Improved Random Forest for the Automatic Identification of Spodoptera frugiperda Larval Instar Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification Pipeline of Larval Instars
2.2. Collection of Larva Images
2.3. Image-Based Identification Method of FAW Larval Instars
2.3.1. Location and Segmentation of Larva Region
2.3.2. Image Feature Extraction
2.3.3. Dimension Reduction of the Feature Vector
2.3.4. Identification Model of FAW Larval Instars Based on an Improved Random Forest Model
2.4. Evaluation Method
2.4.1. Evaluation Metrics for Larva Region Segmentation
2.4.2. Evaluation Protocol of Larval Instar Identification
3. Results
3.1. Segmentation Results
3.2. Result and Analysis of Larval Instar Identification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Feldmann, F.; Rieckmann, U.; Winter, S. The spread of the fall armyworm Spodoptera frugiperda in Africa—What should be done next? J. Plant Dis. Prot. 2019, 126, 97–101. [Google Scholar] [CrossRef]
- Tay, W.T.; Meagher, R.L., Jr.; Czepak, C.; Groot, A.T. Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annu. Rev. Entomol. 2022, 68, 102548. [Google Scholar] [CrossRef] [PubMed]
- Sisay, B.; Simiyu, J.; Malusi, P.; Likhayo, P.; Mendesil, E.; Elibariki, N.; Wakgari, M.; Ayalew, G.; Tefera, T. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J. Appl. Entomol. 2018, 142, 800–804. [Google Scholar] [CrossRef]
- Kalleshwaraswamy, C.; Asokan, R.; Swamy, H.M.; Maruthi, M.; Pavithra, H.; Hegbe, K.; Navi, S.; Prabhu, S.; Goergen, G.E. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Early, R.; González-Moreno, P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 2018, 40, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Casmuz, A.S.; Juárez, M.L.; Socías, M.G.; Murúa, M.G.; Prieto, S.; Medina, S.; Willink, E.; Gastaminza, G. Review of the host plants of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev. Soc. Entomol. Argent. 2010, 69, 209–231. [Google Scholar]
- Li, X.J.; Wu, M.F.; Ma, J.; Gao, B.Y.; Wu, Q.L.; Chen, A.D.; Liu, J.; Jiang, Y.Y.; Zhai, B.P.; Early, R. Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach. Pest. Manag. Sci. 2020, 76, 454–463. [Google Scholar] [CrossRef]
- Kalleshwaraswamy, C.; Maruthi, M.; Pavithra, H. Biology of invasive fall army worm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on maize. Indian J. Entomol. 2018, 80, 540–543. [Google Scholar] [CrossRef]
- He, L.-M.; Wang, T.-L.; Chen, Y.-C.; Ge, S.-S.; Wyckhuys, K.A.; Wu, K.-M. Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 2021, 20, 736–744. [Google Scholar] [CrossRef]
- Delbac, L.; Lecharpentier, P.; Thiery, D. Larval instars determination for the European Grapevine Moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Prot. 2010, 29, 623–630. [Google Scholar] [CrossRef]
- Higo, Y.; Sasaki, M.; Amano, T. Morphological characteristics to identify fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) from common polyphagous noctuid pests for all instar larvae in Japan. Appl. Entomol. Zool. 2022, 57, 263–274. [Google Scholar] [CrossRef]
- Sartiami, D.; Harahap, I.; Kusumah, Y.; Anwar, R. First record of fall armyworm (Spodoptera frugiperda) in Indonesia and its occurence in three provinces. Conf. Ser. Earth Environ. Sci. 2020, 468, 012021. [Google Scholar] [CrossRef]
- Lim, S.; Kim, S.; Park, S.; Kim, D. Development of application for forest insect classification using CNN. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1128–1131. [Google Scholar]
- Ung, H.T.; Ung, H.Q.; Nguyen, B.T. An Efficient Insect Pest Classification Using Multiple Convolutional Neural Network Based Models. arXiv 2021, arXiv:2107.12189. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Ma, M.Y.; Zhang, Z.; Zhang, P.Y.; Wu, W.; Wang, D.D.; Zhang, D.X.; Wang, X.; Wang, H.Y. Hybrid deep learning for automated lepidopteran insect image classification. Orient. Insects. 2017, 51, 79–91. [Google Scholar] [CrossRef]
- Kortbeek, R.W.; Galland, M.D.; Muras, A.; van der Kloet, F.M.; André, B.; Heilijgers, M.; van Hijum, S.A.; Haring, M.A.; Schuurink, R.C.; Bleeker, P.M. Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC Plant. Biol. 2021, 21, 315. [Google Scholar] [CrossRef]
- Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect classification and detection in field crops using modern machine learning techniques. Inf. Process. Agric. 2021, 8, 446–457. [Google Scholar] [CrossRef]
- Silva, D.F.; Souza, V.M.A.D.; Batista, G.E.A.P.A.; Keogh, E.; Ellis, D.P.W. Applying Machine Learning and Audio Analysis Techniques to Insect Recognition in Intelligent Traps. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; pp. 99–104. [Google Scholar]
- Ye, S.; Lu, S.; Bai, X.; Gu, J. ResNet-locust-BN network-based automatic identification of east asian migratory locust species and instars from RGB images. Insects 2020, 11, 458. [Google Scholar] [CrossRef]
- Mohd Johari, S.N.A.; Khairunniza Bejo, S.; Mohamed Shariff, A.R.; Husin, N.A.; Mohd Basri, M.M.; Kamarudin, N. Identification of bagworm (Metisa plana) instar stages using hyperspectral imaging and machine learning techniques. Comput. Electron. Agric. 2022, 194, 106739. [Google Scholar] [CrossRef]
- Zhang, H.T.; Zhu, Y.; Tan, L.; Zhang, X.D.; Mao, H. Identifying larval development of Sitophilus oryzae in wheat grain using computer vision. Trans. CSAE 2020, 36, 201–208. [Google Scholar]
- Korstanje, J. The Random Forest. In Advanced Forecasting with Python; Springer: Berkeley, CA, USA, 2021; pp. 179–191. [Google Scholar]
- Toha, A.; Purwono, P.; Gata, W. Model Prediksi Kualitas Udara dengan Support Vector Machines dengan Optimasi Hyperparameter GridSearch CV. Bul. Ilm. Sarj. Tek. Elektro. 2022, 4, 12–21. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 20 September 2018; pp. 3–11. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Petro, A.B.; Sbert, C.; Morel, J.-M. Multiscale retinex. Image Process. Line 2014, 71–88. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. Eca-net: Efficient channel attention for deep convolutional neural networks. arXiv 2020, arXiv:1910.03151. [Google Scholar] [CrossRef]
- Roy, A.G.; Navab, N.; Wachinger, C. Concurrent spatial and channel squeeze & excitation in fully convolutional networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 421–429. [Google Scholar]
- Sathesh, A.; Adam, E.E.B. Hybrid Parallel Image Processing Algorithm for Binary Images with Image Thinning Technique. J. Artif. Intell. Res. 2021, 3, 243–258. [Google Scholar] [CrossRef]
- Cornea, N.D.; Silver, D.; Min, P. Curve-skeleton applications. In Proceedings of the VIS 05, IEEE Visualization, Minneapolis, MN, USA, 23–28 October 2005; pp. 95–102. [Google Scholar]
- Ren, X.; Yang, W.; Cheng, W.-H.; Liu, J. LR3M: Robust low-light enhancement via low-rank regularized retinex model. IEEE Trans. Image Process. 2020, 29, 5862–5876. [Google Scholar] [CrossRef]
- Hall-Beyer, M. GLCM Texture: A Tutorial v. 3.0 March 2017; University of Calgary: Calgary, AB, Canada, 2017. [Google Scholar] [CrossRef]
- Gadkari, D. Image Quality Analysis Using GLCM; University of Central Florida: Orlando, FL, USA, 2004. [Google Scholar]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [Green Version]
- Azhar, R.; Tuwohingide, D.; Kamudi, D.; Suciati, N. Batik image classification using SIFT feature extraction, bag of features and support vector machine. Procedia Comput. Sci. 2015, 72, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.S.; Li, Q.T.; Liu, Y.; Xie, W.X. A spatial-spectral SIFT for hyperspectral image matching and classification. Pattern Recognit. Lett. 2019, 127, 18–26. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Deo, R.C.; Feng, Q.; Ghahramani, A.; Raj, N.; Yin, Z.L.; Yang, L.S. Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. J. Hydrol. 2021, 599, 126350. [Google Scholar] [CrossRef]
- Bisgin, H.; Bera, T.; Ding, H.; Semey, H.G.; Wu, L.; Liu, Z.C.; Barnes, A.E.; Langley, D.A.; Pava-Ripoll, M.; Vyas, H.J. Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles. Sci. Rep. 2018, 8, 6532. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning; Springer: New York, NY, USA, 2012; pp. 307–323. [Google Scholar]
- Rigatti, S. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, J.L.; Abd Aziz, S.; Huang, Y.F.; Mirzaei, M.; Wayayok, A.; Rowshon, M.K. Uncertainty analysis of rainfall depth duration frequency curves using the bootstrap resampling technique. J. Earth Syst. Sci. 2019, 128, 113. [Google Scholar] [CrossRef]
- Gomes, C.M.A.; Lemos, G.C.; Jelihovschi, E.G. Comparing the predictive power of the CART and CTREE algorithms. Aval. Psicol. 2020, 19, 87–96. [Google Scholar] [CrossRef]
- Pham, V.-Q.; Kozakaya, T.; Yamaguchi, O.; Okada, R. Count Forest: Co-voting uncertain number of targets using random forest for crowd density estimation. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3253–3261. [Google Scholar]
- Shaikh Mohammad, B.N.; Siddiqui, K.; Scale, B. Random Forest Regressor Machine Learning Model Developed for Mental Health Prediction Based on Mhi-5, Phq-9 and Bdi Scale. In Proceedings of the 4th International Conference on Advances in Science & Technology (ICAST2021), Mumbai, India, 7 May 2021. [Google Scholar]
- Roquer-Beni, L.; Rodrigo, A.; Arnan, X.; Klein, A.M.; Fornoff, F.; Boreux, V.; Bosch, J. A novel method to measure hairiness in bees and other insect pollinators. Ecol. Evol. 2020, 10, 2979–2990. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Chen, Q.; Feng, S.; Tao, T.; Asundi, A.; Zuo, C. A new microscopic telecentric stereo vision system-calibration, rectification, and three-dimensional reconstruction. Opt. Laser. Eng. 2019, 113, 14–22. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Balaji, V.; Suganthi, S.; Rajadevi, R.; Kumar, V.K.; Balaji, B.S.; Pandiyan, S. Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes Classifier. Measurement 2020, 163, 107922. [Google Scholar] [CrossRef]
- Rai, G.; Nair, T. Gradient based seeded region grow method for CT angiographic image segmentation. arXiv 2010, arXiv:1001.3735. [Google Scholar] [CrossRef]
Models | PA (%) | MIoU (%) | FWIoU (%) |
---|---|---|---|
DeepLabv3+ | 95.63 | 84.62 | 92.20 |
UNet | 95.06 | 83.29 | 91.37 |
UNet++ | 96.10 | 87.66 | 93.65 |
MRES-UNet++ | 98.39 | 93.82 | 96.89 |
Instar | SVM | Random Forest | Improved Random Forest | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Rec | F1 | Pre | Rec | F1 | Pre | Rec | F1 | |
1 | 75.63 | 86.10 | 80.50 | 84.61 | 91.70 | 88.04 | 97.12 | 91.70 | 94.33 |
2 | 44.00 | 50.02 | 46.75 | 68.22 | 68.23 | 68.19 | 80.13 | 90.91 | 85.12 |
3 | 73.69 | 58.32 | 65.11 | 84.23 | 66.66 | 74.44 | 95.26 | 83.33 | 88.90 |
4 | 67.62 | 85.23 | 75.42 | 75.00 | 77.75 | 76.36 | 86.71 | 96.31 | 91.22 |
5 | 96.92 | 66.00 | 78.53 | 89.48 | 72.38 | 80.00 | 97.68 | 91.52 | 94.55 |
6 | 78.63 | 95.70 | 86.31 | 63.66 | 91.32 | 75.03 | 92.04 | 100.0 | 95.82 |
Mean | 72.75 | 73.59 | 72.10 | 77.53 | 78.01 | 77.01 | 91.49 | 92.30 | 91.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Feng, Z.; Tang, J.; Liu, S.; Ding, Z.; Lyu, J.; Yao, Q.; Yang, B. Improved Random Forest for the Automatic Identification of Spodoptera frugiperda Larval Instar Stages. Agriculture 2022, 12, 1919. https://doi.org/10.3390/agriculture12111919
Xu J, Feng Z, Tang J, Liu S, Ding Z, Lyu J, Yao Q, Yang B. Improved Random Forest for the Automatic Identification of Spodoptera frugiperda Larval Instar Stages. Agriculture. 2022; 12(11):1919. https://doi.org/10.3390/agriculture12111919
Chicago/Turabian StyleXu, Jiajun, Zelin Feng, Jian Tang, Shuhua Liu, Zhiping Ding, Jun Lyu, Qing Yao, and Baojun Yang. 2022. "Improved Random Forest for the Automatic Identification of Spodoptera frugiperda Larval Instar Stages" Agriculture 12, no. 11: 1919. https://doi.org/10.3390/agriculture12111919
APA StyleXu, J., Feng, Z., Tang, J., Liu, S., Ding, Z., Lyu, J., Yao, Q., & Yang, B. (2022). Improved Random Forest for the Automatic Identification of Spodoptera frugiperda Larval Instar Stages. Agriculture, 12(11), 1919. https://doi.org/10.3390/agriculture12111919