Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Proximate Analysis
2.3. In Vitro Rumen Fermentation Profile
2.4. Determination of Copper after In Vitro Rumen Fermentation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mercer, J.F.B. The molecular basis of copper-transport diseases. Trends Mol. Med. 2001, 7, 64–69. [Google Scholar] [CrossRef]
- Kenney, G.E.; Rosenzweig, A.C. Chemistry and biology of the copper chelator methanobactin. ACS Chem. Biol. 2012, 7, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Counci. Nutrient Requirements of Dairy Cattle. In National Academies of Sciences, Engineering, and Medicine, 8th ed.; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Spears, R.A.; Kohn, R.A.; Young, A.J. Whole-Farm Nitrogen Balance on Western Dairy Farms. J. Dairy Sci. 2003, 86, 4178–4186. [Google Scholar] [CrossRef]
- Ridge, P.G.; Zhang, Y.; Gladyshev, V.N. Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen. PLoS ONE 2008, 3, e1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felix, T.L.; Weiss, W.P.; Fluharty, F.L.; Loerch, S.C. Effects of Copper Supplementation on Feedlot Performance, Carcass Characteristics, and Rumen Sulfur Metabolism of Growing Cattle Fed Diets Containing 60% Dried Distillers Grains. J. Anim Sci. 2012, 90, 2710–2716. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, S.G.; Craig Jr, T.J.; Reddy, G.; Shoemaker, C.E. Effect of High Levels of Cu Supplement on Growth Performance, Rumen Fermentation, and Immune Responses in Goat Kids. Small Rumin. Res. 2007, 69, 115–123. [Google Scholar] [CrossRef]
- Netto, A.S.; Zanetti, M.A.; Del Claro, G.R.; de Melo, M.P.; Vilela, F.G.; Correa, L.B. Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls. Asian Aust. J. Anim. Sci. 2014, 27, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Wang, C.; Zhang, G.; Liu, Q.; Guo, G.; Huo, W.; Zhang, J.; Pei, C. Effects of Soybean Oil and Dietary Copper Levels on Nutrient Digestion, Ruminal Fermentation, Enzyme Activity, Microflora and Microbial Protein Synthesis in Dairy Bulls. Arch. Anim. Nutr. 2020, 74, 257–270. [Google Scholar] [CrossRef]
- Lopez-Guisa, J.M.; Satter, L.D. Effect of Copper and Cobalt Addition on Digestion and Growth in Heifers Fed Diets Containing Alfalfa Silage or Corn Crop Residues. J. Dairy Sci. 1992, 75, 247–256. [Google Scholar] [CrossRef]
- Gould, L.; Kendall, N.R. Role of the Rumen in Copper and Thiomolybdate Absorption. Nutr. Res. Rev. 2011, 24, 176–182. [Google Scholar] [CrossRef]
- NRC, National Research Council. Nutrient Requirements of Small Ruminants. In Sheep, Goats, Cervids, and NewWorld Camelids, 1st ed.; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Spears, J.W.; Kegley, E.B.; Mullis, L.A. Bioavailability of Copper from Tribasic Copper Chloride and Copper Sulfate in Growing Cattle. Anim. Feed Sci. Technol. 2004, 116, 1–13. [Google Scholar] [CrossRef]
- Wu, Q.; La, S.K.; Wang, C.; Zhang, J.; Liu, Q.; Guo, G.; Huo, W.J.; Pei, C.X. Effects of Coated Copper Sulphate and Coated Folic Acid Supplementation on Growth, Rumen Fermentation and Urinary Excretion of Purine Derivatives in Holstein Bulls. Anim. Feed Sci. Technol. 2021, 276, 114921. [Google Scholar] [CrossRef]
- Wang, C.; Han, L.; Zhang, G.W.; Du, H.S.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Zhang, Y.L.; et al. Effects of Copper Sulphate and Coated Copper Sulphate Addition on Lactation Performance, Nutrient Digestibility, Ruminal Fermentation and Blood Metabolites in Dairy Cows. Br. J. Nutr. 2021, 125, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Eckard, R.J.; Grainger, C.; De Klein, C.A.M. Options for the Abatement of Methane and Nitrous Oxide from Ruminant Production: A Review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Buddle, B.M.; Denis, M.; Attwood, G.T.; Altermann, E.; Janssen, P.H.; Ronimus, R.S.; Pinares-Patiño, C.S.; Muetzel, S.; Wedlock, D.N. Strategies to Reduce Methane Emissions from Farmed Ruminants Grazing on Pasture. Vet. J. 2011, 188, 11–17. [Google Scholar] [CrossRef]
- Wilk, M.; Król, B.; Słupczyńska, M.; Sowiński, J.; Antoszkiewicz, Z.; Pecka-Kiełb, E.; Asghar, M.U. In vitro rumen methanogenesis and fermentation profile of sorghum whole crop cereal and bagasse ensilaged with inoculum Lactobacillus buchneri. Pak. Vet. J. 2021, 42, 41–46. [Google Scholar] [CrossRef]
- Lila, Z.A.; Mohammed, N.; Kanda, S. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 2003, 86, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Jordan, E.; Lovett, D.K.; Hawkins, M. The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Anim. Sci. 2006, 82, 859–865. [Google Scholar] [CrossRef]
- Kamra, D.N.; Patra, A.K.; Chatterjee, P.N. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: A brief overview. Aust. J. Exp. Agric. 2008, 48, 175–178. [Google Scholar] [CrossRef]
- De Oliveira, S.G.; Berchielli, T.T.; Santos Pedreira, M. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Anim. Feed Sci. Technol. 2007, 135, 236–248. [Google Scholar] [CrossRef]
- Napasirth, P.; Wachirapakorn, C.; Saenjan, P.; Yuangklang, C. Effect of Sulfate-Containing Compounds on Methane Production by Using an in Vitro Gas Production Technique. Pakistan J. Nutr. 2013, 12, 723–729. [Google Scholar] [CrossRef] [Green Version]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; ISBN 978-90-8686-292-4. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2011. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McDougalle, I. Studies on Ruminant Saliva. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Baran, M. and Žitňan, R. Effect of monensin sodium on fermentation efficiency in sheep rumen (short communication). Arch. Anim. Breed. 2002, 45, 181–185. [Google Scholar] [CrossRef]
- Czerkawski, J.W. Reassessment of the Contribution of Protozoa to the Microbial Protein Supply to the Host Ruminant Animal. The Hannah Research Institute, ayr, Scotland. J. Theor. Biol. 1986, 126, 335–341. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Laboratory Training Manual on the Use of Nuclear Techniques in Animal Nutrition; Technical Report Series; IAEA: Vienna, Austria, 1985; p. 301. [Google Scholar]
- Abrahamse, P.A.; Vlaeminck, B.; Tamminga, S. The effect of silage and concentrate type on intake behavior, rumen function, and milk production in dairy cows in early and late lactation. J. Dairy Sci. 2008, 91, 4778–4792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- StatSoft Inc. TlBCO Statistica; StatSoft Inc.: Tulsa, OK, USA, 2019. [Google Scholar]
- Hasman, H.; Bjerrum, M.J.; Christiansen, L.E.; Hansen, H.C.B.; Aarestrup, F.M. The Effect of PH and Storage on Copper Speciation and Bacterial Growth in Complex Growth Media. J. Microbiol. Methods 2009, 78, 20–24. [Google Scholar] [CrossRef]
- Bayne, J.E.; Edmondson, M.A. Diseases of the Gastrointestinal System. Sheep Goat Cervid Med. 2021, 63–96. [Google Scholar] [CrossRef]
- Engle, T.E.; Spears, J.W. Dietary Copper Effects on Lipid Metabolism, Performance, and Ruminal Fermentation in Finishing Steers. J. Anim. Sci. 2000, 78, 2452–2458. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Zhang, S.W.; Song, X.Z.; Jia, Z.H.; Wang, R.L. Effect of Different Levels of Copper and Molybdenum Supplements on Serum Lipid Profiles and Antioxidant Status in Cashmere Goats. Biol. Trace Elem. Res. 2012, 148, 309–315. [Google Scholar] [CrossRef]
- Vázquez-Armijo, J.F.; Martínez-Tinajero, J.J.; López, D.; Salem, A.-F.Z.M.; Rojo, R. In Vitro Gas Production and Dry Matter Degradability of Diets Consumed by Goats with or without Copper and Zinc Supplementation. Bio. Trace Elem. Res. 2011, 144, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Sánchez, D.; Cervantes-Gómez, D.; Ramírez-Bribiesca, J.E.; Cobos-Peralta, M.; Pinto-Ruiz, R.; Astigarraga, L.; Gere, J.I. The Influence of Copper Levels on in Vitro Ruminal Fermentation, Bacterial Growth and Methane Production. J. Sci. Food Agric. 2019, 99, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, R.; Zhu, X.; Kleemann, D.O.; Yue, C.; Jia, Z. Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats. Asian-Australas. J. Anim. Sci. 2007, 20, 1843–1848. [Google Scholar] [CrossRef]
- Mondal, M.K.; Biswas, P. Different Sources and Levels of Copper Supplementation on Performance and Nutrient Utilization of Castrated Black Bengal (Capra hircus) Kids Diet. Asian-Australas. J. Anim. Sci. 2007, 20, 1067–1075. [Google Scholar] [CrossRef]
- Zhang, Q.; Koser, S.L.; Bequette, B.J.; Donkin, S.S. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. J. Dairy Sci. 2015, 98, 8698–8709. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.A.N.; Dijkstra, J.; Bannink, A. A mechanistic model of whole-tract digestion and methanogenesis in the lactating cow: Model development, evaluation, and application. J. Anim. Sci. 2001, 79, 1584–1597. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.; Naylor, G.E.; Leahy, S.C.; Janssen, P.H. Presence of Novel, Potentially Homoacetogenic Bacteria in the Rumen as Determined by Analysis of Formyltetrahydrofolate Synthetase Sequences from Ruminants. Appl. Environ. Microbiol. 2010, 76, 2058–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Z.B.; Yu, H.Q.; Wang, Z.L. Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Bioresour. Technol. 2007, 98, 781–786. [Google Scholar] [CrossRef]
- Morvay, Y.; Bannink, A.; France, J. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. J. Dairy Sci. 2011, 94, 3063–3080. [Google Scholar] [CrossRef]
Chemical Composition | |
---|---|
Dry matter [g/kg] | 291.80 ± 0.10 |
Crude ash [% DM] | 4.62 ± 0.10 |
Crude protein [% DM] | 8.20 ± 0.04 |
Ether extract [% DM] | 2.20 ± 0.02 |
Crude fiber [% DM] | 20.04 ± 0.03 |
NDF [% DM] | 51.17 ± 0.02 |
ADF [% DM] | 25.28 ± 0.07 |
ADL [% DM] | 3.44 ± 0.01 |
Cellulose [% DM] | 21.84 ± 0.06 |
Hemicellulose [% DM] | 25.89 ± 0.05 |
Lignin [% DM] | 3.44 ± 0.01 |
NFE [% DM] | 64.96 ± 0.09 |
Cu [mg/kg DM] | 5.46 ± 0.46 |
Control | CS | EC | p-Value | |
---|---|---|---|---|
pH initial (0 h) | 7.37 ± 0.06 | 7.36 ± 0.04 | 7.40 ± 0.07 | 0.4750 |
pH final (24 h) | 6.43 ± 0.06 | 6.39 ± 0.07 | 6.45 ± 0.09 | 0.4770 |
ivTDDM (%) | 58.91 ± 2.67 | 59.57 ± 2.40 | 57.59 ± 3.56 | 0.0885 |
Cu content [mg/kg of dry rumen fluid] | 31.90 ± 4.21 A | 56.20 ± 6.69 B | 30.00 ± 5.01 A | 0.0000 |
Cu content [mg/kg of rumen fluid] | 0.40 ± 0.05 A | 0.70 ± 0.08 B | 0.38 ± 0.06 A | 0.0000 |
Control | CS | EC | p-Value | |
---|---|---|---|---|
Gas production (mL) | 103.66 ± 10.13 a | 114.49 ± 6.17 b | 99.90 ± 9.19 a | 0.0279 |
CH4 (%) | 36.95 ± 1.71 | 33.96 ± 3.02 | 34.03 ± 3.58 | 0.1541 |
Total VFA x | 223.90 ± 16.48 | 227.27 ± 20.09 | 221.15 ± 5.68 | 0.7899 |
Total VFA z | 74.63 ± 5.49 | 75.76 ± 6.70 | 73.72 ± 1.89 | 0.2946 |
Acetate z | 49.80 ± 5.01 | 48.13 ± 5.95 | 48.81 ± 1.36 | 0.8176 |
Propionate z | 17.55 ± 0.39 A | 20.83 ± 2.55 B | 17.62 ± 1.33 A | 0.0056 |
Isobutyrate z | 0.56 ± 0.08 | 0.53 ± 0.05 | 0.56 ± 0.09 | 0.7120 |
Butyrate z | 5.45 ± 0.48 | 4.97 ± 0.95 | 5.41 ± 1.08 | 0.5912 |
Isovalerate z | 0.40 ± 0.04 | 0.42 ± 0.06 | 0.42 ± 0.06 | 0.7452 |
Valerate z | 0.42 ± 0.05 | 0.44 ± 0.06 | 0.44 ± 0.09 | 0.8406 |
Isocaproate z | 0.21 ± 0.01 | 0.20 ± 0.01 | 0.21 ± 0.01 | 0.3239 |
Hexanoate z | 0.16 ± 0.01 | 0.16 ± 0.03 | 0.17 ± 0.02 | 0.6795 |
Heptanoate z | 0.09 ± 0.00 a | 0.08 ± 0.00 b | 0.09 ± 0.01 a | 0.0180 |
A:P | 2.84 ± 0.27 a | 2.34 ± 0.41 b | 2.78 ± 0.25 a | 0.0312 |
P:B | 3.24 ± 0.27 | 4.44 ± 1.61 | 3.38 ± 0.74 | 0.1236 |
FE [%] | 75.70 ± 0.77 a | 77.32 ± 1.51 b | 75.86 ± 0.74 a | 0.0351 |
E1 [%] | 75.00 ± 0.43 a | 76.11 ± 0.98 b | 75.01 ± 0.99 a | 0.0458 |
E2 [%] | 20.02 ± 0.17 A | 18.51 ± 1.18 B | 19.98 ± 0.57 A | 0.0052 |
NGR | 3.28 ± 0.28 a | 2.71 ± 0.47 b | 3.22 ± 0.27 a | 0.0256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, M.; Pecka-Kiełb, E.; Pastuszak, J.; Asghar, M.U.; Mól, L. Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture 2022, 12, 1943. https://doi.org/10.3390/agriculture12111943
Wilk M, Pecka-Kiełb E, Pastuszak J, Asghar MU, Mól L. Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture. 2022; 12(11):1943. https://doi.org/10.3390/agriculture12111943
Chicago/Turabian StyleWilk, Martyna, Ewa Pecka-Kiełb, Jerzy Pastuszak, Muhammad Umair Asghar, and Laura Mól. 2022. "Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production" Agriculture 12, no. 11: 1943. https://doi.org/10.3390/agriculture12111943
APA StyleWilk, M., Pecka-Kiełb, E., Pastuszak, J., Asghar, M. U., & Mól, L. (2022). Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture, 12(11), 1943. https://doi.org/10.3390/agriculture12111943