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Abstract: Tractive efficiency is essential in tillage operations to optimise traction performance. In this
field experiment, the tractor performance was measured under different traction resistance conditions.
This study quantified the soil stress, soil bulk density, soil moisture, soil cone index, soil surface
disturbance, rolling resistance and slip rate under different numbers of passes and traction conditions.
The actual power used under different soil and traction conditions was collected. Fuel consumption
and savings were calculated between uncompacted soil, compacted soil and the permanent traffic
lane. The results show that soil stress increases in each location as traction and the number of
passes increase. Soil’s physical properties increase, such as the soil bulk density, soil cone index and
soil surface disturbance. Additionally, the slip rate increases with traction in each soil condition
as uncompacted soil, compacted soil and the permanent traffic lane. The results show that the
permanent traffic lane has a lower slip rate under different traction conditions than the uncompacted
and compacted soil. Furthermore, the permanent traffic lane has less energy consumption with the
same traction resistance. The permanent traffic lane saved 25.50%, 29.23% and 42.34% fuel compared
to the uncompacted field in 7.85, 14.71 and 24.52 kN traction conditions, respectively. Our results
confirm that dynamic factors such as traction and rolling resistance should be considered in soil
compaction research rather than static weight only. In practice, the controlled traffic farming (CTF)
system or driving the tractor more frequently on the permanent traffic lane should be considered to
improve working efficiency and reduce energy consumption.

Keywords: soil compaction; traction; slip rate; rolling resistance

1. Introduction

Soil compaction has become an increasingly severe problem in the past few decades,
with the size and weight of agricultural machines increasing worldwide [1]. Researchers
in different countries have studied the negative effects caused by soil compaction [2–5].
The previous study shows that soil compaction could increase soil bulk density, soil cone
index and soil shear strength [6–8]. In addition, soil compaction causes the impeding
of root exploration, reduced crop yield and increased energy requirements in all field
operations [9–13].

Soil compaction is defined by the Environmental Assessment of Soil for Monitor-
ing (ENVASSO) as “The densification and distortion of soil by which total and air-filled
porosity are reduced, causing a deterioration or loss of one or more soil functions” [14].
It can destroy or over-squeeze soil aggregates to form a damaged layer of soil structure
during the first pass [15–18]. After the compaction, the soil particles inside the damaged
layer are rearranged under external force, decreasing soil volume and increasing soil bulk
density [19,20].

As for soil compaction measurement, different methods may have different advan-
tages and disadvantages. The load cell [21,22] measures the soil stress generally in the
vertical direction of the target position but provides only one stress component. Stress-state
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transducer [23,24] contains load cells in six different directions. However, ensuring good
probe contact with the soil can be difficult due to the complex probe geometry of the sensor.
The fluid-filled flexible pressure probe [25–27] is directly related to the mean normal stress,
which is simple and quick to install and has good probe contact with the soil. However,
the pressure reading is still a function of the Poisson’s ratio of the soil, which may change
during the compaction process.

The risk of soil compaction can be reduced by (I) avoiding entering the field in
wet soil conditions [4,28–30], (II) using tyres with a larger contact area and low inflation
pressure [31–33] and (III) introducing the controlled traffic farming (CTF) system [11,34–38].

Tyre inflation pressure and wheel load are also well-known key drivers of compaction.
Many researchers work on the soil stress distribution underneath the soil caused by different
properties of soil, tyre and machine weight conditions [33,39–42]. However, most of them
focused on static wheel load rather than dynamic wheel load, which is the actual weight
that compacts the soil. Dynamic wheel loads are higher than static wheel loads. For
example, the wheel load could increase by 25% of the static wheel load during plough [43].
The extra weight is caused by the traction required to carry out the plough operation and
the weight redistribution from the front to the tractor’s rear axle. The increase in rear
wheel load during conventional tillage given in the guidelines of the German Engineers’
Association [44] is even higher (up to 45%), which causes much more compaction than the
static wheel load.

Drawbar pull, travel reduction (slip) and rolling resistance are the three main criteria
describing off-road vehicles’ traction behaviour. The lugs on tractor wheels tend to pen-
etrate deep into the soil layer in terms of working on the soft ground that characterises
almost all agricultural operations [45–47]. The tractor lugs compress soil horizontally,
opposite to the tractor movement when they are dug into the soil. As a result, the speed at
which the tractor moves decreases. This loss of relative speed of the tractor is estimated as
the slip coefficient [46,48–50]. Maximum traction can go into slippage, increasing the soil
structure damage [46,50–53].

Controlled traffic farming (CTF) is a mechanisation system in which all machinery has
the same (or modular) working and track width so that field traffic can be confined to the
least possible area of permanent traffic lanes [54,55]. The CTF is one of the solutions for
reducing soil compaction, ensuring that the tractor travels on the traffic lane, which has a
more solid soil structure than conventional agriculture. In addition, the permanence of the
non-pavement surface facilitates the maintenance of softer soil conditions, thus reducing
resistance and energy requirements during field operation [11,56,57]. The reduced energy
consumption of CTF systems is also attributable to the lower rolling resistance and slippage
of tyres on permanent traffic lanes [11,50,58]. Tractor slip rate and traction efficiency
are critical parameters for farm operations. Although many studies have demonstrated
that the CTF system has lower slippage and higher traction efficiency than conventional
agriculture, these two parameters have been less studied in conventional fields under
different compaction times and traction resistance conditions. The effect of different levels
of soil compaction on the tractor’s working efficiency under conventional farming is unclear.
Most of the previous research was conducted to increase traction resistance by increasing
the weight of the load [59–65]. However, this research approach cannot focus on the effect
of traction resistance on soil compaction because of the machine’s added weight. Thus, in
this experiment, the method of increasing the traction resistance without adding weight
was implemented.

The aim of our study was to test the effects of different traction conditions on soil
bulk density, soil moisture, soil cone index, soil surface disturbance, slip rate and tractor
working efficiency. In this experiment, a method to increase the traction force is proposed.
A method was set to increase the traction force independently rather than increasing the
weight simultaneously, as in the previous research [65]. First, we tried to determine if the
wheel slippage rate would be less under more wheel passes in this experiment. Then, we
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focused on whether the soil structure damage would be more significant at higher traction
forces and a greater number of wheel passes.

2. Materials and Methods

The field experiment lasted from March to May 2022. The experiment field used
for this study is located at the experimental farm of Padova University (Veneto, Italy).
The area of the field is 1.87 hectares. The slope of the field is less than 1◦, measured by
Google Earth Pro [66]. Temperatures rise from January (min average: −1.5 ◦C) to July (max
average: 27.2 ◦C). The sub-humid climate receives about 850 mm of rainfall annually, with
the highest average rainfall in June (100 mm) and October (90 mm). The lowest averages
happen in winter (50–60 mm). Soil moisture was 23.01%, 23.54% and 27.01% at 20 cm,
40 cm and 60 cm depth when the experiment started. No rainfall occurred during the
experiment. The soil texture of the experiment field is clay loam [67]. The sand–silt–clay
content of the soils used for testing was 33.8%, 37.0% and 29.2%, respectively. The organic
matter content of the topsoil (0–30 cm) was 1.81%, referring to another field also located
at the experimental farm of Padova University [67] (straight line distance not exceeding
200 m between two fields). The field was deep ploughing (0–50 cm) after the 2021 crop
season, which has a partly bare surface. There were no other field management practices
until the start of the field experiment.

The field experiment was preceded in the field as shown in Figure 1. First, slip rates
and rolling resistance under different traction and soil conditions were performed in the
left part of the field. Then, the field’s right area was set into small plots located after the
40 m long area for the stable driving speed of the tractors (3.3 km/h) during the test, as
shown in Figure 1b. The blue box area is the place where we collected the data. The 6 m
area between each plot was designed for the tractors turning after each round. The detailed
data collection procedure for the experiments is listed below.
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contact surfaces for better stress detection and analysis. 

Figure 1. Experiment field in Legnaro, North Italy (a), and the experimental procedure (b).

Two tractors were used in the experiment. The front tractor was used to compact the
soil in different traction conditions and number of passes. The rear tractor was designed to
use the hydrostatic transmission system to adjust the braking force.

The front tractor was a Fiat 680 (CNH Industrial N.V., Amsterdam, The Netherlands),
as shown in Figure 2. The machine’s weight was increased by adding additional counter-
weights to the back of the front tractor to increase the soil pressure on the tyre and soil
contact surfaces for better stress detection and analysis.
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Figure 2. Two tractors used in the field experiment (a), counterweight attached in the back of the
front tractor (b) and dynamometer between the tractors (c).

A 16 m wire rope connected the two tractors to ensure enough space to prevent the rear
tractor from compacting the experimental field. A dynamometer (TZR 20 t, Yale Industrial
Products GmbH, Wuppertal, Germany) was placed on the front of the rear tractor, which
measures and transmits the real-time traction data to the monitor of the rear tractor, as
shown in Figure 2c. This real-time data transmission guides the tractor driver to adjust the
forward speed to keep the braking load (traction) constant at a pre-set value.

The specific parameters of the tractor are shown in Table 1. A tractor prototype
three-wheeler was used at the back, equipped with a hydrostatic gearbox, which made
it possible to change the traction resistance during the experiment. As a rear tractor, the
high responsiveness of the hydrostatic gearbox was used to regulate the forward speed and
braking capacity to generate different amounts of traction.

Table 1. Technical data of the tractors used in the experiment.

Name Unit Model

Tractor Model Fiat 680
Total mass kg 4310
Front axle kg 780
Rear axle kg 3530
Rear tyre Kleber traker 420/85R30
Front tyre Vredestein multirill 7.50–16

Front tyre inflation pressure bar 1.7
Rear tyre inflation pressure bar 1.45

The actual speed was recorded from the GPS. The real-time kinematic positioning
(RTK) system from Trimble was equipped on the front tractor, which was used to record
the track with high accuracy during the experiment. For theoretical speeds, the sensor was
placed on the tractor power take-off unit (PTO) to detect the number of revolutions. We
calculated the theoretical speed of the tractor by detecting the PTO rpm and measuring the
tractor’s fixed gear ratio.

2.1. Mean Normal Stress

Normal stresses underneath the soil were measured using the Bolling probe [25,27] in
the field experiment. The probe is deformable and cylindrical, and could sense the mean
radial stress experienced. For the installation of the Bolling probe, the drill and reamer
were inserted into the soil at a specific angle on the side of the probes by using a special
steel frame which could ensure the angle consistency during the installation of the drill,
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reamer and Bolling probe. After the completion of reaming, the probe was inserted into the
soil and tested for good contact with the soil to ensure accurate data collection.

In this experiment, the mean normal stress of the soil was measured in the vertical di-
rection and also in the lateral direction. The soil mean normal stress in the vertical direction
can be applied to the depth of the subsoil (0–100 cm) [68]. However, the lateral compaction
affects shallower soil [32], also verified by the simulation results. Considering the amount
of pressure that can occur at different positions, three Bolling probes were used in the
vertical direction (0–60 cm) and two in the lateral position (0–40 cm) in this measurement.

Three probes were installed in the centre of the track at 20, 40 and 60 cm depth to
measure the soil mean normal stress in the vertical direction. Two probes were installed in
the track edge at 20 and 40 cm depth to measure the soil mean normal stress in the lateral
direction. There were five groups overall: 20 cm depth in vertical (20 V), 40 cm depth in
vertical (40 V), 60 cm depth in vertical (60 V), 20 cm depth in lateral (20 L) and 40 cm depth
in lateral (40 L). The width between the centre and the lateral is 25 cm. The stress data
under different depths were collected after each time compaction (9 times in total). The
probes were inserted into the soil from the edge side of the wheel rut, as shown in Figure 3.
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Figure 3. Installation position of Bolling probe to measure the mean normal stress in vertical (3 probes)
and lateral (2 probes) directions. The three probes in the vertical direction and the two probes in the
lateral direction were staggered during the installation, with 25 cm between two groups.

The mean normal stress (σm) was calculated [25,27] to compare the results of different
traction conditions and number of passes. The following is the calculation formula of the
mean normal stress.

σm =
1 + v

3(1 − v)
pi

where pi measures stress from the Bolling probe, and v is the Poisson ratio in the soil matrix.
The value of the Poisson ratio was considered within 0.2–0.45 [40,69–72]. We set the Poisson
ratio as 0.3 in our study, considering the results of other studies [25,70].

The mean normal stress collected from the Bolling probe was compared with the
simulation results produced by Terranimo [73,74]. Terranimo is a computer model that
predicts the risk of soil compaction by farm machinery [75,76]. It includes two inputs
(machinery and soil) and two outputs (stresses in the tyre–soil interface and stresses
transmitted to the soil profile). An example of the simulation results of the soil stress of
the rear tyre is shown in Figure 4. The simulation results and the data collected during the
field experiment are given in Section 3. It is worth noting that the soil depths on the y-axis
are negative numbers generated automatically by the system. However, in analysing this
graph, we default to this problem, as in the graphs in other studies, there is no negative
sign in the process of indicating depth [32,65,77].
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2.2. Soil Bulk Density and Soil Moisture

The soil bulk density and soil moisture were collected and calculated through the
experiment of uncompacted field conditions (0 pass) and each traction condition after
1, 4 and 9 passes. Soil bulk density was collected by the soil sampler (Eijkelkamp, EM
Giesbek, The Netherlands). Three groups of soil samples were collected in the vertical
direction at 20, 40 and 60 cm depth. Two groups of soil samples were taken on the lateral
side of the tyre at 20 and 40 cm depth as shown in Figure 5. There are five groups in total:
20 cm depth in vertical (20 V), 40 cm depth in vertical (40 V), 60 cm depth in vertical (60 V),
20 cm depth in lateral (20 L) and 40 cm depth in lateral (40 L), which are the same as for
the soil cone index. Each point was repeated three times. In total, 240 soil samples were
collected in the experiment.
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2.3. Soil Cone Index

Penetration resistance of the soil under different treatments was measured with a
penetrometer named Penetrologger (Eijkelkamp, Geesbek, The Netherlands). The probe
has a 2 cm2 needle with a 30◦ cone (standard ASAE S3133 FEB04). Each data group contains
a 0–70 cm depth soil cone index collected from the centre line to 50 cm width lateral
(5 cm each, 11 points in 50 cm width), as shown in Figure 6. In order to measure the soil
cone index from 0 to 70 cm, a hydraulic system was used during the data collection. The
penetrometer was mounted on a designed iron frame fixed to the hydraulic piston. The
iron frame allows the penetrometer to change the location of measurement horizontally.



Agriculture 2022, 12, 1954 7 of 23

The hydraulic piston driven by the tractor allows the uniform insertion speed during the
measurement. The soil cone index was recorded in every centimetre of each insert. Each
data group was collected before the first pass, and after 1, 4 and 9 passes. Each point in
each condition was repeated three times.

Agriculture 2022, 12, 1954 7 of 23 
 

 

iron frame allows the penetrometer to change the location of measurement horizontally. 
The hydraulic piston driven by the tractor allows the uniform insertion speed during the 
measurement. The soil cone index was recorded in every centimetre of each insert. Each 
data group was collected before the first pass, and after 1, 4 and 9 passes. Each point in 
each condition was repeated three times. 

 
Figure 6. Soil cone index measurement using the penetrometer at 0–70 cm depth vertical and 5 cm 
each horizontal. 

The soil cone index measurements were used to analyse the following method [6,78]. 
The four parts of the results were collected and calculated as (1) the range of the nose zone, 
(2) the depth of the max cone index, (3) the max cone index and (4) the average cone index 
from 0 to 40 cm. The nose zone in the soil cone index profile was assumed to be the peak 
in the profile, which starts and ends with the same soil cone index value, as shown in 
Figure 7. 

 
Figure 7. Schematic view of cone index (CI)-related traits.2.4. Profile Meter after the Compaction. 

The soil deformation was measured during the experiment to study the soil surface 
deformation in different traction conditions and number of passes. A steel flame com-
bined with a laser rangefinder (Disto Pro, Leica Geosystems AG, Balagah, Switzerland) 
measured the distance between the flame and the soil surface horizontally every 2 cm, as 
shown in Figure 8. Data were collected before the first pass, and after 1, 4 and 9 passes. 
The data collection was repeated three times. 

Figure 6. Soil cone index measurement using the penetrometer at 0–70 cm depth vertical and 5 cm
each horizontal.

The soil cone index measurements were used to analyse the following method [6,78].
The four parts of the results were collected and calculated as (1) the range of the nose zone,
(2) the depth of the max cone index, (3) the max cone index and (4) the average cone index
from 0 to 40 cm. The nose zone in the soil cone index profile was assumed to be the peak in
the profile, which starts and ends with the same soil cone index value, as shown in Figure 7.
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Figure 7. Schematic view of cone index (CI)-related traits.

The soil deformation was measured during the experiment to study the soil surface
deformation in different traction conditions and number of passes. A steel flame combined
with a laser rangefinder (Disto Pro, Leica Geosystems AG, Balagah, Switzerland) measured
the distance between the flame and the soil surface horizontally every 2 cm, as shown in
Figure 8. Data were collected before the first pass, and after 1, 4 and 9 passes. The data
collection was repeated three times.
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2.4. Slip Rate

Wheel slip is more likely to cause soil compaction than additional wheel loading,
especially for heavier tractors [79]. When the tractor’s rear wheel slip rate increases, the
maximum shear contact stress rises sharply [80]. This test aimed to assess if and how
traction performance varied with the number of passes the tractor made. The slip was
calculated as:

S =
(d2 − d1/4)

d2
∗ 100

The d1 is the actual distance after four turns of rear wheels. d2 is the theoretical moving
distance during the four-wheel turns, and S represents the slip rate.

Rolling resistance was calculated first by pulling the unload front tractor, simulating
nine passes on a predetermined track and using the dynamometer.

In addition, the slippage of the tractor used in the experiment in different traction
conditions was tested and measured: 0, 800, 1500 and 2500 kg, which were 0, 7845,
14,710 and 24,517 N, respectively. Using the data collected by the dynamometer, the trac-
tion loads were obtained for the traction in four levels. The coefficient of adhesion (ka)
was then calculated using the collected rolling resistance and the adherent weight of the
machine on the driving axle [81].

ka = ca/Ga

where ca is the rolling resistance, and Ga is the loading weight.
The machine’s inherent losses were subtracted from the power generated by the

engine to calculate the actual power used for productive work. The 7 kW and 4 kW power
losses were considered while calculating the actual power used for the work because of
the transmission and hydraulic system based on the previous study [81]. To estimate the
power used during the tractor moving, the formula for the determination of the rolling
power (Pr) expressed in kW is as follows:

Pr = Rr ∗ Va ∗ 10−3

where Rr is torque (N), and Va is the rolling speed (m/s). The same formula was used to
estimate the useful power (Pu) for each level of traction, considering the previously calcu-
lated traction loads. Based on the power used and the type of use, the specific diesel fuel
consumption of 260 g/kWh was considered according to data in the literature [81]. Through
the relationship between specific consumption and useful power, the fuel consumption in
kg/h has been estimated for each level of traction.

The fuel consumption in different traction and soil conditions was calculated. In
addition, the diesel saving was calculated to assess diesel fuel consumption in varied soil
conditions such as uncompacted soil, compacted soil and field edges (permanent traffic
lanes). Finally, the combustion of one litre of diesel fuel produces 2.67 kg of CO2 [82], and
the carbon dioxide emissions were estimated in the various simulations. In the experiment,
we assume that the density of diesel fuel is 0.85 kg/dm3.
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2.5. Statistics

In each type of result, the arithmetic mean value of mean normal stress, soil bulk
density, soil moisture, soil cone index and soil disturbance were calculated for each position
(centre 20, 40 and 60 cm depth, lateral 20 and 40 cm) with a different number of passes
and traction conditions as 0, 7.85, 14.71 and 24.52 kN. The three resulting values for each
position of each treatment were considered replicates. Statistical analyses of results were
undertaken with SPSS [83]. The analysis of variance (ANOVA) was used to compare means
with a probability level of 5%.

3. Results
3.1. Stress under the Soil Using the Bolling Probe Sensor

In this study, a method to incorporate traction and rolling resistance into soil pressure
simulations compared with the collected results was implemented. As discussed in the slip
rate test section, the rolling resistance calculated is 273 (±4.79) kg as 2677 (±46.97) N of
the tractor in the experiment. Then, 0 kg, 800 kg, 1500 kg and 2500 kg, which were 0, 7845,
14,710 and 24,517 N, were considered as the extra traction compared to the rolling resistance
of the tractor. Therefore, these two parts consist of the net traction, which was considered
the additional horizontal pressure with the weight of the tractor. In Terranimo, a slightly
higher additional stress was calculated for the rear axle in each simulation. For example,
an additional 1000 kg was considered in the simulated rear wheel pressure conditions by
simulating 100 investigated tractors at a support load of 3000 kg, which means the total
weight to input into the model during the simulation is 4000 kg rather than the actual
weight (3000 kg) [73]. The weight was overestimated to avoid underestimating the load
and taking into account the additional load transfer effect due to the rolling resistance of the
trailer [73]. However, previous studies have not tested the true value of rolling resistance in
field tests. In our current study, the tractor gravity, rolling resistance in the vertical direction
and traction resistance in the horizontal direction were considered. The values were put
into the Terranimo system in different traction conditions to calculate the sum of squares in
both directions.

The traction force (σ) was calculated by calculating the arithmetic sum of squares of
the vertical load (W) and the net traction (NT), as shown in Figure 9. The vertical load of
the rear tyre was settled during the experiment. The net traction changed between four
traction conditions. The net traction was considered located in the rear tyres only because
of the two-wheel drive system of the Fiat 680. The traction force (σ) in different conditions
was input into the Terranimo system, and the simulation results were obtained at different
locations and depths. After the traction force was calculated, we compared the soil stress
data collected from the field experiment with the simulation results, as shown in Figure 10.
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Figure 9. Schematic of soil–tyre interaction. Total driving torque on the wheel (T), the angular
velocity of the wheel (ω), net traction (NT), the angle between normal stress and the vertical (ϕ),
vertical load (W), normal stress (σ) and shear stress (τ).
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Figure 10. Simulated and collected soil stress comparison.

Simulated results and collected data are shown in Figure 10. There are five groups of
bars: 20 cm depth in vertical (20 V), 40 cm depth in vertical (40 V), 60 cm depth in vertical
(60 V), 20 cm depth in lateral (20 L) and 40 cm depth in lateral (40 L). The result of each
bar was made by the average value of one to nine passes in each depth and position. The
simulated results have a higher value than the collected data in each depth and direction.
The error bars are made by the standard deviation of each position of collected results. The
simulation soil stress increases as the traction increases, and the collected data show the
same trend in most positions. However, the vertical 60 cm in 0 kg traction shows a higher
value than the 800 kg and 1500 kg. The result of the simulation grows uniformly with the
increasing traction. The collected results in the vertical 60 cm, lateral 20 cm and lateral
40 cm directions show that the increasing trend with the increasing traction is not distinct
compared to the collected results for vertical 20 cm and 40 cm. The subsoil spatial variability
could cause this irregular variation in these positions. Furthermore, the data acquisition
was likely unsatisfactory in the low-value condition. The probe may have had insufficient
contact with the soil in low-pressure conditions compared to high-pressure locations.

3.2. Soil Bulk Density and Soil Moisture

As shown in Figure 11, the 60 cm depth had the highest soil moisture in the five
positions among the four kinds of traction conditions. In general, the soil moisture slightly
increases after compaction. The ANOVA test showed no significant difference in the soil
moisture based on the different traction conditions, number of passes and position, except
for the moisture in lateral 20 cm in the 1500 kg traction condition. However, there is a slight
difference in different traction conditions and the soil moisture in the experiment. The
mean difference in soil moisture content is within 1.5%, considering random errors in the
data collection process. Studying this experiment with other parameters is recommended
for more in-depth analyses and conclusions.
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bulk density at 60 cm depth is 1.53 ± 0.005 g/cm3. 

  

Figure 11. Soil moisture content in different traction conditions.

The soil bulk density data in different traction conditions and the number of passes are
shown in Figure 12. The results indicate that the soil bulk density increases as the number
of passes increases. However, there is no significant difference between different traction
conditions of the bulk density, except for 2500 kg traction compared to the other three. Bulk
density in vertical and lateral 20 cm positions increased with the number of passes and
reached a similar value of 1.41 (±0.028) g/cm3. As for the 40 cm depth, the bulk density
in vertical and lateral directions reached the same range as 1.47 (±0.020) g/cm3 after nine
passes in 0 kg, 800 kg and 1500 kg conditions. However, the vertical 40 cm (1.50 ± 0.067
g/cm3) shows a higher bulk density value than the lateral 40 cm (1.43 ± 0.060 g/cm3). The
soil bulk density in the vertical 60 cm condition increased with the number of passes in
the four traction conditions. After nine passes in four traction conditions, the average bulk
density at 60 cm depth is 1.53 ± 0.005 g/cm3.
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the other three are the 0–10 cm data (three points in total in the centre of the rear tyre). All 
four traction conditions maintained a similar trend for the soil cone index before the first 
pass. However, one location below 40 cm had a lower soil cone index than the other three 
(here, we used the word “location” because the four areas were not compacted yet). As 
for the soil cone index after one, four and nine passes, the peak value increased with trac-
tion. It is worth mentioning that the compaction caused the subsidence of the soil surface, 
so the value begins below the 0 cm depth. However, the peak value of the soil cone index 
does not show a significant difference under different traction conditions located around 
10 to 30 cm depth. The result shows that the main change in the soil cone index happened 
in the 0–40 cm area because the field’s hardpan exists at 40–45 cm depth. Hardpans 
(plough pans) are formed by years of deep ploughing at the same depth, which stop the 
compaction at a deeper depth [84]. 
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Figure 12. Soil bulk density in different traction conditions.

3.3. Soil Cone Index

The soil cone index data before the first pass and after one, four and nine passes are
shown in Figure 13. The first figure is the average of 0–50 cm data (11 points in total), and
the other three are the 0–10 cm data (three points in total in the centre of the rear tyre). All
four traction conditions maintained a similar trend for the soil cone index before the first
pass. However, one location below 40 cm had a lower soil cone index than the other three
(here, we used the word “location” because the four areas were not compacted yet). As for
the soil cone index after one, four and nine passes, the peak value increased with traction.
It is worth mentioning that the compaction caused the subsidence of the soil surface, so the
value begins below the 0 cm depth. However, the peak value of the soil cone index does
not show a significant difference under different traction conditions located around 10 to
30 cm depth. The result shows that the main change in the soil cone index happened in the
0–40 cm area because the field’s hardpan exists at 40–45 cm depth. Hardpans (plough pans)
are formed by years of deep ploughing at the same depth, which stop the compaction at a
deeper depth [84].

The soil cone index data of the different traction conditions with zero, one, four and
nine passes are shown in Figure 14. In general, each figure shows that the soil cone index
increased after compaction in each traction condition. The peak soil cone index increased
with the number of passes. However, the soil cone index with different traction conditions
and the same number of passes did not show a significant difference. The main change
in the soil cone index happened at a depth from 0 to 40, which is the upper part of the
hardpan. The soil cone index before the first pass shows a slight difference within four
fields. For example, the field with 2500 kg traction conditions shows a higher soil cone
index between 10 and 20 cm depth than the other fields.
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Table 2 shows the soil cone index results focused on the nose zone area. Soil cone
index results in different traction conditions and the number of passes were compared
between each group.
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Table 2. Cone index analysis of the nose zone. Lowercase letters (abc) indicate the comparison
under different pass conditions within the same traction group (vertical). Capital letters indicate the
comparison under different traction conditions within the same pass condition (horizontal).

Range of the Nose Zone (cm)

Pass 0 kg 800 kg 1500 kg 2500 kg

1 17.07bB 20.17aA 17.07cB 16.23bB
4 19.93aA 19.2aA 18.1bA 19.1aA
9 20.33aAB 18.57aBC 21.17aA 17.5bC

Depth of the max cone index (cm)

pass 0 kg 800 kg 1500 kg 2500 kg

1 12.5bC 12.1bC 15.03aB 22.17aA
4 11.33bC 11.3bC 15.07aB 19.07bA
9 14.17aB 14.1aB 15.07aB 18.03bA

Max cone index (MPa)

pass 0 kg 800 kg 1500 kg 2500 kg

1 1.15cA 1.15cA 1.17cA 1.29cA
4 1.78bA 1.9bA 1.81bA 1.75bA
9 2.17aC 2.42aA 2.3aB 2.46aA

Average cone index (MPa)

pass 0 kg 800 kg 1500 kg 2500 kg

1 0.765cB 0.839cA 0.838bA 0.824cA
4 0.931bB 1.042bA 0.899bB 0.92bB
9 0.979aC 1.124aA 1.010bBC 1.075aAB

The range of the nose zone did not change significantly with increasing passes at 0 and
800 kg traction in most situations. However, the range increases with the number of passes
when the traction is under 1500 and 2500 kg conditions. For different traction conditions
and the same number of passes, the range of soil cone index did not differ significantly for
most of the traction conditions between one and four passes. After nine passes, there is a
significant difference in the range of soil cone index between traction conditions.

For the depth of max soil cone index, the depth of max soil cone index increases
with the number of passes, increasing with 0 and 800 kg traction conditions. However,
under 1500 kg traction conditions, it did not change significantly with one, four and nine
passes. Moreover, under 2500 kg traction conditions, the depth of the max soil cone index
reduced as the number of passes increased. For different traction conditions and the
same number of passes, the depth of the max soil cone index increased with the traction
increasing significantly.

For the max soil cone index, the value increased with the number of passes increasing
in each traction condition. No significant difference in max cone index was found for
the different traction conditions at one and four passes. After nine passes, a significant
difference was found at different tractions. However, the 800 kg traction had a higher max
cone index than the 1500 kg traction condition.

For the average soil cone index from 0 to 40 cm, the average soil cone index increases
significantly as the number of passes increases in all four traction conditions. The results
after one and four passes show the soil cone index increasing significantly with the traction
increase. However, the 800 kg traction condition had the highest average soil cone index
value after nine passes rather than the highest traction condition, 2500 kg, as expected.
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3.4. Profile Meter after the Compaction

The soil profiles for different traction forces are shown in Figure 15. The results
show that the soil profile increases with the number of passes for all traction conditions.
Although the soil profile shows a higher value after four and nine passes in higher traction
conditions, there were no statistically significant differences in the soil profile value for
each traction condition.
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3.5. Slip Rate

In this section, the slip rates under different soil conditions and traction conditions
were analysed. The specific results are listed below.

The slip rate (%) under repeated wheeling in different traction conditions is shown in
Table 3. The results show that no slip rate exists in the first pass at 0 kg. The first pass in
three traction conditions had the maximum slip rate compared to the conditions of two to
nine passes. No significant difference in slip rate was found between two and nine passes
in all four traction conditions.

Table 3. Slip rate (%) under repeated wheeling.

Pass
Traction (kg)

0 800 1500 2500

1 0.00 7.95 15.77 40.11
2 1.29 6.54 14.42 30.79
3 1.15 5.86 14.42 29.78
4 1.52 5.70 14.64 29.83
5 1.37 7.05 14.81 27.75
6 1.40 6.20 14.81 29.78
7 1.22 5.92 14.64 28.99
8 1.89 5.30 14.42 28.71
9 1.66 6.37 14.47 29.50
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Rolling resistance data were collected after the number of passes, as shown in Figure 16.
Trendlines were made using the method of single exponential decay. The results indicate
that the first pass of the tractor has the highest rolling resistance. The rolling resistance grad-
ually decreases to a stable area as the number of passes increases in the same traffic lane.
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Figure 16. Rolling resistance collected after the number of passes.

Here is the slippage rate in different traffic and traction conditions. Three kinds of
traffic conditions were chosen as the original field, which is an uncompacted field (zero
passes), the trafficked field after nine compactions (nine passes) and the permanent traffic
lane, which is located on the edge of the field used for transporting the machine during the
farming operation. Trendlines were made using the method of single exponential decay.
The results show that the slip rate increased with the traction in all three soil conditions.
After nine passes, the permanent traffic lane has a lower slip rate than the zero-pass field
in all traction conditions. The slip rate in the uncompacted field rises significantly with
the increasing traction compared to the nine-pass field and the permanent traffic lane.
Compared to Figures 16 and 17, the hard traffic lane has lower rolling resistance and slip
rate, saving more energy and working efficiency than conventional agriculture.
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Table 4 shows the fuel consumption with different traction levels and the number of
passes. The calculation of power used in Table 4 considers the net tractive effort, slip rate
and energy loss in the transmission and hydraulic system. Fuel consumption is calculated
by the power used. Fuel savings in each pass situation were calculated by comparing with
fuel savings with zero passes in each traction condition.

Table 4. Fuel consumption with different traction levels and number of passes.

Power Used (kW) Fuel Consumption (kg/h) Fuel Savings (%)
Pass 800 1500 2500 800 1500 2500 800 1500 2500

0 13.86 25.92 56.13 3.60 6.74 14.59 0.00 0.00 0.00
1 13.91 26.62 45.85 3.62 6.92 11.92 −0.37 −2.68 18.31
2 12.36 26.14 44.08 3.21 6.80 11.46 10.82 −0.86 21.48
3 12.93 22.91 43.81 3.36 5.96 11.39 6.73 11.63 21.95
4 11.61 23.56 41.42 3.02 6.13 10.77 16.22 9.11 26.21
5 13.16 23.21 44.30 3.42 6.04 11.52 5.01 10.45 21.09
6 13.39 22.85 42.68 3.48 5.94 11.10 3.39 11.86 23.96
7 12.48 22.39 43.81 3.25 5.82 11.39 9.93 13.61 21.96
8 13.23 24.19 43.73 3.44 6.29 11.37 4.53 6.68 22.09
9 11.72 22.30 44.23 3.05 5.80 11.50 15.40 13.98 21.20

Permanente lane 10.32 18.34 32.37 2.68 4.77 8.42 25.50 29.23 42.34

As the number of passes increases, the power loss due to rolling resistance and slip
decreases, and the useful power available for traction increases. As the number of passes
increases, the machine uses less power for all traction levels to produce the same work. On
the uncompacted field (the field without pass) and compacted field (the field after 9 pass)
all traction levels require more power than the permanent traffic lane.

From an environmental point of view, fuel savings are relative to reducing CO2
emissions into the atmosphere. As the number of passes increases, the machine produces
less CO2 for all traction levels for the same work. All traction levels produce more CO2 on
the uncompacted field (the field without pass) and compacted field (the field after 9 pass)
than the permanent traffic lane.

4. Discussion
4.1. Effect of Traction

The stress in the soil was calculated by vertical load, horizontal load and radial normal
stress at each collection point. Horizontal stress (shear stress) on the soil surface can be
calculated from the given traction [85] as one part of the stress which creates the soil
compaction. Our results show that the stress underneath the soil, soil bulk density, soil cone
index and soil disturbance increased with the increasing traction in our field experiment.
Higher traction had higher soil stress at different soil depths and locations were found
in both collected and simulation results. A similar result was also found in previous
research [86]. Higher pressure underneath the soil causes more compaction and increases
the soil bulk density and soil cone index in each depth [75,85,87].

Many researchers have found that higher traction has more compaction [50,52,65,86].
Moreover, the static pressure distribution of the compaction procedures was studied. How-
ever, the shear stress distribution caused by the traction was not considered in soil com-
paction research but probably contributes significantly to soil structure deterioration [88].
Furthermore, many factors can influence the distribution of shear force in the soil under
different soil conditions with different parameters. For example, tractor tyre size, pressure,
the weight of the tractor, four or rear-wheel drive of the tractor, the distance between
the front and rear wheels of the tractor and how the PTO is hooked up to the working
part all affect the shear force caused by the traction [89]. The method of increasing the
traction resistance without adding weight was implemented in the field experiment. The
results confirm that higher traction increases the soil compaction [58,86,89,90] by using
the brake power from the rear tractor rather than adding the machine’s weight during the
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test. However, the method of how the tractor is hooked up to the other, the equipment
used to connect the two tractors and the stability of the tractor’s operation all impact the
experimental results, so further research is needed [89].

4.2. Effect of Repeated Wheeling

Significant differences were found in soil bulk density, soil cone index and soil profile
after repeated wheeling compared to the uncompacted field. The main change in the soil
bulk density and soil profile occurs in the first pass compared to the next eight passes.
The soil cone index changes mainly happened from 0 to 40 cm, with the number of passes
increasing. Additionally, the sinking of the topsoil was observed during repeated wheeling.
The trend of the changing values in soil bulk density, soil cone index and soil profile is
similar in different traction conditions. Compared to the changing results, soil moisture
and stress showed no significant differences in repeated wheeling.

Other studies have also observed that the first pass forms a harder soil surface in the
form of wheel ruts [91]. It also causes maximum near-surface deformation [92]. As for
the topsoil’s sinking, the soil layer’s thickness decreased significantly from the first to the
second passes, while no differences were found in the subsequent ten passes [21]. Our
experiments were carried out in a dry condition. This damage to the top layer of soil due to
the first and second compaction further increases the contact area between the tyre and soil,
reducing the pressure per unit area caused by the tyre on the soil. Specifically, the increased
contact area minimises the soil pressure per unit area. However, as the number of passes
increases, the soil pressure increases due to a tighter soil structure. This phenomenon has
also been observed in previous studies [86,93].

4.3. Effect of Slippage

The experimental results show that the slipping rate increases with the traction in-
creasing in different soil conditions. The tractor had a lower slip rate in compacted soil
where the nine passes had been completed. Furthermore, the permanent traffic lane has
an even lower slip rate than the compacted field. The experimental results show that the
permanent traffic lane has the lowest slip rate and highest working efficiency compared to
the uncompacted and compacted fields. The limited slip rate and high working efficiency
save more energy and produce less CO2, guaranteeing economic and ecological benefits.
Similar results were obtained in the previous study [79,94]. Higher slip causes higher soil
compaction [79,95,96], which has a significant impact on soil erosion [80] and causes great
damage to soil fertility [46].

Fuel economy on the permanent traffic lane may have several practical implications.
First, lower fuel consumption reduces operating expenses. Economic savings can be
easily obtained by multiplying the litres of fuel per hour by the price per litre purchased.
According to our tests, a higher traction load has higher energy savings and efficiency,
which was also obtained by the previous study [97]. Therefore, farms can use fuels in
different ways. One of these is the possibility of higher quality operations with the same
power used, such as better preparation of seedbeds or other tillage operations. Another
example is in performing split fertilisation to improve the uptake of inputs by plants. Other
possibilities include using the saved fuel for other operations such as irrigation, or the
option of using the power saved by the machine to increase work capacity and time.

One strategy to reduce power loss due to skidding and rolling is to ensure traffic
in the permanent traffic lane. This is one of the advantages of using a CTF system to
organise the viability of field machinery [34,98,99]. For this reason, in the CTF system, the
permanent traffic lane reduces the slippage within limits compared to the conventional
tillage field for the same load and working resistance [11]. Furthermore, the field experiment
made it possible to evaluate and quantify the machine’s slip rate and rolling effects in
terms of power loss and associated fuel consumption under various transport conditions.
Therefore, farmers should be advised in agricultural operations to consider controlled traffic
farming (CTF) systems to improve efficiency and reduce energy consumption. Despite
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the difficulties of changing from conventional agriculture to CTF [13,34], planned driving
trajectories for tractors rather than random movements can increase efficiency and reduce
operating costs.

5. Conclusions

Tractor performance was measured under different traction resistance conditions in
this field experiment. The study quantified the soil stress, soil bulk density, soil moisture,
soil cone index, soil surface disturbance, rolling resistance and slip rate under different
numbers of passes and soil and traction conditions. The actual power used under different
traction conditions was collected in uncompacted soil, compacted soil and the permanent
traffic lane. Fuel consumption and savings were calculated between uncompacted soil,
compacted soil and the permanent traffic lane.

The results show that soil stress increases in each location as traction and the number
of passes increase. Soil’s physical properties increase, such as the soil bulk density, soil
moisture, soil cone index and soil surface disturbance, with the increasing traction and
number of passes. However, no significant difference was found between different traction
conditions for the different number of passes. The slip rate increases with traction in each
soil condition as uncompacted soil, compacted soil and the permanent traffic lane. The
results show that the permanent traffic lane has a lower slip rate under different traction
conditions than the uncompacted and compacted soil.

Furthermore, the permanent traffic lane has less energy consumption with the same
traction resistance. The permanent traffic lane saved 25.50%, 29.23% and 42.34% fuel com-
pared to the uncompacted field in 7.85, 14.71 and 24.52 kN traction conditions, respectively.
Our results show that the traffic lane not only could reduce the negative effect of the soil
compaction caused by the random traffic, but also could increase the working efficiency
and save energy. Moreover, the dynamic factors such as traction and rolling resistance
should be considered in soil compaction research rather than static weight only. In practice,
the controlled traffic farming (CTF) system or driving the tractor more frequently on the
permanent traffic lane should be considered to improve working efficiency and reduce
energy consumption.
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