Degradation Pattern of Five Biodegradable, Potentially Low-Environmental-Impact Mulches under Laboratory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Laboratory Measurements of Mulch Materials
2.3. Statistical Analysis
3. Results and Discussion
3.1. Evolution over Time of Weight, Surface Area and Number of Fragments
3.2. SEM Microphotographs
3.3. Surface Area—Weight Ratio
3.4. Degradation Models of the Mulch Materials
3.4.1. Sp4 and Sp6: Exponential Model of Degradation
3.4.2. MB, BFx, and Eco: Gompertz Model of Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Scarascia-Mugnozza, G.; Schettini, E.; Vox, G.; Malinconico, M.; Immirzi, B.; Pagliara, S. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym. Degrad. Stab. 2006, 91, 2801–2808. [Google Scholar] [CrossRef]
- Moreno, M.M.; Moreno, A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hortic. 2008, 116, 256–263. [Google Scholar] [CrossRef]
- Moreno, M.M.; Cirujeda, A.; Aibar, J.; Moreno, C. Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. CSIRO Publ. Soil Res. 2016, 54, 207–215. [Google Scholar] [CrossRef]
- Nishigaki, T.; Shibata, M.; Sugihara, S.; Mvondo-Ze, A.D.; Araki, S.; Funakawa, S. Effect of mulching with vegetative residues on soil water erosion and water balance in an oxisol cropped by cassava in East Cameroon. Land Degrad. Dev. 2016, 28, 682–690. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerda, A. Mulching practices for reducing soil water erosion: A review. Earth Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Haapala, T.; Palonen, P.; Korpela, A.; Ahokas, J. Feasibility of paper mulches in crop production—A review. Agric. Food Sci. 2014, 23, 60–79. [Google Scholar] [CrossRef]
- Maisara, A.M.A.; Mariatti, M. Formulation of biodegradable plastics mulch film for agriculture crop protection: A review. Polym. Rev. 2022, 62, 890–918. [Google Scholar]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef]
- Bilck, A.P.; Grossmann, M.V.E.; Yamashita, F. Biodegradable mulch films for strawberry production. Polym. Test. 2010, 29, 471–476. [Google Scholar] [CrossRef]
- Ghatge, S.; Yang, Y.; Ahn, J.H.; Hur, H.G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Duncan, E.M.; Arrowsmith, J.; Bain, C.; Broderick, A.C.; Lee, J.; Metcalfe, K.; Pikesley, S.K.; Snape, R.T.E.; Van Sebille, E.; Godley, B.J. The true depth of the Mediterranean plastic problem: Extreme microplastic pollution on marine turtle nesting beaches in Cyprus. Mar. Pollut. 2018, 136, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.H.; Yan, C.R.; Liu, Q.; Ding, W.L.; Chen, B.Q.; Li, Z. Effects of plasticmulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- El-Sherif, D.M.; Eloffy, M.G.; Emesery, A.; Abouzid, M.; Gad, M.; El-Seedi, H.R.; Brinkmann, M.; Wang, K.; Naggar, Y.A. Environmental risk, toxicity, and biodegradation of polyethylene: A review. Environ. Sci. Pollut. Res. 2022, 29, 81166–81182, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Barragán, H.; Pelacho, A.M.; Martín-Closas, L. Degradation of agricultural biodegradable plastics in the soil under laboratory conditions. Soil Res. 2016, 54, 216–224. [Google Scholar] [CrossRef]
- ASTM D5988–12; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil. ASTM International: West Conshohocken, PA, USA, 2012.
- EN 17033; Plastics-Biodegradable Mulch Films for Use in Agriculture and Horticulture-Requirements and Test Methods. European Standard; European Committee for Standardization: Brussels, Belgium, 2018.
- Brodhagen, M.; Goldbergerb, J.R.; Hayes, D.G.; Inglis, D.A.; Marsh, T.L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils. Environ. Sci. Policy 2017, 69, 81–84. [Google Scholar] [CrossRef]
- Hayes, D.G.; Anunciado, M.B.; Debruyn, J.M.; Bandopadhyay, S.; Schaeffer, S.; English, M.; Ghimire, S.; Miles, C.; Flury, M.; Sintim, H.Y. Biodegradable plastic mulch films for sustainable specialty crop production. In Polymers for Agri-Food Applications; Gutiérrez, T.J., Ed.; Springer: Cham, Switzerland, 2019; pp. 183–213. [Google Scholar]
- Yang, Y.; Li, P.; Jiao, J.; Yang, Z.; Lv, M.; Li, Y.; Zhou, C.; Wang, C.; He, Z.; Liu, Y.; et al. Renewable sourced biodegradable mulches and their environment impact. Sci. Hortic. 2020, 268, 109375. [Google Scholar] [CrossRef]
- Manzano, V.; García, N.L.; Rodríguez Ramírez, C.; D’Accorso, N.; Goyanes, S. Mulch plastic systems: Recent advances and applications. In Polymers for Agri-Food Applications; Gutiérrez, T.J., Ed.; Springer: Cham, Switzerland, 2019; pp. 265–290. [Google Scholar]
- Merino, V.; Mansilla, A.Y.; Casalongué, C.A.; Alvarez, V.A. Performance of bio-based polymeric agricultural mulch films. In Polymers for Agri-Food Applications; Gutiérrez, T.J., Ed.; Springer: Cham, Switzerland, 2019; pp. 215–240. [Google Scholar]
- Moreno, M.M.; Gonzalez-Mora, S.; Villena, J.; Campos, J.A.; Moreno, C. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions. J. Environ. Manag. 2017, 200, 490–501. [Google Scholar] [CrossRef]
- Quiao, R.; Wang, X.; Qin, G.; Liu, Q.; Liu, J.; He, W. Preparation of organic crystal seed and its application in improving the functional period of biodegradable agricultural film. Crystals 2021, 11, 826. [Google Scholar] [CrossRef]
- Quiao, R.; Zhao, C.-P.; Liu, J.-L.; Zhang, M.-L.; He, W.-Q. Synthesis of novel ultraviolet absorbers and preparation and field application of anti-iltraviolet aging PBAT/UVA films. Polymers 2022, 14, 1434. [Google Scholar] [CrossRef] [PubMed]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Casida, L.E. Microbial metabolic activity in soil as measured by dehydrogenase determinations. Appl. Environ. Microbiol. 1977, 34, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Barajas, M. Ensayos de metabolismo microbiano en suelo: Actividad deshidrogenasa y tasa de mineralización del nitrógeno. In Ensayos Toxicológicos Para la Evaluación de Sustancias Químicas en Agua y Suelo: La Experiencia en México; Ramírez, P., Mendoza, A., Eds.; Instituto Nacional de Ecología: Mexico City, Mexico, 2008. [Google Scholar]
- Montejo, M.; Torres, C.P.; Martínez, A.; Tenorio, J.A.; Cruz, M.R.; Ramos, F.R.; Cuevas, M.C. Técnicas para el análisis de actividad enzimática en suelos. In Métodos Ecotoxicológicos Para la Evaluación de Suelos Contaminados con Hidrocarburos; Cuevas, M.C., Espinosa, G., Ilizaliturri, C., Mendoza, A., Eds.; INECC: Mexico City, Mexico, 2012. [Google Scholar]
- Jarrell, W.M.; Armstrong, D.E.; Grigal, D.F.; Kelly, E.F.; Monger, H.C.; Wedin, D.A. Calculating gravimetric water content and water holding capacity. In Standard Soil Methods for Long-Term Ecological Research; Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., Eds.; Soil Methods; Oxford University Press: Oxford, UK, 1999; pp. 55–73. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Griffin-LaHue, D.; Ghimire, S.; Yu, Y.; Scheenstra, E.J.; Miles, C.A.; Flury, M. In-field degradation of soil-biodegradable plastic mulch films in a Mediterranean climate. Sci. Total Environ. 2022, 806, 150238. [Google Scholar] [CrossRef]
- Borrowman, C.K.; Johnston, P.; Adhikari, R.; Saito, K.; Patti, A.F. Environmental degradation and efficacy of a sprayable, biodegradable polymeric mulch. Polym. Degrad. Stab. 2020, 175, 109126. [Google Scholar] [CrossRef]
- Vázquez, A.; Foresty, M.L.; Cyras, V. Production, chemistry and degradation of starch-bases polymers. In Biopolymers—New Materials for Sustainable Films and Coatings; Plackett, D., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011; pp. 277–299. [Google Scholar]
- Mostafa, H.; Sourell, H.; Bockisch, F. Mechanical properties of some bioplastics under different soil types used as biodegradable drip tubes. Agric. Eng. Int. CIGR J. 2010, 12, 12–21. [Google Scholar]
- Rudnik, E.; Briassoulis, D. Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J. Polym. Environ. 2011, 19, 18–39. [Google Scholar] [CrossRef]
- Ho, K.L.G.; Pometto, A.L. Temperature effects on soil mineralization of polylactic adic platic in laboratory respirometers. J. Environ. Polym. Degrad. 1999, 7, 101–108. [Google Scholar] [CrossRef]
- Ho, K.L.G.; Pometto, A.L.; Hinz, P.N. Effects of temperature and relative humidity on polylactic acid plastic degradation. J. Environ. Polym. Degrad. 1999, 7, 83–92. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Liu, J.; Liu, X.; Dong, Y.; Huang, X.; Zhen, Z.; Lv, J.; He, W. Degradability and properties of PBAT-based biodegradable mulch films in field and their effects on cotton planting. Polymers 2022, 14, 3157. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, Z.; Yang, Y. Analysis of biodegradability of three biodegradable mulching films. J. Polym. Environ. 2010, 18, 148–154. [Google Scholar] [CrossRef]
Mulch Material | Composition | Manufacturer |
---|---|---|
Mater-Bi® (MB) | Corn thermoplastic starch, PBAT, vegetable oils | Novamont S.p.A., Italy |
Sphere 4 (Sp4), Sphere 6 (Sp6) | Potato thermoplastic starch and biodegradable recycled polymers bioplastic (with a different proportion of its components) | Sphere Group Spain S.L., Spain |
Bioflex® (BFx) | PLA, PBS | Fkur-Oerlemans Plastics, Germany |
Ecovio® (Eco) | PLA, ecoflex (PBAT) | BASF, Germany |
Polyethylene (PE) | Conventional standard linear low density polyethylene | Siberline, Spain |
Soil Parameter | Soil 1 | Soil 2 |
---|---|---|
entry 1 | data | data |
Sand (2–0.05 mm) (%) | 55.2 | 45.0 |
Silt (0.05–0.002 mm) (%) | 36.0 | 26.0 |
Clay (<0.002 mm) (%) | 8.8 | 29.0 |
Soil textural class (USDA) | Sandy loam | Clay loam |
Wilting point (m3 m−3) | 0.100 | 0.160 |
Field capacity (m3 m−3) | 0.230 | 0.350 |
pH (1:2.5 soil:water) | 8.2 | 8.0 |
EC (1:5 soil:water) (dS m−1) | 0.76 | 0.65 |
Organic matter (Walkley-Black) (%) | 1.6 | 1.7 |
Total carbonates (%) | 6.0 | 7.5 |
Total nitrogen (%) | 0.09 | 0.08 |
C/N ratio | 7.9 | 9.5 |
Assimilable phosphorus concentration (g kg−1) | 0.017 | 0.020 |
Exchangeable potassium concentration (g kg−1) | 0.351 | 0.409 |
Exchangeable calcium concentration (g kg−1) | 2.324 | 2.480 |
Exchangeable magnesium concentration (g kg−1) | 0.216 | 0.254 |
Exchangeable sodium concentration (g kg−1) | 0.008 | 0.006 |
Material | Soil 1 | Soil 2 | |||||
---|---|---|---|---|---|---|---|
a | b | AIC | a | b | AIC | ||
Weight (g) | Sp4 | 0.135 | −0.020 | −179.9 | 0.140 | −0.035 | −129.4 |
Sp6 | 0.140 | −0.015 | −471.8 | 0.150 | −0.020 | −488.0 | |
Surface area (cm2) | Sp4 | 66.30 | −0.018 | 217.5 | 64.10 | −0.028 | 186.1 |
Sp6 | 68.01 | −0.015 | 272.5 | 66.23 | −0.020 | 279.9 |
Material | Soil 1 | Soil 2 | |||||
---|---|---|---|---|---|---|---|
α | β | γ | AIC | α | β | ||
Weight (g) | MB | 0.120 | 0.060 | -0.008 | -465.0 | 0.160 | 0.300 |
BFx | 0.110 | 0.010 | -0.007 | -363.0 | 0.110 | 0.070 | |
Eco | 0.130 | 0.010 | -0.006 | -360.9 | 0.130 | 0.010 | |
Surface area (cm2) | MB | 75.00 | 0.170 | -0.007 | 411.9 | 100.0 | 0.43 |
BFx | 67.30 | 0.010 | -0.007 | 253.2 | 70.70 | 0.080 | |
Eco | 64.00 | 0.010 | -0.007 | 194.9 | 69.90 | 0.080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villena, J.; Moreno, M.M.; González-Mora, S.; López-Perales, J.A.; Morales-Rodríguez, P.A.; Moreno, C. Degradation Pattern of Five Biodegradable, Potentially Low-Environmental-Impact Mulches under Laboratory Conditions. Agriculture 2022, 12, 1910. https://doi.org/10.3390/agriculture12111910
Villena J, Moreno MM, González-Mora S, López-Perales JA, Morales-Rodríguez PA, Moreno C. Degradation Pattern of Five Biodegradable, Potentially Low-Environmental-Impact Mulches under Laboratory Conditions. Agriculture. 2022; 12(11):1910. https://doi.org/10.3390/agriculture12111910
Chicago/Turabian StyleVillena, Jaime, Marta M. Moreno, Sara González-Mora, Jesús A. López-Perales, Pablo A. Morales-Rodríguez, and Carmen Moreno. 2022. "Degradation Pattern of Five Biodegradable, Potentially Low-Environmental-Impact Mulches under Laboratory Conditions" Agriculture 12, no. 11: 1910. https://doi.org/10.3390/agriculture12111910
APA StyleVillena, J., Moreno, M. M., González-Mora, S., López-Perales, J. A., Morales-Rodríguez, P. A., & Moreno, C. (2022). Degradation Pattern of Five Biodegradable, Potentially Low-Environmental-Impact Mulches under Laboratory Conditions. Agriculture, 12(11), 1910. https://doi.org/10.3390/agriculture12111910