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Abstract: The performance of meteorological data-based methods to forecast plant diseases strongly
depends on temporal weather information. In this paper, a data analysis procedure is presented
for finding the optimal starting time for forecasting net blotch density in spring barley based on
meteorological data. For this purpose, changes in the information content of typically measured
weather variables were systemically quantified in sliding time windows and with additionally
generated mathematical transformations, namely with features. Signal-to-noise statistics were
applied in a novel way as a metric for identifying the optimal starting time instance and the most
important features to successfully distinguish between two net blotch densities during springtime
itself. According to the results, the information content of meteorological data used in classifying
between nine years with and four years without net blotch reached its maximum in Finnish weather
conditions on the 41st day from the beginning of the growing season. Specifically, utilising weather
data at 41–55 days from the beginning of the growing season maximises successful forecasting
potential of net blotch density. It also seems that this time instance enables a linear classification task
with a selected feature subset, since the averages of the metrics in two data groups differ statistically
with a minimum 68% confidence level for nine days in a 14-day time window.

Keywords: advanced data analysis; feature generation; plant disease prediction; signal-to-noise
statistics; modern agriculture

1. Introduction

The performance of the modern data-based forecasting tools for plant diseases is highly
dependent on the methods applied and on the representativeness of the available data. The
temporal characteristics of the information content in meteorological data and its effect on
the classification potential of net blotch risk levels have recently been discovered [1]. In this
paper, the optimal starting time instance for net blotch risk forecasting in Finnish weather
conditions is studied with an analysis framework including signal-to-noise statistics for
meteorological data with feature generation proceeding in sliding data windows.

Barley, Hordeum vulgare L., is one of the largest grain crops and in 2020 it was grown
on 51.6 million hectares globally [2]. Barley is grown for example as animal fodder and as
a source of malt for beverages. It is also common in food products such as breads, soups
and stews and in health products. There are several biotic and abiotic pressure factors that
challenge barley production. Barley net blotch is one of the most common fungal diseases
in barley and is caused by the two following pathogens: Pyrenophora teres f. teres (net form)
and Pyrenophora teres f. maculata (spot form). In Finland, net blotch was present in 86% of
barley fields investigated in 2009 [3]. According to Jalli et al. [4], leaf blotch diseases, with a
severity >50% at DC 73–77, cause an average of 1114 kg ha−1 yield-loss in spring barley in
the long term in the Nordic countries. An assessment in 2015 showed that 40% of fields in
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South Tigray, in Ethiopia, had net blotch and 60% of them had its relative, spot blotch [5].
This can decrease the barley crop by 10–20% of the annual average yield [6,7], but yield
losses as high as 40% have been reported [8].

There are several means to combat net blotch and also other foliar diseases: using
clean seed from a resistant cultivar, utilising crop rotation and controlling nitrogen. Usually,
chemical and biochemical means are additionally needed [9]. Chemical protection saves
the crop, but the overuse of pesticides should be avoided. In [10], the benefits and hazards
of pesticides are discussed with many examples. The authors look at pesticide use from
different aspects, namely the exposure to pesticides of production workers, formulators,
sprayers, mixers, loaders and farm workers. Furthermore, the impact of pesticide residues
through food commodities are examined widely [10]. The authors summarise this as
“Pesticides have contaminated almost every part of our environment” and advocate for finding
ways to protect people against the adverse effects of pesticides. There must be a balance
between chemical crop protection and the risks caused by pesticides. In the European
Union, IPM (Integrated Pest Management) is codified into the form of a directive which
needs to be followed by farmers. According to the directive, chemical protection needs
to be justified and well-documented [11]. The main idea is to avoid the negative impacts
of agrochemicals and use chemical protection only when absolutely necessary. Another
driving force is the fact that the European Commission has adopted the proposal to restore
damaged ecosystems and nature by 2050 and to halve the use of pesticides by 2030 [12].
This strongly dictates the reduction of pesticides and will lead to more sustainable food
systems in the future.

Forecasting is an important tool for the early detection of plant diseases and in eval-
uating the risks connected to them. It can help in choosing and implementing disease
management strategies. The increased amount of information and improved possibilities
to process it has made forecasting tools viable for everyday use. A couple of reviews have
shown increased interest in these applications [13–15].

In practice, the aim of forecasting applications is to avoid routine pesticide sprayings
and to help farmers in decision making when planning their chemical crop protection
strategy. Risk assessment is often based on pathogen- and plant-specific factors, selected
weather parameters, agronomic variables e.g., cultivar resistance or disease pressure, and in
some cases on earlier infection data and geological location. Three different risk models and
their use in several test fields in five different countries in the Nordic–Baltic region were
studied in [16]. In their paper, the models discussed were the Danish decision support Crop
Protection Online (CPO), the Danish Humidity Model (HM) and the Finnish net blotch
and scald model WisuEnnuste. The authors compared the models’ suitability to predict
barley leaf blotch diseases. In the CPO system, the risk assessment for all relevant barley
diseases is computed by the number of days with precipitation over 1 mm, information
about cultivar resistance and disease data [17,18]. The Danish Humidity Model originally
estimated the risk for Septoria tritici blotch in winter wheat and is based on rain events
such as the relative humidity or leaf wetness [19]. The Finnish WisuEnnuste [20] has
been developed to estimate the field-specific disease risk based on information about the
previous crop, the tillage method, the cultivar resistance and certain weather parameters.
In [21] the Fourier transform is used in studying the effects of intra-day meteorological
changes to Septoria net blotch in winter wheat.

Some examples of plant disease prediction tools for decision making and crop protec-
tion are documented and discussed in [22]. The authors focused on Fusarium head blight,
which is the major fungal disease that causes losses in wheat and barley production in
Canada. The use of fungicides in addition to evolutionary factors have led to more virulent
forms of Fusarium head blight. Fernando et al. discuss the utilization of modern predic-
tion tools for plant diseases as well as potential plant defence mechanisms and resistance
breeding as a means for plant disease management.

Some other prediction systems for Fusarium head blight are presented in [23] and [24].
One web-based platform that allows Fusarium risk assessment based on parameters such
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as the geographic location, crop type and weather is the Fusarium Head Blight Prediction
Centre in the United States [25–28]. Generally, the need for an accurate forecasting system
for crop protection has been recognized and several applications have been developed
around the world.

In [29], a prediction system for barley net blotch is presented and discussed with detail.
The computation of the risk index for barley net blotch utilises selected weather variables in
different growing zones in Finland. Instead of using original variable values in forecasting,
the forecasting accuracy was increased by using features generated from the original data.
The feature selection utilised the two-sample t-test. The data originated from the open
weather data of the Finnish Meteorological Institute and long-term observations of plant
disease severity in different growing zones in Finland; forecasting was performed without
field-specific measurements. In that study, the forecasting of barley net blotch densities
was carried out with advanced data fusion applied to two different data sets.

The accuracy of data-based forecasting depends on the method applied and on the
information content of the utilized data. In [1], it is demonstrated that the amount of
information content in data is time-dependent. This means that the accuracy of plant
disease forecasting may vary during the growing season. Three different data window
sizes (7, 14 and 21 days) were studied in the paper, while the starting point of the prediction
varied between zero and 50 days from the beginning of the growing season.

The previously mentioned two papers [1,29] show that feature generation improves the
forecasting accuracy and helps to avoid additional field tests and the forecasting accuracy
depends on choosing the correct time sample, especially the starting point of forecasting.
The research problem in this paper is how to identify and define the optimal starting time
instance for the net blotch forecasting in Finnish conditions, so enhancing the performance
of plant disease forecasting methods that utilise meteorological data. Based on the earlier
results [1], this study uses the window size of 14 days in forecasting. The target is to be able
to define automatically the optimal starting point for forecasting from the history database
by evaluating the information content of data for every time-step from the beginning of the
growing season. The signal-to-noise ratio us used as the metric for the information content
of the data.

2. Materials and Methods
2.1. Data

Weather data from the open database of the Finnish Meteorological Institute (FMI)
and field observations of net blotch density from the official variety trials database of the
Natural Resources Institute Finland (Luke) were utilised. The net blotch data was collected
during the period 1991–2017 and the test fields were located in Central and Southern
Finland. Net blotch density is divided into two categories:

• Category 1 (very low net blotch density, maximum net blotch severity value of 0.5%);
• Category 2 (net blotch appears in the selected observation fields in these years, severity

value of 0.6−5%).

One example of labelling the intensity of plant disease in cereals is presented in [30].
The locations of the test fields and the years of the selected weather data by category are
presented in Table 1.

A description of the weather data and pre-processing is presented in detail in [29].
Information on the weather stations related to the data used can be found in Appendix B.
In this study, the weather variables analysed were:

• Atmospheric pressure (hPa);
• Relative humidity (RH %);
• Temperature (◦C);
• Dew point temperature (◦C).

In the data analysis, the daily minimum, daily maximum and daily average values of
the above variables were considered.
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Table 1. Location of test fields and the years of utilised weather data by category.

Location of
Test Fields

Mynämäki
N = 6,732,402.033
E = 218,702.907

Jokioinen
N = 6,746,822.331
E = 308,359.757

Seinäjoki
N = 6,986,750.229
E = 271,138.563

Siikajoki
N = 7,174,584.799
E = 408,818.353

Years in Total

Years of
observations
Category 1

2011 2013 2011 2010 4

Years of
observations
Category 2

2013, 2014, 2016 2014, 2015 2016 2012, 2014, 2015 9

2.2. General Structure of Data Analysis

The weather variables were first normalised with linear scaling between 0 and 1 based
on Equation (1):

x′ =
x− xmin

xmax − xmin
(1)

where the minimum value (xmin) and the maximum value (xmax) were found from the
Category 1 data (low net blotch density). The Category 2 (high net blotch density) data
were normalised with their corresponding minimum and maximum values. The beginning
of the growing season varies according to the year and observation field because of the
varying climate conditions and the geological position. This has been considered in the
analysis by selecting the starting point of each data set at the beginning of the growing
season instead of a fixed calendar date, as explained below in the Section 2.3.

The main idea of the analysis is to search and rank the time windows where yearly
weather data is grouped within the categories, but to at the same time separate Categories 1
and 2. The general concept for analysing the classification properties of net blotch densities
based on temporal weather conditions is presented in Figure 1. In addition to the origi-
nal weather measurements, the feature prototypes (Appendix A), namely mathematical
transformations of the original variables, were incorporated into the analysis.
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Figure 1. Analysis procedure for meteorological data to identify time instance of optimal information
content concerning forecasting the severity of net blotch occurrence.
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The feature subset values were calculated using the feature prototypes (see Section 2.4)
at each time-step from the beginning of the growing season for fifty days onwards, pro-
ceeding in sliding windows of fourteen days. The feature values were thus the sum of
daily signal-to-noise ratios over the sliding window (Equation (2)). After all the time-steps
and feature combinations had been calculated, the optimal starting point was determined
as the time instance related to the highest obtained feature values. The 14-day window
for data analysis was then repeated 50 times, with the first time window starting from
the beginning of the growing season. The recurrence of data windows in the analysis is
illustrated in Figure 2.
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2.3. Starting Date of Growing Season, Automatic Calculation

In this research, the starting date of the growing season is calculated using weather
measurements. The beginning of the growing season is determined as the time when the
mean outdoor temperature remains over +5 ◦C for 10 consecutive days. The estimated time
for the beginning of the growing season instead of a certain calendar date, for example the
sowing date, enables here the spatially-independent comparison of data sets that may also
exhibit different weather conditions related to the measurement location. This especially
results in a standard and automatic procedure for triggering the data analysis. This method
thus differs considerably from the typical usage of the sowing date, requiring the manual
and field-specific insertion of the date into present disease prediction tools.

The data sets applied in this study exhibited differences between the sowing date
and the beginning of the growing season. The actual sowing date is on the y-axis at zero
value, and the year- and field-related difference (in days) from the beginning of the growing
season is represented with the bars in Figure 3.
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2.4. Feature Generation

Feature generation was utilised to extract more information for classification between
net blotch densities than was available with the original weather variables [29]. Some
examples of feature generation techniques are presented in [31–35]. In this study, the
feature generation method presented in [36] (p. 50) was applied, and the considered feature
prototypes are listed in Appendix A.

The feature subset value of every tested feature was computed with every possible
variable combination in every fifty selected time-steps. The classification ability of the
generated features was studied with signal-to-noise statistics (see Section 2.5). The gener-
ated features were normalised before applying the signal-to-noise statistics to ensure the
comparability of the Dsn value (see Equations (2) and (3) below).

The total number of tested feature prototypes was 115 in 715 different combinations
in groups of four variables, including generated features from a single to three variables.
The number of generated features tested in each time window was 1,973,400. The features
were generated as combinations of the minimum, maximum and average of the available
weather variables (4) and the calculated Leaf Wetness Duration (LWD) that was computed
here on an hourly basis as presented in [37] with rules and their inference as follows:

• If the relative humidity is >87%, then the leaf is humid→ LWD = 1;
• If the relative humidity is >70%–<87% and increasing >3% per 30 min, then the leaf is

humid→ LWD = 1;
• If the relative humidity is >70%–<87% and decreasing >2% per 30 min, then the leaf is

dry→ LWD = 0;
• If the relative humidity <70%, then the leaf is dry→ LWD = 0.

The calculated daily LWD was thus the sum of 24-hourly estimates according to the
rule inference above.

2.5. Metrics

In this study, the signal-to-noise statistics were examined for the vectors (here time-
series) applied for the classification of the different weather data sets according to the net
blotch severity. For example, in [38] the authors have successfully utilised signal-to-noise
statistics in the prediction of embryonal tumour outcomes in the central nervous system
based on gene expression. The authors developed a classification system based on DNA
microarray gene expression data and predicted the risk of selected tumour outcomes.

For signal-to-noise statistics, Dsn, the distance between two vectors a and b, Category 1
and 2, respectively, with their mean values µa and µb and standard deviations δa and δb are
computed according to Equation (2) [38]:

Dsn =
(µa − µb)

(δa + δb)
(2)

Equation (2) is applied in this study. The calculation of Dsn for the identification of
the optimal starting time instance for net blotch prediction proceeds in sliding windows
from the beginning of the estimated growing season and the following 50 days, step by
step in data windows of 14 days for every generated feature n as a sum of the calculated
Dsn daily values:

Dsn =
14

∑
j=1

∣∣xnj[MC1(1), MC1(4)]− xnj[MC2(1), MC2(9)]
∣∣

snj[MC1(1), MC1(4)] + snj[MC2(1), MC2(9)]
(3)

where MC1 and MC2 are feature matrices generated from scalar observations of weather
variables related to the years with data of Categories 1 and 2 (see Table 1), xnj is the
average of the data of the years in question and snj is the standard deviation of the same
data. In Figure 4, the behaviour of the Dsn index is illustrated. There, Feature number 1
would be ranked as a more plausible candidate than Feature number 2 by comparing their
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calculated Dsn values in classification of the two groups (o and x). According to Figure 4
and Equation (2) with the same notation of statistical quantities, the resulting value of Dsn
for Feature 1 would be much higher than for Feature 2 in this case.
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3. Results and Discussion

In the following figures, the resulting Dsn values in the fourteen-day time window are
presented for each time step. The daily average, minimum and maximum of the studied
variables were tested and the Dsn values were calculated accordingly to every analysed
feature subset (Equation (3)).

In Figure 5, the calculated Dsn values for the average, minimum and maximum
outdoor temperature are presented. The highest Dsn value, 52.5, is achieved on day 40 from
the beginning of the growing season with the daily average outdoor temperature. The
Dsn value in the case of the average outdoor temperature remains relatively high between
days 37 and 40, but then the value falls rapidly to 28.2 on day 41. On the other hand,
the Dsn value of the maximum outdoor temperature achieves its highest value, 43.3, on
the same day while the highest Dsn value of the minimum outdoor temperature of 29.3 is
achieved on day 29. The Dsn value of the average outdoor temperature higher than the
Dsn values of the minimum and the maximum outdoor temperature during the studied
period. This indicates that the information content of the outdoor temperature related
to the appearance of barley net blotch is the highest during the two weeks starting on
days 36–40 from the beginning of the growing season.
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In Figure 6, the Dsn values of the average, minimum and maximum daily relative
humidity are presented. The highest Dsn value, namely 57, is achieved on day 22 from the
beginning of the growing season with the minimum daily relative humidity. The average
of the daily relative humidity reaches its highest Dsn value of 45.9 at almost the same time,
namely on day 25. The maximum daily relative humidity exhibits the highest Dsn values in
the time window 42–49 days from the beginning of the growing season. As can be seen in
Figure 5, the Dsn values are relatively high between days 17 and 30 with all three variables,
but the maximum daily relative humidity does not achieve its highest value of 49.5 until
day 49.
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Figure 6. Variation of the classification potential (Dsn values) when using the daily minimum,
maximum and average values of relative humidity. Day 1 is the beginning of the growing season.

In Figure 7, the Dsn values of the daily average, minimum and maximum dew point
temperature are presented. The highest Dsn value, 48.9, is achieved for this weather
variable on day 39 from the beginning of the growing season (day 1) with the daily average
dew point temperature. In the case of the daily maximum dew point temperature, the
Dsn value (42.1) peaks in the same time window, whereas the highest Dsn value related
to the minimum dew point temperature (39.6) is achieved on day 29. The classification
potential of the dew point temperature to separate the two data sets related to different
levels of net blotch risk increases during the growing season until day 40, which can be
seen in the ascending trend of all three series in Figure 7.
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Figure 7. The variation of the classification potential (Dsn values) for net blotch risk levels when
applying the daily minimum, maximum and average values of the dew point temperature. Day 1 is
the beginning of the growing season.
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In Figure 8, the Dsn values for the daily average, minimum and maximum atmospheric
pressure are shown. The highest Dsn value, 74.4 is achieved here on day 14 when applying
the measured minimum values of the atmospheric pressure. Another peak appears on
day 18 and corresponds to a Dsn value of 71.4. Furthermore, the highest Dsn values of the
maximum (49.1; day 13) and average atmospheric pressure (68.4; day 14) peak almost in
the same starting time instance. During days 21–28, the Dsn values of all three statistical
quantities for atmospheric pressure are relatively low. All the Dsn values increase slightly
after day 30, but are still considerably lower than during days 11–19.
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Figure 8. The variation of the classification potential (Dsn values) of the daily minimum, maximum
and average values of atmospheric pressure. Day 1 is the beginning of the growing season.

In Figure 9, the calculated Dsn values for leaf wetness duration (LWD) are presented.
The highest Dsn value, 34.5 is achieved when the calculation is started on day 22 from
the beginning of the growing season. Relatively high Dsn values also exist between
days 27 and 32. The time window when the maximum Dsn values are achieved differs from
the peaks presented in Figures 4–7. Here, the maximum Dsn value of LWD is at a lower
level than the Dsn values of the other analysed weather variables.
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Figure 9. Variation of the classification potential (Dsn values) with daily calculated leaf wetness
duration. Day 1 on the x-axis is the first day of the growing season.

Figure 10 shows the boxplots of the Dsn values for the 715 best-ranked features cal-
culated in data windows of 14 days at each starting time instance (day). On each daily
boxplot, the central mark indicates the median of the 715 calculated Dsn values of the related
features. The bottom and top edges of the boxplot indicate the 25th and 75th percentiles,
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respectively. The whiskers extend to the most extreme data points and the individual
high Dsn values are plotted with ‘o’ markers.
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Figure 10. Box plots of the classification potential (Dsn values) when using the 115 feature prototypes
with 715 different variable combinations at each starting day in time windows of 14 days. The highest
individual Dsn values are plotted with ‘o’ markers.

The highest Dsn value, namely 285.8, is achieved on day 41 from the beginning of the
growing season with the generated feature prototype number 115 (Appendix A), which is
structured here as the combination of three weather variables:

ln(maximum relative humidity)
ln(minimum dew point temperature)

× ln(minimum outdoor temperature). (4)

These variables included in the feature are also generally known to affect the risk
of net blotch infection. The high values are also present on days 20 (Dsn value 260.9),
40 (Dsn value 256.2) and 42 (Dsn value 276.9). The highest statistical median for the Dsn value
of the plotted features appears on day 18, namely 92.9. It can also be concluded from
Figure 10 in comparison to the values of single weather variables (Figures 5–9) that the
classification potential generally increases with the applied features. The highest Dsn values
of analysed variables and of the best generated feature are presented in Table 2.

Table 2. Highest Dsn values of analysed variables, related to Figures 5–10.

Variable Highest Dsn Value Time of the Best
Dsn Value

Related
Figure

Daily outdoor
temperature

Avg 52.5 40
5Min 29.3 29

Max 43.3 40

Relative
humidity

Avg 45.9 25
6Min 57 22

Max 49.5 49

Dew point
temperature

Avg 48.9 39
7Min 39.6 29

Max 42.1 39

Atmospheric
pressure

Avg 68.4 14
8Min 74.4 14

Max 49.1 13

LWD 34.5 22 9

Feature with the
highest Dsn value 285.8 41 10
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In Figures 11 and 12, the classification potential (sums of 14 days of Dsn values) of
the best-ranked feature (Equation (2)) is compared at the starting time instances of days 41
and 18 from the beginning of the growing season. The daily Dsn values are presented with
standard deviations. The markers ‘x’ and ‘o’ are the mean values of Category 1 (low net
blotch density) and 2 (high net blotch density) data, respectively, and the whiskers describe
standard deviation, namely the interval with a confidence level of 68%. In Figure 11, the
Dsn values with Category 1 data are generally higher than those of Category 2 for every
monitored day. Statistically, the categories differ from each other during nine days out of 14
with a confidence level of 68%, as can be seen from Figure 11.
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applying the best feature (Equation (3)) and starting the analysis on day 18 from the beginning of the
growing season.

Figure 12 shows that the mean Dsn values of Categories 1 and 2 are similar on five
days out of 14 and the whiskers overlap in every case, namely with a confidence level
of 68%. Thus, statistically the Dsn values for the best feature (Equation (2)) are similar in
both data sets, leading to poor classification potential.

On the other hand, at least with the generated feature (Equation (4)), it seems that
a linear classifier would be sufficient for the task if the analysis starts on day 41 after the
beginning of the growing season in Finland. Generally, the results show that the starting
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time instance strongly affects the classification potential of net blotch risk levels based on
meteorological data.

4. Conclusions

The results show that starting the analysis on day 41 from the beginning of the growing
season while applying a 14-day data window would maximise the accuracy of forecasting
net blotch risk levels spatially in Finland. The results also indicate that the starting date
for forecasting can be identified automatically instead of utilising the sowing date. It
can be further concluded that the utilization of features (mathematical transformation
of variables) increases the net blotch forecasting potential considerably in comparison to
the usage of raw weather variables, including leaf wetness duration. Importantly, it is
shown that the selection of an appropriate starting time instance is the crucial factor in
developing any forecasting methods for net blotch density, based on information exhibited
in meteorological data.
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Appendix A

Table A1. The applied feature prototypes.

features(1) = x − y;
features(2) = x − z;
features(3) = y − z;
features(4) = (x − y) × y;
features(5) = (y − x) × z;
features(6) = (z − x) × z;
features(7) = (y − z) × z;
features(8) = (z − y) × x;
features(9) = (x − z) × y;
features(10) = ln(x);
features(11) = ln(y);
features(12) = ln(z);
features(13) = x × y;
features(14) = x × z;
features(15) = x × y × z;
features(16) = y × z;
features(17) = ln(x) − ln(y);
features(18) = ln(x) − ln(z);
features(19) = ln(y) − ln(z);
features(20) = ln(x) − ln(y) × ln(z);
features(21) = ln(y) − ln(x) × ln(y);
features(22) = ln(z) − ln(x) × ln(z);
features(23) = ln(y) − ln(z) × ln(z);
features(24) = ln(z) − ln(y) × ln(x);
features(25) = ln(x)/ln(y);
features(26) = ln(x) × ln(y);
features(27) = ln(x) × ln(z);
features(28) = ln(x) × ln(y) × ln(z);
features(29) = ln(y) × ln(z);
features(30) = sqrt(x);
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Table A1. Cont.

features(31) = sqrt(y);
features(32) = sqrt(z);
features(33) = sqrt(x) − sqrt(y);
features(34) = sqrt(x) − sqrt(z);
features(35) = sqrt(y) − sqrt(z);
features(36) = sqrt(ln(x));
features(37) = sqrt(ln(y));
features(38) = sqrt(ln(z));
features(39) = sqrt(x)/y;
features(40) = x/z;
features(41) = y/z;
features(42) = (x × y)/z;
features(43) = (x × z)/y;
features(44) = (y × z)/x;
features(45) = sqrt(x)/sqrt(y);
features(46) = sqrt(x)/z;
features(47) = (y/x)ˆ2;
features(48) = (sqrt(x) × y)/z;
features(49) = (sqrt(x) × z)/y;
features(50) = (y × z)/sqrt(x);
features(51) = xˆ2;
features(52) = yˆ2;
features(53) = zˆ2;
features(54) = xˆ2 − yˆ2;
features(55) = xˆ2 − zˆ2;
features(56) = x;
features(57) = y;
features(58) = z;
features(59) = x + y + z;
features(60) = x + y − z;
features(61) = ln(x) + ln(y) + ln(z);
features(62) = sqrt(y) + sqrt(z) + sqrt(x);
features(63) = (x − y)/x;
features(64) = (x/y)ˆ3;
features(65) = (yˆ(0.7) − 1)/(0.7);
features(66) = (y − z)/y; %(y − z)/z, 23.12.2011
features(67) = (z − y)/x;
features(68) = (yˆ(−1) − 1)/(−1);
features(69) = x + y;
features(70) = x + z;
features(71) = y + z;
features(72) = (x + y)/y;
features(73) = (y + x)/z;
features(74) = (yˆ(0.5) − 1)/(0.5);
features(75) = (zˆ(2.5) − 1)/(2.5);
features(76) = (z + y)/x;
features(77) = (yˆ(1.5) − 1)/(1.5);
features(78) = (x + z)/x;
features(79) = (yˆ(−2) − 1)/(−2);
features(80) = (x + z)/y;
features(81) = ln(x) + ln(y);
features(82) = ln(x) + ln(z);
features(83) = ln(y) + ln(z);
features(84) = (ln(x) + ln(y)) × ln(z);
features(85) = (ln(y) + ln(x)) × ln(y);
features(86) = (ln(z) + ln(x)) × ln(z);
features(87) = (ln(y) + ln(z)) × ln(z);
features(88) = (ln(z) + ln(y)) × ln(x);
features(89) = (ln(x) + ln(z)) × ln(y);
features(90) = sqrt(x) + sqrt(y);
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Table A1. Cont.

features(91) = sqrt(x) + sqrt(z);
features(92) = sqrt(y) + sqrt(z);
features(93) = (x + y) × y;
features(94) = (y + x) × z;
features(95) = (z + x) × z;
features(96) = (y + z) × z;
features(97) = (z + y) × x;
features(98) = (x + z) × y;
features(99) = (x + z) × x;
features(100) = (x − y) × x;
features(101) = x + (y × y);
features(102) = y + (x × z);
features(103) = z + (x × z);
features(104) = y + (z × z);
features(105) = z + (y × x);
features(106) = x + (z × y);
features(107) = x + (z × x);
features(108) = x − (y × x);
features(109) = yˆ2 − zˆ2;
features(110) = xˆ2 × yˆ2;
features(111) = (x − y) × z;
features(112) = (x + y) × z;
features(113) = (x/y) × z;
features(114) = (x/y) + z;
features(115) = ln(x)/ln(y) × ln(z);

Where x, y and z are the three selected weather quantities for each tested variable combination.

Appendix B

Table A2. Data sources.

The weather data used has been downloaded from the fmi open database:
https://www.ilmatieteenlaitos.fi/havaintojen-lataus#!/ (accessed on 2 October 2022)

Mynämäki: until 2011, the FMI weather station “Turku airport” and 2012–2017 the FMI weather
station “Kaarina, Yltöinen”.
Jokioinen: the FMI weather station “Jokioinen”.
Seinäjoki: the FMI weather station “Seinäjoki, Pelmaa”.
Siikajoki: the FMI weather station “Siikajoki, Revonlahti”.

See the selected data sets and years from Table 1.
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