the 20 SPUs resulting from PAMp. The SPUs were sorted to facilitate their description:
one SPU including organic horizons (SPU 1), three leptic–skeletic SPUs (SPU 2–SPU 4)
having a high stone content and depth limitation in the top 100 cm, three skeletic SPUs
(SPU 5–SPU 7), four SPUs differentiated on behalf of their texture and other soil properties
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(SPU 8–SPU 11), four stagnic SPUs (SPU 12–SPU 15), and five gleyic SPUs (SPU 16–SPU 20).
Figure 6A1–A20 display the percentage of soil profiles composed of organic, mineral or
bedrock material in the respective depth slice of the SPUs. The corresponding perc_o,
perc_m, and perc_b values of the data product published alongside this manuscript replace
the symbol_H, symbol_C, and symbol_mC variables of the multivariate distributions of
the data product from Ließ et al. [4] in an elegant way.
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Figure 6. Multivariate soil parameter distributions along the depth profile of the SPUs obtained
with PAMp. The figure columns reflect the respective SPUs 1 to 20, figure lines refer to the various
soil properties. (A) The slice-wise contribution of profiles with mineral properties (dark grey),
organic properties (black) or bedrock (light-grey). The white numbers indicate the number of profiles
supporting the respective SPU. (B) Sand content, (C) silt content, (D) clay content, (E) stone content,
(F) bulk density, (G) symbol_S, (H) symbol_G, (I) TOC, and (J) pH. In figure (B) to (J), the solid line
indicates the median of the distribution, the shaded area between dotted lines reflects the interquartile
range, the other dotted line reflects the 5% quantile, and the dashed line reflects the 95% quantile.
Please be aware that figures (I) have different X-axis ranges, namely (I1) = 0–600, (I12) to (I15) = 0–200,
and all others = 0–100.

SPU 1 corresponds to agricultural soils that are made up of organic material in one
or more horizons along their profile (Figure 6A1). The particle size distribution in its
mineral horizons shows the maximum variation among all SPUs in terms of sand content
(Figure 6B1). It lies between 0–5% and 96–98%, taking into account the slice-wise 5 and 95%
quantiles of the distribution along the depth profile. Looking at the interquartile range,
the variation in sand content in the top 49 cm still ranges between 12–25% and 82–84%.
The overall median TOC and also the variation in TOC are the highest among all SPUs.
Considering the interquartile range, the TOC ranges between 27–358 and 331–492 g kg−1

throughout the profile. Regarding the low number of profiles with organic horizons
contained in the dataset, this high variation in TOC and soil texture is not surprising. The
high variability of soils in SPU 1 cannot be further subdivided by PAMp, allowing for a
maximum of 100 clusters. Additionally, some of the profiles including organic horizons
are still included in the other SPUs (compare, e.g., Figure 6A12,A14). The same was also
reported by Ließ et al. [4]. Likewise, a perfect separation into all-mineral and partly mineral
soils in the first step of PAMm was also not successful, while the mere assignment to organic
or non-organic of the respective slice was considered, or additional soil properties such as
TOC (previous test runs) were included. However, a further subdivision of this SPU could
likely be achieved by increasing the dataset of these partly mineral soils. Meanwhile, an
alternative could be to conduct a previous subdivision into all-mineral and partly mineral
soils, and then apply PAMp and PAMm to each of the two groups separately.

The SPUs 2–7 have a rather high stone content increasing with depth (Figure 6E2–E7).
Of these six SPUs, SPUs 2–4 have a depth limitation within the top 100 cm (Figure 6A2–A4).
They differ in the strength of this depth limitation, though. SPU 5 displays the same strong
increase in stone content with depth comparable to the SPUs 2–4, whereas SPU 6 and
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SPU 7 have a smaller increase. Furthermore, the SPUs 5–7 also differ in their particle size
distribution: their sand content is decreasing from SPU 5 to SPU 7 (Figure 6B5–B7).

The SPUs 8–11 also have a decreasing sand content (Figure 6B8–B11). I will refer
to SPU 8 and SPU 9 as sandy and to SPU 10 and SPU 11 as silty SPUs. Three of these
SPUs (SPU 9, SPU 10, and SPU 11) are also the SPUs with the overall highest number of
profiles (Figure 6A9–A11). Apart from their texture, these four SPUs differ in their pH
(Figure 6J8–J11), with SPU 8 having the lowest and SPU 10 the highest pH value. For SPU 8,
this corresponds to a pH between 5.2–5.6 and 5.9–6.0 throughout the profile; for SPU 10, it
corresponds to a pH between 7.3–7.9 and 7.8–8.3 (interquartile range). A similarly high pH
value is attributed to SPU 7, SPU 15, and SPU 19, indicating that there is one such SPU in
each group: the skeletic SPUs, the texture SPUs, the stagnic SPUs, and the gleyic SPUs.

The SPUs 12–20 have hydromorphic properties in some part of their profile. Of
these, the SPUs 12–15 have a horizon with stagnic properties (Figure 6H12–H15), and the
SPUs 16–20 indicate ground water influence (Figure 6G16–G20). Still, the presence of the
95% quantile in most of the other SPUs indicates that a few soil profiles with hydromorphic
properties have also been assigned to these SPUs. PAM clustering to separate soils with
and without stagnic properties and soils with and without gleyic properties merely on
the nSPdist of symbol_S or symbol_G, respectively, also did not succeed in providing a
perfect separation (test runs). Ließ et al. [4] did not achieve this, either. However, it has
to be noted that the two SPUs with gleyic and two SPUs with stagnic properties of the
data product by Ließ et al. [4] were now extended to five and four SPUs, respectively. The
SPUs 12–15 indicate a high TOC consistent with hydromorphic conditions that reduce
organic matter decomposition (Figure 6I12–I15). The median TOC in the top 20 cm ranges
between 16 and 38 g kg−1 for these SPUs, while it lies between 10 and 16 g kg−1 for
SPUs 8–11. SPUs 2–7 and 18–19 have a comparatively higher variation in the TOC in
their top 10 cm, indicating that they include grassland soils. This is reasonable given that
SPUs 2–7 have high stone contents and are likely to occur in inclined areas, and SPUs 18–19
have groundwater influence at shallow depth. Furthermore, due to their comparatively
lower topsoil TOC values, it is likely that most of the soil profiles assigned to SPU 16,
SPU 17 and SPU 20 were drained to be used for crop cultivation or were cultivated with
crops that do not mind waterlogging at a low rooting depth. While SPUs 12–14 have a rather
high median sand content and differ due to the depth of their stagnic horizon and their pH
value (Figure 6J12–J14), SPU 15 has a low median sand content and correspondingly higher
silt and clay contents (Figure 6B15,C15,D15).

Compared to the data product from Ließ et al. [4], the ranges between the 5 and 95%
quantiles and the interquartile ranges of the SPUs’ multivariate parameter distributions
regarding the particle size distribution, bulk density and stone content were reduced. With
regard to the stagnic and gleyic properties, Ließ et al. [4] included prediction probabilities
instead of quantiles. These were low in the upper part of the profile, then increased
with depth in a transition zone of 30 cm and were high in the lower part of the profile.
Considering the interquartile ranges of the multivariate distributions related to symbol_S
and symbol_G, these transition zones were smaller for all gleyic SPUs and the stagnic
SPUs 12–14 but similar for the stagnic SPU 15.

3.3. Pedometric Modeling to Capture the Soil–Landscape Relation
3.3.1. Model Performance

Figure 7 displays the property-wise predictive model performance for the four models
RF–PAMp, RF–PAMm, SVM–PAMp, and SVM–PAMm. The performance measure of the
approach always depends on two aspects: (1) the statistical dispersion of the multivariate
parameter distributions of the SPUs resulting from PAMp or PAMm and (2) the performance
of the machine learning algorithm to extract the soil–landscape relation. Consequently, the
evaluation of the data product was best achieved in a sense of the predictive RMSE of the
individual soil properties.
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Figure 7. Predictive model performance considering the interquartile range of the SPUs’ multivariate
distribution along the depth profile. (A) sand content, (B) silt content, (C) clay content, (D) stone
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The lines along the shaded area correspond to the lower and upper hinges of the five predicted values
(repeated CV), the solid line to the median, and the dotted lines to the upper and lower whiskers.

Regarding soil texture, predictive model performance always detects SVM–PAMp as
the best model and RF–PAMm as the least promising, whereas the priority between SVM–
PAMm and RF–PAMp favors SVM–PAMm for sand and clay content and RF–PAMp for silt
(Figure 7A–C). SVM–PAMp is also the most promising among the four models concerning
its predictive performance in terms of the stone content up to a depth of 60 cm (Figure 7D),
the prediction of gleyic properties, and the TOC (Figure 7H). Below 60 cm, RF–PAMp shows
the best performance for the stone content (Figure 7D). Additionally, this model has the
best performance concerning bulk density (Figure 7E). Predicting pH, SVM–PAMm shows
the best performance. However, the RMSE of RF–PAMm and SVM–PAMp are only slightly
higher. Model performance in reference to stagnic properties is hardly distinguishable
between the four models until a depth of 30 cm. This similarity continues for SVM–PAMp
and RF–PAMp in the subsoil, while the RMSE of RF–PAMm and SVM–PAMm does not
increase as much, resulting in RF–PAMm being the overall best for this property. Altogether,
this makes SVM–PAMp the best model for three out of seven soil properties and minor
differences for a fourth property.
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This indicates the high power of the SVM algorithm when combined with GA opti-
mization for parameter tuning. In contrast, it was expected that RF might result in the
overall better algorithm due to its usage in the objective function for SPU optimization.
However, the results were ambivalent. RF resulted in the better algorithm for two prop-
erties, and SVM for four properties. Overall, this enhances the critical discussion on the
common perception that RF is often stated to have the best predictive performance when
comparing multiple machine learning algorithms in pedometric modeling applications [63].
The comparison is usually not conducted appropriately since RF does not require much
tuning and its most important parameters are natural numbers and, therefore, the common
grid-search approach is sufficient. In contrast, the training of SVMs requires thorough tun-
ing of real-valued parameters [4,25]. A fair comparison of the two algorithms is, therefore,
only possible if optimization is applied for tuning SVM models.

The overall model performance was decreasing with depth concerning all soil prop-
erties, as is commonly perceived in pedometric modeling (e.g.). Figure 7 shows that this
decrease was non-linear. For the topsoil, it usually had very good performance, which then
rapidly decreased at a certain soil depth. The threshold value differed between the soil
properties, though. For the particle size distribution (Figure 7A–C) it ranged around 25 cm,
and for the other soil properties, around 10 cm depth (Figure 7D–I). Some of the latter
had two steps in the performance decrease, one at 10 cm and another at 25 or 30 cm (bulk
density, Figure 7E), 30 or 50 cm (symbol_S, Figure 7F), at 40 cm (symbol_G, Figure 7G), or
25 cm (TOC, Figure 7H) depth. The good topsoil performance with regards to the hydro-
morphic features was probably due to their onset at a certain soil depth. The other step
was likely caused by grassland soils not being separated from cropland soils in the SPU
differentiation. This could mean that the difference between grassland soils and cropland
soils was minor either with regards to the vertical soil profile differentiation and character-
istics or regarding the soil–landscape relation. Concerning the latter, the high number of
SCORPAN O predictors from remote sensing data provides a good representation of the
land cover and would, therefore, easily allow for this separation between the grassland and
cropland soils. With the former, it must be taken into account that the difference between
the two only affected a limited number of the considered properties, and then only the
respective topsoil. However, this aspect could only be addressed while the calculation of
the property-wise profile difference assigned a higher weight to the topsoil differences for
these soil properties. The decision on assigning different weights along the depth profile
was not trivial, though. A few test runs were conducted with an exponential weight decay
function and a step-wise approach. Additionally, optimizing the weights along the depth
profile in addition to the already-implemented optimization tasks in PAMp and PAMm
would add to the complexity of the objective function and prolong the optimization process
to differentiate the SPUs. I would further like to note that the comparison of the RMSE
values along the soil profile for certain soil properties can be misleading, as the respective
value ranges differed between the various soil depths. This was clearly visible for TOC
(Figure 7H), where the predictive model performance seemed to improve at a certain soil
depth. However, the lower RMSE values were likely caused by the lower TOC range at this
higher soil depth.

In the following, the multivariate 3D data product will be compared to other readily
available data products. This is achieved by referring to the predictive median RMSE with
regards to the interquartile range of the multivariate parameter distributions along the
depth profile. On the one hand, the property- and depth-wise uncertainty will be compared
to its first version from Ließ et al. [4]. On the other hand, the national performance estimates
(considering agricultural soils) for other spatially continuous data products covering the
entirety of Germany were calculated. Table 5 provides an overview. They were evaluated
by extracting the predicted property values at the soil survey sites of the test set profile data,
which had been used to evaluate the data product developed here. The weighted mean
was calculated for the respective depth layer before calculating the RMSE. The compared
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data products had the following spatial raster resolutions: national scale—100 m [25,64],
European scale—500 m [65] and 1000 m [66], and global scale—250 m [67].

Table 5. National-scale evaluation (RMSE) of existing national, European and global-scale data
products (considering agricultural soils). The predictive uncertainty was evaluated on behalf of the
test set profile data. The values of the raster data products were extracted at the profile sites. A
weighted average was calculated for the respective depth interval of the measured data.

Scale of the
Data Product

Depth
Interval [cm]

Sand Content
[Mass-%]

Silt Content
[Mass-%]

Clay Content
[Mass-%]

Stone Content
[Vol-%]

Bulk Density
[g cm−3]

TOC
[g kg−1]

pH
10−x mol L−1

National 0–30 15.0 [25] 11.8 [25] 8.2 [25] - - 22 [64] -

European 0–20 17.6 [65] 13.8 [65] 9.8 [65] 9 [65] 0.26 [65] 48.3 [66,68] -

Global [67]

0–5 19.3 16.5 11.4 7.1 0.30 43.6 1.2

5–15 19.4 16.4 11.0 7.8 0.30 46.2 1.2

15–30 19.9 17.6 11.7 10.5 0.31 57.6 1.2

30–60 22.9 18.7 13.8 17.5 0.35 62.4 1.3

60–100 25.9 19.6 14.3 21.2 0.36 60.7 1.4

With regards to the particle size distribution, the predictive performance improved
compared to Ließ et al. [4]. For the sand content, it improved from 14.8 to 13.8 mass-%
at 20 cm depth, from 17.5 to 16.3 mass-% at 40 cm depth, and from 20.2 to 19 mass-%
at 60 cm depth. Respectively, it improved from 10.7 to 10.4, from 12.2 to 11.6, and from
14.3 to 12.7 mass-% for the silt content, and from 8.2 to 7.5, from 10.1 to 8.9, and from
10.1 to 9.3 mass-% for the clay content. Figure 7A–C show the continuous performance
estimates. Concerning the topsoil, the national scale 0–30 cm [25], the European scale
0–20 cm [65], and the global scale 15–30 cm predictions [67] had a higher uncertainty with
an RMSE of 15.0, 17.6, and 19.9 mass-% for sand, 11.8, 13.8, and 17.6 mass-% for silt, and
8.2, 9.8, and 11.7 mass-% for clay (Table 5), respectively. For the subsoil, the global scale
30–60 cm predictions [67] also had a higher RMSE. They amounted to 22.9 mass-% for sand,
18.7 mass-% for silt, and 13.8 mass-% for clay (Table 5).

Compared to Ließ et al. [4], the predictive performance concerning the stone content
remained more or less the same in the 20 cm depth with 8.1 versus 8.0 vol-%, improved
for 40 cm depth from 14.8 to 13.9 vol-%, but was impaired in the 60 cm depth from
16.9 to 19.1 vol-%. For the topsoil, the European (0–20 cm) and global scale (15–30 cm)
predictions had a slightly higher uncertainty, with an RMSE of 9 and 10.5 vol-% (Table 5),
respectively. Considering the same depth intervals, the RMSE of the data product created
here corresponded to an average RMSE of 6.5 vol-% for the 0–20 depth interval and
9.1 vol-% for the 15–30 cm depth interval. This even higher difference in reference to
the European data product is due to the overall decrease in uncertainty with lower soil
depth (Figure 7D).

For bulk density, the predictive performance was impaired at 20 and 60 cm depths from
0.15 to 0.19, and 0.25 to 0.27 g cm−3, but remained the same at the 40 cm depth compared
to Ließ et al. [4]. The predictive topsoil uncertainty was still higher for the European and
global data products with an RMSE of 0.26 and 0.31 g cm−3, respectively. The same applied
to the subsoil with an RMSE of 0.35 g cm−3 (global predictions 30–60 cm, Table 5).

The predictive model performance along the depth profile with regards to the TOC is
displayed in Figure 7H. TOC was not part of the data product generated by Ließ et al. [4].
The averaged RMSE for the respective depth interval was 39.3 compared to 48.3 g kg−1 for
Aksoy et al. [66] in the 0–20 cm interval, 43.8 compared to 21 g kg−1 for Sakhaee et al. [64]
in the 0–30 cm interval, 38.8 compared to 46.2 g kg−1 in the 5–15 cm, and 49.8 compared
to 57. 6 g kg−1 in the 15–30 cm interval for Poggio et al. [67]. This means the data product
developed here had a lower predictive topsoil uncertainty compared to the global and Eu-
ropean data products, but a higher uncertainty compared to the national data product. One
of the reasons for the latter is the high diversity in the soils containing an organic horizon
in some part of their profile. The low number of soil profiles representing these soils in
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the dataset of the agricultural soil inventory had also caused trouble for Sakhaee et al. [64].
They addressed this aspect by training separate models for organic and mineral topsoil,
which resulted in an RMSE decrease from 31.6 to 21.0 g kg−1. The complexity increases,
though, while multiple properties are jointly considered in 3D. The optimization to differ-
entiate the SPUs merged all these soils into a single SPU (SPU1, Figure 6A1). Compared
to the high difference in TOC content between these soils and the all-mineral soils, the
TOC differences among the all-mineral soils were minor. Conducting the cluster analysis
while applying data transformation to this and other soil properties before calculating the
distance matrices did not solve the issue, either. A solution might be to subdivide the
data into all-mineral and partly mineral soils and then conduct two separate optimization
processes to differentiate the SPUs in each subgroup, as suggested earlier.

The predictive model performance along the depth profile with regards to the pH is dis-
played in Figure 7I. The pH was not part of the data product generated by Ließ et al. [4]. The
averaged RMSE for the respective depth interval was 10−0.55 compared to 10−1.2 mol l−1

in the 5–15 cm, and 10−0.58 compared to 10−1.2 mol l−1 in the 15–30 cm interval for
Poggio et al. [67].

Overall, the models presented here deal with high complexity: They address the
multivariate soil variability in 3D compared to the models trained to obtain the univariate
2D data products. It is impressive that a lower predictive uncertainty was still achieved. The
lower uncertainty compared to the European and global data products is likely because at
national scale for Germany, there are many more data proxies available to approximate the
soil-forming factors, namely the expert information contained in the national map products
providing information on the soil distribution [41] and parent material [39,40]. This helps in
capturing the soil–landscape relation by machine learning. In reference to the national scale
data products, a higher performance was achieved for texture, but a lower performance
for TOC due to the previously mentioned reasons. Finally, it has to be emphasized that
the data product presented here differs from the others. The univariate predictions (single
soil property) considered in the comparison provide single-cell predictions for a certain
depth interval. In contrast, the data product developed here provides 3D soil information
in terms of the multivariate distributions. Its spatial resolution in the 2D mapping space is
100 m, and the resolution along the depth profile is 1 cm. Accordingly, for each raster cell, it
provides the slice-wise multivariate distribution of the respective soil properties. It would
be inappropriate to consider the median of these distributions for each raster cell. The
benefit lies in considering these distributions, which are the consequence of condensing the
information contained in the raster cells to a limited number of functional SPUs.

3.3.2. Variable Importance

The VI values (Figure 8) indicate that all predictors were important to a certain extent
for all four models. The values are relative, and not comparable between the models.

However, what separates the SVM models (Figure 8C,D) from the RF models
(Figure 8A,B) is the high importance they assign to the categorical predictors in com-
parison to the other predictors. These categorical predictors reflect the inclusion of expert
knowledge with regards to parent material and soils included in conventional map products
(BAG00, LIT00, STR00, and BGL00) as well as the classified topography (GMK00). Categor-
ical predictors had also proved highly important for the models of the first implementation
to represent the agricultural soil landscape of Germany by SPUs [4]. It is unfortunate in
this regard that further categorical SCORPAN S and SCORPAN P predictors available at
a larger map scale could not be included (e.g. [17,69]). The soil profile database of the
agricultural soil inventory does not include sufficient data entries to represent the high
number of SMUs included in these maps. The RF models do not prioritize the categorical
information, though. This is surprising, as they are known to generally favor categorical
predictors [70,71]. In contrast to the latter, they assign comparatively higher importance to
the DEM.
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Figure 8. Variable importance (VI) boxplots of the models for SPU regionalization. (A) RF–PAMp,
(B) RF–PAMm, (C) SVM–PAMp, and (D) SVM–PAMm. The horizontal lines separate the respective
predictor groups corresponding to the SCORPAN factors: climate, organisms, relief (topography),
relief (hydrology), relief (categorical), parent material, soil, and latitude and longitude. Please refer to
Table 1 for the predictor abbreviations.
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3.3.3. Nationwide Prediction

Figure 9 displays the map of the nationwide prediction of the SPUs with model SVM–
PAMp. In the following, it will be described from north to south according to the four
morphologic regions of Germany: the North German Lowland, the Central Germany
Uplands, the Alpine Foreland, and the Alps.
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Figure 9. Map of Germany displaying the distribution of the SPUs corresponding to model SVM–
PAMp. Colors were selected to emphasize the groups: SPU 1 organic, SPU 2—SPU 4 leptic–skeletic,
SPU 5—SPU 7 skeletic, SPU 8—SPU 9 sandy, SPU 10—SPU 11 silty, SPU 12—SPU 15 stagnic, and SPU
16—SPU 20 gleyic SPUs. Non-agricultural areas are masked. Coordinate reference system EPSG 3035.
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The North German Lowland presents a mixture of sandy soils (SPU8, SPU 9), stagnic
soils (SPU 12–SPU 15) gleyic soils (SPU 16–SPU 19) and patches of the organic SPU 1. Of
the sandy soils, SPU 8 dominates in the west, and SPU 9 in the east. SPU 8 has higher
sand and correspondingly lower pH values (Figure 6B8,B9,J8,J9). The higher topsoil TOC
values of SPU 8 likely originate from the land-use history in this region. Nutrient-poor,
sandy topsoil was often improved by mixing it with grass or heather plagues [4]. Stagnic
SPU 15 is found along the North Sea coast in the marshland under tidal influence. It is
this stagnic SPU that differs from the other stagnic SPUs due to its much lower sand and
correspondingly higher silt and clay contents. SPU 14 dominates in the northernmost part,
right between the North and Baltic Seas. It is the stagnic SPU whose stagnic properties
start at a higher soil depth compared to the others. SPU 12 and SPU 13 are found in the
floodplains and lower terraces of the rivers Weser, Elbe, and Oder. The gleyic soils in the
north are dominated by SPU 17 along the east coast (Baltic Sea), with patches of this SPU
as well as SPU 16, SPU 18, and SPU 19 further inland. SPU 14 and SPU 19 also dominate
the area in the southwestern-most part of the North German lowland corresponding to the
lowlands of the glacial valleys of the old moraine area [41].

In the Central German Uplands, the Loess plains are represented by SPU 10 and
SPU 11. Considering their multivariate distributions, they are mainly differentiated by
their pH, with SPU 10 having the higher pH values (Figure 6J10,J11). The gleyic SPU 20
dominates the loess plains in Saxony. It has high silt contents similar to those of SPU 10
and SPU 11. However, large parts of the Central German Uplands are covered by the
leptic–skeletic SPUs 2–4 and skeletic SPUs 5–7, which are distinguished by their high
stone contents. Of these, SPU 7, with much lower sand contents and correspondingly
higher pH values (compared to SPU 5 and SPU 6), dominates. Still, large parts along
the Swabian Alp, the Franconian Alp, Spessart, and Franconian Switzerland display high
coverage by leptic–skeletic SPU 2, the SPU with the highest depth limitation. The gleyic
SPU 18 covers large parts along these mountain ranges. The lower Rhine valley stands
out by the domination of sandy SPU 9. Between the cities Karlsruhe and Mainz, SPU 9
is then accompanied by the stagnic SPU 15 with its much lower sand contents. SPU 15
also dominates along the floodplains of the Danube and tributary rivers, which separate
the Central German Uplands from the Alpine Foreland. Regarding the considered soil
properties, these soils are similar to those along the North Sea coast. To distinguish them
from one another, additional soil properties would have to be included. The soils might
differ in their electrical conductivity due to the tidal influence along the North Sea coast.

Large parts of the northeast of the Alpine Foreland are covered by the siltic SPU 10 as
well as the gleyic SPU 20, having a similar texture. This indicates the similarity of these
soils to the Loess plains. Additionally, they co-occur with gleyic SPU 16, which has higher
sand contents. Large parts of the remaining region are dominated by the leptic–skeletic
SPU 2 and SPU 4, while patches of the sandy SPU 9 and organic SPU 1 are also clearly
distinguishable. Large parts of the Alps are not under agricultural use. Those that are often
contain high stone contents (SPU 3, SPU 5, and SPU 6) and are partly limited in depth
(SPU 3). Still, the sandy SPU 9, silty SPU 10, stagnic SPU 15, and gleyic SPU 16 also occur.

Overall the number of SPUs increased from 8 to 20 in comparison to Ließ et al. [4],
providing a more detailed spatial differentiation. The previous single SPU with a high
stone content and a depth limitation in the top 100 cm is now augmented to six SPUs with a
high stone content, of which three additionally have a depth limitation in their top 100 cm.
The two SPUs with stagnic and two with gleyic properties were augmented to four and
five, respectively. The SPUs with a predominantly sandy or silty texture were augmented
from one SPU to two SPUs in both cases. Simply, the SPU including soils with organic
horizons remained only one, another hint to consider the separate differentiation into SPUs
for the all-mineral and partly mineral soils.

The pattern of the spatial allocation of the SPUs shows some similarity with regards
to the national-scale soil map products BÜK200 and BÜK1000 [17,72]. This was expected
considering the high importance of the SCORPAN P, SCORPAN R, and SCORPAN S
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predictors. Ultimately, the national soil maps also heavily rely on topography and parent
material. As mentioned previously, the information contained in the spatial units differs.
Complex SMUs composed of multiple co-occurring soils differing largely in their profile
characteristics are by no means comparable to spatially allocated SPUs, each being described
by a multivariate parameter distribution along the depth profile. It is interesting to note,
though, that the data product provided here is a national-scale representation with much
fewer SPUs than the SMUs in these soil maps.

4. Conclusions

The national-scale evaluation and modeling of the impact of agricultural management
and climate change on soils, crop growth, and the environment require soil information
at a spatial resolution addressing individual agricultural fields. The agglomeration of the
soil parameter space into a limited number of functional SPUs allows for reducing the
required resources to run agricultural process models without having to cut back on the
spatial resolution. To serve these needs, creative data science approaches are needed.

Here, two data science approaches were developed involving unsupervised classifi-
cation to generate a multivariate 3D data product of spatially allocated functional SPUs,
each being defined by a multivariate parameter distribution along the depth profile from
0 to 100 cm. The two methods account for differences in variable types and distributions
and involve genetic algorithm optimization to identify those SPUs with the lowest internal
variability and maximum inter-unit difference with regards to both their soil characteristics
and landscape setting.

The high potential of these two approaches was demonstrated by applying them to
the agricultural German soil landscape. The resulting data product consists of 20 SPUs
that are each described by a multivariate parameter distribution along the depth profile
from 0 to 100 cm. It comes along with property- and depth-wise uncertainty estimates.
Its spatial resolution in the 2D mapping space is 100 m, and the resolution along the
depth profile is 1 cm. It is available in a reduced storage format consisting of two related
files, (1) a nationwide raster file with identifiers pointing to (2) the respective multivariate
distribution for each functional SPU provided in table format. Each property’s distribution
is represented by the 5, 25, 50, 75 and 95% quantiles.

The spatial pattern of the nationwide raster shows some similarity with the national
soil maps of Germany. The information contained in the spatial units differs, though.
Complex SMUs composed of multiple co-occurring SUs of very different characteristics
are by no means comparable to spatially allocated SPUs that are each represented by a
multivariate parameter distribution. Furthermore, it is interesting that the data product
created here is a national-scale representation with significantly fewer SPUs than the SMUs
in these soil maps. Additionally, the boundaries of the SPUs differ from those of the SMUs.
Why the boundaries differ and whether the number of SPUs would increase if a larger soil
profile database is included are two aspects that are valuable to investigate together with
colleagues from the soil survey institutes.

The created data product is the second version of such a 3D soil-landscape model
for the agricultural landscape of Germany. Compared to Version 1, the number of SPUs
increased, and the respective interquartile range of the multivariate distributions and the
predictive uncertainty were reduced. Additionally, two further soil properties, TOC and
pH, were included. Version 2 of the data product also has a lower uncertainty compared
to existing univariate 2D data products while considering the interquartile range of the
multivariate distributions. I recommend using them as margins to run agricultural process
models. Limitations concerning TOC uncertainty suggest considering all-mineral and
partly mineral soils separately in the SPU differentiation. Whether the available data are
sufficient to follow such an approach would have to be tested, though.
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