Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Site
2.2. Experimental Design
2.2.1. Experimental Treatment
2.2.2. Experimental Arrangement
2.2.3. Crop Establishment
2.2.4. Field Management
2.3. Sampling and Measurements
2.3.1. Temperature Observation and Measurements
2.3.2. Soil Water Content Observations and Measurements
2.3.3. Crop Management
2.3.4. Meteorological Data
2.3.5. Statistical Analysis
3. Results
3.1. Impact on the Summer Maize Yields and Its Component Parts
3.2. Impact on the Summer Maize Phenological Period
3.3. Impact on Summer Maize Grain Filling Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Zhai, P.M.; Zhang, X.B.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C. Global observed changes in daily climate extremes of temperature andprecipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Feng, G.; Dong, W.J. Temporal changes in the patterns ofextreme air and precipitation in the various regions of China in recent 50 years. Acta Meteorol. Sin. 2011, 69, 125–136. [Google Scholar]
- Matsui, T.; Omasa, K.; Horie, T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci. 2000, 3, 430–434. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maizeproduction in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z. Climate change, high temperature stress, riceproductivity and water use in Eastern China: A new superensemble-based probabilistic projection. J. Appl. Meteorol. Climatol. 2013, 52, 531–551. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Li, E.; Zhao, J.; Pullens, J.W.M.; Yang, X.G. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Sci. Total Environ. 2022, 812, 152461. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate—Crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, S.Q.; Guo, J.P.; Zhang, T.L.; Yu, H.; Xu, L.P. Effects of air temperature on maize growth and its yield. Chin. J. Ecol. 2009, 28, 255–260. [Google Scholar]
- Zhu, X.Y.; Zhang, J.J.; Zhao, W.L.; Shi, B.L. Impacts of Climate Change on Maize Yield in Shangqiu, Henan, China. Hubei Agric. Sci. 2012, 51, 2198–2200. [Google Scholar]
- Sun, X.S.; Long, Z.W.; Song, G.P.; Chen, C.Q. Effects of Climate Change on Cropping Pattern and Yield of Summer Maize-Winter Wheat in Huang-Huai-Hai Plain. Sci. Agric. Sin. 2017, 50, 2476–2487. [Google Scholar]
- Oula, G. C4 photosynthesis and water stress. Ann. Bot. 2009, 103, 635–644. [Google Scholar]
- Jamala, G.Y.; Iorkaa, A.A. Socio-Economic Implications of Charcoal Production and Marketing in Nigeria. IOSR J. Agric. Vet. Sci. 2020, 5, 41–45. [Google Scholar]
- Ma, X.Y.; He, Q.J.; Zhou, G.S. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds. Front. Plant Sci. 2018, 9, 511. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.W. The Theory of Crop Cultivation; China Agricultural Press: Beijing, China, 2013. [Google Scholar]
- Wang, Y.Y.; Hu, C.S.; Dong, W.X.; Li, X.X.; Zhang, Y.M.; Qin, S.P.; Oenema, O. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agric. Ecosyst. Environ. 2015, 206, 33–45. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, H.C.; Li, C.; Tian, F.Q. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China. Sci. Rep. 2018, 8, 16700. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Jin, Z.N.; Zhuang, Q.L.; Ciais, P.; Bernacchi, C.; Wang, X.H.; Makowski, D.; Lobell, D. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest. Glob. Chang. Boil. 2018, 24, 4718–4730. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, B.; Jager, K.; Feher, A. The effect ofdrought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar]
- Prasad, P.V.V.; Staggenborg, S.A.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth and yield processes of crop plants. In Responses of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L.H., Ma, L., Saseendran, S., Eds.; Advances in Agricultural Systems Modeling Series 1; ASA-CSSA: Madison, WI, USA, 2008; Volume 1, pp. 301–355. [Google Scholar]
- Tester, M.; Bacic, M. Abiotic stress tolerance in grasses. From model plants tocrop plants. Plant Physiol. 2005, 137, 791–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hama, B.M.; Mohammed, A.A. Physiological performance of maize (Zea mays L.) under stress conditions of water deficit and high temperature. Appl. Ecol. Environ. Res. 2019, 17, 1261–1278. [Google Scholar] [CrossRef]
- Saini, H.S.; Aspinall, D. Effect of water stress onsporogenesis in wheat (Triticum aestivum L.). Ann. Bot. 1981, 48, 623–633. [Google Scholar] [CrossRef]
- Saini, H.S.; Aspinall, D. Abnormal sporogenesis inwheat (Triticum aestivum L.) induced by short periods ofhigh temperature. Ann. Bot. 1982, 49, 835–846. [Google Scholar] [CrossRef]
- Wardlaw, I.F.; Sofield, I.; Cartwright, P.M. Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperatures. Aust. J. Plant Physiol. 1980, 7, 387–400. [Google Scholar] [CrossRef]
- Porter, J.R.; Gawith, M. Temperature and growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Boyer, J.S.; Westgate, M.E. Grain yield with limited water. J. Exp. Bot. 2004, 55, 2385–2394. [Google Scholar] [CrossRef]
- Gooding, M.J.; Ellis, R.H.; Shewry, P.R.; Schofield, J.D. Effects of restricted water availability and increased temperature on the grain filling, drying and quality ofwinter wheat. J. Cereal Sci. 2003, 37, 295–309. [Google Scholar] [CrossRef]
- Britz, S.J.; Prasad, P.V.V.; Moreau, R.A.; Allen Jr, L.H.D.; Kremer, F.; Boote, K.J. Influence of growth temperature on amounts of tocopherols, tocotrienols and gamma-ozyzanol in brown rice. J. Agric. Food. Chem. 2007, 55, 7559–7565. [Google Scholar] [CrossRef]
- Huntington, M.K. Book Review: Ethical Issues in Rural Health Care. J. Rural Health 2010, 26, 201. [Google Scholar]
- Fang, S.B.; Ren, S.X.; Tan, K.Y. Responses of winter wheat to higher night temperature in spring as compared withinwhole growth period by controlled experiments in North China. J. Food Agric. Environ. 2013, 11, 777–781. [Google Scholar]
- Wan, S.Q.; Xia, J.Y.; Liu, W.X.; Niu, S.L. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 2009, 90, 2700–2710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.B.; Tan, K.Y.; Ren, S.X. Winter Wheat Yields Decline with Spring Higher Night Temperature by Controlled Experiments. Sci. Agric. Sin. 2010, 43, 3251–3258. [Google Scholar]
- Wang, L.J.; Liao, S.H.; Huang, S.B.; Ming, B.; Meng, Q.F. Increasing concurrent drought and heat during the summer maize season in Huang–Huai–Hai Plain, China. Int. J. Climatol. 2018, 38, 3177–3190. [Google Scholar] [CrossRef]
- National Weather Service. Agrometeorology Observation Standards; Meteorological Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Wolf, J.; Van Diepen, C.A. Effects of climate change on grain maize yield potential in the European Community. Clim. Chang. 1995, 29, 299–331. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.L.; Zhang, Z. Impacts of climate change as a function of global mean temperature: Maize productivity and water use in China. Clim. Chang. 2011, 105, 409–432. [Google Scholar] [CrossRef]
- Tokatlidis, I.S. Adapting maize crop to climate change. Agron. Sustain. Dev. 2013, 33, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Lecomte, D.U.S. Weather Highlights 2012: Heat, Drought, and Sandy. Weatherwise 2013, 66, 12–16, 18–19. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008. J. Sci. Food Agric. 2011, 92, 1643–1652. [Google Scholar]
- Mi, N.; Zhang, S.Y.; Cai, F.; Ji, R.P.; Zhang, S.J.; Yu, H.B.; Yu, X.J. Modeling the impacts of future climate change on maize productivity in northeast China. J. Arid. Land Resour. Environ. 2012, 26, 118–121. [Google Scholar]
- Liu, D.; Zhang, J.H.; Meng, F.C.; Hao, C.; Zhou, Z.M.; Li, H.; Zhang, H.; Wang, K. Effects of different soil moisture and air temperature regimes on the growth characteristicsand grain yield of maize in Northeast China. Chin. J. Ecol. 2013, 32, 2904–2910. [Google Scholar]
- Zhang, J.W.; Dong, S.T.; Wang, K.J.; Hu, C.H.; Liu, P. Effects of high field temperature on summer maize grain yield and quality. Chin. J. Appl. Ecol. 2007, 18, 52–56. [Google Scholar]
- Craufurdf, P.Q.; Peacock, J.M. Effect of heat and drought stress on sorghum. Exp. Agron. 1993, 29, 77–86. [Google Scholar] [CrossRef]
- Ding, M.Q. Physiological Mechanism of Post-Silking High Temperature and Drought Stress Affecting Leaf Senescence of Waxy Maize; Yangzhou University: Yangzhou, China, 2019. [Google Scholar]
- Wheeler, T.R.; Hong, T.D.; Ellis, R.H.; Batts, G.R.; Morison, J.I.L.; Hadley, P. The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. J. Exp. Bot. 1996, 47, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 1998, 100, 77–83. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q.S.; Liu, L.J. Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 2004, 220, 331–343. [Google Scholar] [CrossRef]
- Borrás, L.; Zinselmeier, C.; Senior, M.L.; Westgate, M.E.; Muszynski, M.G. Characterization of grain filling patterms in divense maize germplasm. Crop Sci. 2009, 49, 999–1009. [Google Scholar] [CrossRef]
- Sadras, V.O.; Egli, D.B. Seed size variation in grain cropB: Allometric relationshipe between rate and duration of seed growth. Crop Sci. 2008, 48, 408–416. [Google Scholar] [CrossRef]
- Stuthman, D.D.; Hellewell, K.B.; Erwin, J.E. Day and Night Temperature Effects during Grain-Filling in Oat. Crop Sci. 1996, 36, 624–628. [Google Scholar]
- Prasad, P.V.V.; Pisipati, S.R.; Momčilović, I. Independent and Combined Effects of High Temperature and Drought Stress during Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in Spring Wheat. J. Agron. Crop Sci. 2011, 197, 430–441. [Google Scholar] [CrossRef]
- Frederick, J.R.; Woolley, J.T.; Hesketh, J.D.; Peters, D.B. Seed yield and agronomic traits of old and modern soybean cultivars under irrigation and soil water-deficit. Field Crop. Res. 1991, 27, 71–82. [Google Scholar] [CrossRef]
- Wolf, J.; van Oijen, M.; Kempenaar, C. Analysis of the experimental variability in wheat responses to elevated CO2 and temperature. Agric. Ecosyst. Environ. 2002, 93, 227–247. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Nösberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentration. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef]
Treatment | Water Stress | Amplitude of Increasing Temperature | Time of Increasing Temperature |
---|---|---|---|
NI | NI | T0 | D0 |
NIT3D5 | NI | T3 | D5 |
NIT5D7 | NI | T5 | D7 |
LD | LD | T0 | D5 |
LDT3D7 | LD | T3 | D7 |
LDT5D0 | LD | T5 | D0 |
SD | SD | T0 | D7 |
SDT3D0 | SD | T3 | D0 |
SDT5D5 | SD | T5 | D5 |
Year | Temperature Treatment | Air Temp. Increased in Canopy Area (°C) | |
---|---|---|---|
Mean | STDEV | ||
2016 | Temperature increase 3 °C | 2.26 | 0.58 |
Temperature increase 5 °C | 4.45 | 0.42 | |
2017 | Temperature increase 3 °C | 2.38 | 0.53 |
Temperature increase 5 °C | 4.61 | 0.61 |
NI | LD (LDT5D0) | SD (SDT3D0) | NIT3D5 | NIT5D7 | LDT3D7 | SDT5D5 | |
---|---|---|---|---|---|---|---|
2016 | 0.479 | 0.323 | 0.274 | 0.386 | 0.352 | 0.261 | 0.253 |
2017 | 0.481 | 0.296 | 0.283 | 0.412 | 0.384 | 0.253 | 0.268 |
Treatment | 2016 | 2017 | ||
---|---|---|---|---|
Before the Temperature Increase | End of Temperature Increase | Before the Temperature Increase | End of Temperature Increase | |
NI | 89.8 ± 2% | 87.3 ± 2% | 91.5 ± 2% | 87.3 ± 2% |
NIT3D5 | 91.3 ± 2% | 85.7 ± 2% | 90.8 ± 2% | 84.6 ± 2% |
NIT5D7 | 90.6 ± 2% | 83.5 ± 2% | 91.2 ± 2% | 82.5 ± 2% |
LD (LDT5D0) | 50.1 ± 2% | 46.8 ± 2% | 53.1 ± 2% | 47.5 ± 2% |
LDT3D7 | 53.5 ± 2% | 42.6 ± 2% | 55.7 ± 2% | 45.9 ± 2% |
SD (SDT3D0) | 44.5 ± 2% | 43.9 ± 2% | 42.2 ± 2% | 41.3 ± 2% |
SDT5D5 | 46.8 ± 2% | 43.1 ± 2% | 44.7 ± 2% | 42.1 ± 2% |
Ear Length (cm) | Ear Thickness (cm) | Bald Ratio (%) | Hundred-Grain Weight (G) | Grain Yield (g/m2) | Harvest Index (%) | Biological Yield (g/m2) | |
---|---|---|---|---|---|---|---|
2016 | |||||||
NI | 12.78 a | 4.53 a | 1.11 c | 32.39 a | 1140.70 a | 48.00 a | 19,011.10 a |
NIT3D5 | 12.93 a | 4.58 a | 1.55 ab | 32.80 a | 1141.07 a | 48.77 a | 19,552.10 ab |
NIT5D7 | 12.61 a | 4.50 a | 1.65 a | 30.27 b | 1012.28 b | 47.31 a | 16,761.43 b |
LD (LDT5D0) | 6.89 b | 3.38 b | 1.67 bc | 28.13 c | 242.25 c | 37.59 b | 5156.10 c |
LDT3D7 | 6.96 b | 3.41 b | 1.86 bc | 28.46 d | 247.56 c | 41.62 b | 5758.30 c |
SD (SDT3D0) | 6.26 b | 2.77 c | 1.82 bc | 20.55 e | 84.26 d | 18.67 c | 3609.95 c |
SDT5D5 | 5.38 b | 2.26 d | 1.97 c | 18.96 d | 65.44 c | 16.85 b | 3518.77 c |
2017 | |||||||
NI | 13.13 a | 4.61 a | 1.95 a | 34.28 a | 1177.14 a | 55.76 a | 16,888.65 a |
NIT3D5 | 13.65 a | 4.67 a | 1.49 b | 34.64 b | 1258.64 a | 56.16 a | 17,928.48 a |
NIT5D7 | 12.65 a | 4.47 a | 1.37 b | 32.39 a | 1140.70 a | 55.65 a | 16,310.08 a |
LD (LDT5D0) | 8.04 b | 3.05 b | 1.47 b | 21.39 d | 210.48 b | 37.02 b | 4548.35 bc |
LDT3D7 | 8.18 b | 3.23 b | 1.20 bc | 24.76 c | 254.72 b | 39.40 b | 5448.22 b |
SD (SDT3D0) | 5.07 c | 2.34 c | 1.07 c | 19.21 e | 61.52 b | 19.57 c | 2515.15 cd |
SDT5D5 | 4.94 c | 2.06 d | 1.27 bc | 17.28 f | 48.73 b | 15.08 c | 2484.57 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zhang, Q.; Hu, S.; Wang, R.; Wang, H.; Zhang, K.; Zhao, H.; Ren, S.; Yang, Y.; Zhao, F.; et al. Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China. Agriculture 2022, 12, 1948. https://doi.org/10.3390/agriculture12111948
Qi Y, Zhang Q, Hu S, Wang R, Wang H, Zhang K, Zhao H, Ren S, Yang Y, Zhao F, et al. Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China. Agriculture. 2022; 12(11):1948. https://doi.org/10.3390/agriculture12111948
Chicago/Turabian StyleQi, Yue, Qiang Zhang, Shujuan Hu, Runyuan Wang, Heling Wang, Kai Zhang, Hong Zhao, Sanxue Ren, Yang Yang, Funian Zhao, and et al. 2022. "Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China" Agriculture 12, no. 11: 1948. https://doi.org/10.3390/agriculture12111948
APA StyleQi, Y., Zhang, Q., Hu, S., Wang, R., Wang, H., Zhang, K., Zhao, H., Ren, S., Yang, Y., Zhao, F., Chen, F., & Yang, Y. (2022). Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China. Agriculture, 12(11), 1948. https://doi.org/10.3390/agriculture12111948