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Abstract: Fluctuations in agricultural commodity prices affect the supply and demand of agricultural
commodities and have a significant impact on consumers. Accurate prediction of agricultural
commodity prices would facilitate the reduction of risk caused by price fluctuations. This paper
proposes a model called the dual input attention long short-term memory (DIA-LSTM) for the efficient
prediction of agricultural commodity prices. DIA-LSTM is trained using various variables that affect
the price of agricultural commodities, such as meteorological data, and trading volume data, and
can identify the feature correlation and temporal relationships of multivariate time series input
data. Further, whereas conventional models predominantly focus on the static main production area
(which is selected for each agricultural commodity beforehand based on statistical data), DIA-LSTM
utilizes the dynamic main production area (which is selected based on the production of agricultural
commodities in each region). To evaluate DIA-LSTM, it was applied to the monthly price prediction
of cabbage and radish in the South Korean market. Using meteorological information for the dynamic
main production area, it achieved 2.8% to 5.5% lower mean absolute percentage error (MAPE) than
that of the conventional model that uses meteorological information for the static main production
area. Furthermore, it achieved 1.41% to 4.26% lower MAPE than that of benchmark models. Thus, it
provides a new idea for agricultural commodity price forecasting and has the potential to stabilize
the supply and demand of agricultural products.

Keywords: agricultural commodity; attention mechanism; long short-term memory; main production
area; price forecasting

1. Introduction

Agricultural commodities play a significant role in the daily lives of people. Fluctu-
ations in agricultural commodity prices can burden consumers and cause instability in
farm household income. The abnormal climate in recent years has further aggravated
fluctuations in agricultural commodity prices, making it difficult for governments to de-
velop policies and make decisions to stabilize supply and demand [1]. The Ministry of
Agriculture, Food and Rural Affairs (MAFRA), in South Korea, has been endeavoring
to manage supply and demand to ensure the stability of price and farm household in-
come by designating cabbage, radish, onion, garlic, and hot peppers grown in the field as
“five vegetables sensitive to supply and demand”. Stabilizing the supply and demand of
agricultural commodities is difficult. However, by providing more accurate price forecasts
for agricultural commodities, it is possible to reduce the risk caused by price fluctuations
and ultimately achieve this goal [2].

Meteorological factors have a direct impact on agricultural production and, hence, me-
teorological information is essential for the prediction of agricultural commodity prices [3].
Agricultural commodities grown in the open field are more affected by meteorological
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conditions than those grown in facilities, such as greenhouses. As the “five vegetables
sensitive to supply and demand” are mainly grown in open fields, their yields are more
susceptible to meteorological conditions [2,4], which can further affect their supply and
price [5].

Various studies have been conducted with the objective of predicting agricultural com-
modity prices [6–10]. However, only a few [11,12] used meteorological data. For example,
Jin et al. [12] predicted the price of cabbage and radish grown in the open field using mete-
orological data. Yin et al. [11] used eight types of meteorological data, including average
temperature and accumulated precipitation, to predict the price of the “five vegetables
sensitive to supply and demand”. However, in these studies, meteorological information
from the static main production area was used.

A static main production area is a main production area for each agricultural commod-
ity selected in advance based on statistical data. The selected main production area does not
change until the next statistical data are released. However, the main production area for
agricultural commodities grown in the open field may change annually owing to climate
change, and the agricultural commodities may have different production periods owing
to differences in local meteorological conditions. In addition, because the statistical data
used are generally provided yearly, it is difficult to accurately determine the production
period of agricultural commodities; and it is not possible to explain the main production
area of agricultural commodities for each period. To solve this problem, this study uses
meteorological information from the dynamic main production area. A dynamic main
production area is a main production area dynamically selected based on the production of
agricultural commodities in each region. The method of dynamically selecting the main
production area is described in detail in Section 2.1.3.

Existing research related to agricultural commodity prices forecast is divided into two
types: statistical methods and intelligent methods. The autoregressive integrated moving
average (ARIMA) and the seasonal autoregressive integrated moving average (SARIMA)
models are the most widely used statistical methods for time series prediction. Darekar
and Reddy [13] used the ARIMA model to predict cotton prices in major cotton-producing
regions in India. Jadhav et al. [14] used the ARIMA model to predict the prices of rice, finger
millets, and maize in Karnataka, India, and Pardhi et al. [15] used the ARIMA model to
predict the price of mango. Assis et al. [16] predicted cocoa bean prices using a combination
of ARIMA and generalized autoregressive conditional heteroskedasticity (GARCH), which
outperformed ARIMA. Unlike the ARIMA model, which is based on the difference operator,
the SARIMA model is based on the seasonal difference operator. This converts non-
stationary time series data into wide-sense stationary time series data by removing not only
the trend component but also the seasonal component [17]. For this reason, the SARIMA
model has been widely used to predict the price of agricultural commodities with strong
seasonality. Adanacioglu and Yercan developed a SARIMA model to predict the wholesale
price of tomatoes in Turkey and analyze seasonal fluctuations in tomato prices [6]. In
addition to tomato price prediction, the SARIMA model was used to predict the prices
of agricultural commodities, such as potatoes, onions, and jackfruit [18–20]. In addition
to the ARIMA and SARIMA models, various statistical methods, such as Holt Winter’s
model, linear regression (Balaji Prabhu and Dakshayini [21]), and multivariate regression
model [22], were used to predict agricultural commodity prices. Because statistical methods,
such as ARIMA and SARIMA, are based on a linear assumption, the performance of the
built model may be very poor when predicting time series data with strong nonlinearity [1].

Intelligent methods, such as artificial neural networks (ANN) and recurrent neural
networks (RNN), have also been used to predict agricultural prices. Zhang and Qi [23]
and Zhang and Kline [24] utilized artificial neural networks in time series data with high
seasonality, and, in fact, machine learning and deep learning-based algorithms, including
artificial neural networks, have been recognized as efficient approaches for solving time
series prediction problems. Wei et al. [7] and Weng et al. [25] show the superiority of the
approach using artificial neural networks compared to statistical methods in predicting
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agricultural prices. Wei et al. [7] performed price forecasting for various agricultural
commodities using a backpropagation neural network (BPNN). They proved that the
improved BPNN model is an efficient method to predict agricultural commodity prices
by comparing the proposed model to the statistical model. Weng et al. [25] conducted a
study to predict the price of horticultural products. In a monthly, weekly, and daily average
price forecasting, the neural network recorded higher performance than the ARIMA model.
Li et al. [26] conducted a study to predict the weekly retail price of eggs in the Chinese
market by proposing a chaotic neural network. The performance of the chaotic neural
network and ARIMA was compared, and the chaotic neural network recorded better
nonlinear fitting ability and higher prediction precision in the weekly retail price of eggs.
Hemageetha and Nasira [8] predicted tomato prices using a BPNN and a radial basis
function neural network (RBF), which proved the superiority of the RBF model through
experiments. Another type of ANN called the extreme learning machine (ELM) [27] has
been applied to predict the price of agricultural commodities using various techniques.
Wang et al. [28] predicted the price of corn using a hybrid model that combined the
singular spectrum analysis (SSA) method and ELM. This shows that the proposed method
can improve the accuracy of forecasting by better understanding the overall trend of
price changes.

ANNs have limitations in modeling sequential data because they handle input data
points independently without considering the correlation among input data. Because
the agricultural commodity prices to be predicted in this study are time series data, it
is important to model the time series characteristics of the price data. RNN specializing
in learning sequential data can be trained with time series information of data through
its internal cyclic structure. Long short-term memory (LSTM), a type of RNN, is consid-
ered one of the most popular methods for dealing with time series prediction problems.
Shin et al. [9] used LSTM to predict the price of green onion, onion, zucchini, rice, and
spinach. In their study, a predictive model was trained using various variables that affect
the price of agricultural commodities, such as weather data, the rate of price increase of
agricultural commodities, the previous year’s yield of agricultural commodities, and the
area cultivated in the previous year. They reported that their method exhibited better
performance than previous time series prediction models. Jin et al. [12] predicted the price
of cabbage and radish by using an STL-LSTM model that combines the STL technique and
the LSTM model. The STL technique was used to solve the high seasonality of agricultural
commodity price data and the “lag” phenomenon that appears in the prediction results.
They reported MAPEs of approximately 7.95% and 11.25% for the price predictions of
cabbage and radish, respectively.

The attention mechanism introduced in neural machine translation has the advantage
of overcoming the long-term dependency and information loss of RNNs, which enables
better characterization of the input data by assigning different importance to each element
of the input sequence and paying attention to the more relevant input [29]. Currently, the
attention mechanism is widely used in fields, such as natural language processing and
computer vision, with recent attempts being made to apply it to time series prediction in
various ways. In previous studies [30–32], different attention-based LSTM models were
proposed and applied to travel time, financial time series, and temperature prediction.
Yin et al. [11] applied the STL method and the attention-based LSTM model to predict the
price of five agricultural commodities: cabbage, radish, onion, pepper, and garlic. However,
previous studies have a common limitation of ignoring the dependency between time series
data and the time series of data. To compensate for this problem, Qin et al. [33] proposed a
dual-stage attention-based recurrent neural network (DA-RNN). Their proposed model
could adaptively select the most relevant input features through the input and temporal
attention mechanism, as well as learn the long-term temporal dependencies of the time
series well. Liu et al. [34] proposed a dual-stage two-phase-based recurrent neural network
(DSTP-RNN) to identify spatial correlations and temporal relationships.



Agriculture 2022, 12, 256 4 of 18

Both the DA-RNN and DSTP-RNN models, which use the dual attention mechanism,
have an encoder-decoder structure, and, instead of applying feature and temporal attention
to the input at the same time, attention is applied to the input and context vector. No
published study has reported application of the dual attention mechanism to agricultural
commodity price prediction. This study incorporates the feature attention layer and
temporal attention layer, which were designed to identify feature correlations and temporal
relationships of the input data. Three previous studies used price and meteorological
data as input variables [9,11,12], and this directly affected the growth of agricultural
commodities. However, those studies only considered the meteorological information of
the main production area to a limited extent. In this study, a dynamic main production
area selection method was developed to determine the effects of meteorological conditions
more accurately.

The contributions of this study are as follows. (1) Price, data, trading volume data, and
meteorological data, which are rarely used in previous studies because they are difficult
to handle, are used as input variables. (2) A dual input attention LSTM (DIA-LSTM), that
concurrently applies feature and temporal attention, an upgraded version of the existing
sequentially applied dual attention mechanism, is proposed. The proposed model is shown
to provide 1.41% to 4.26% higher performance than benchmark models. (3) Considering
the real situation, the meteorological information for the dynamic main production area
is used. The performance of the model using the meteorological information for the
dynamic main production area is shown to be an improvement of approximately 2.8 to
5.5% compared to the conventional model using the meteorological information for the
static main production area.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
dual attention LSTM after explaining the data used in this study. Section 3 describes the per-
formance metrics used in the experiment and discusses the experimental design and results.
Finally, Section 4 presents the conclusions of this study and future research directions.

2. Materials and Methods
2.1. Dataset Description
2.1.1. Wholesale Price of Agricultural Products

The data for the prices of cabbage and radish were downloaded from the Outlook
& Agricultural Statistics Information System (OASIS) [35], provided by the Korea Rural
Economic Institute (KREI) and Korea Agricultural Marketing Information Service (KAMIS),
as well as by the Korea Agro-Fisheries & Food Trade Corporation (aT) [36]. OASIS and
KAMIS provide daily prices for cabbage and radish. To predict the monthly average
price, this study calculated and used the average value of the monthly grouped prices.
The changes in the average monthly price of cabbage and radish are shown in Figure 1,
indicating unstable fluctuations in the price. The average price of the previous month,
exponential moving average (EMA), relative strength index (RSI), Williams %R, and median
price, used as investment indicators, were used as derived variables.

Among them, the average price means the average value of the remaining three prices
after removing the highest and lowest prices from the month’s price for the last five years.
The open and close values used to calculate Williams %R were the prices on the first and
last days of each month.

2.1.2. Trading Volume of Agricultural Products

The price of agricultural commodities is affected by the yield. Although it is desirable
to use the yield of agricultural commodities as an input variable for the prediction model, it
is difficult to apply the production data to the monthly price prediction because the statistics
on production are published annually. Therefore, in this study, the trading volume of agri-
cultural commodities was used instead of the yield. The agricultural products distribution
system (NongNet) of aT provides daily trading volumes from each wholesale market.
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In this study, the trading volume data provided by NongNet were divided into the
national wholesale market, Garak market, and top five local market trading volumes. The
national wholesale market trading volume is the sum of all wholesale markets. The Garak
and top five local market trading volumes refer to the quantity brought in from a specific
wholesale market. Among the numerous wholesale markets nationwide, the Garak and
top five local markets play an important role in the daily lives of ordinary people and the
distribution of agricultural and fishery products. Therefore, in this study, the Garak and
the top five local market trading volumes were separately extracted and used as input
variables for the model. Garak market is a wholesale market for agricultural and marine
commodities located in Garak-dong (Songpa-gu, Seoul, Korea), and the Garak market
trading volume refers to the quantity of agricultural and marine commodities brought into
Garak market. The top five local markets refer to the wholesale markets for agricultural
and marine commodities in Eomgung-dong, Busan; Gakhwa-dong, Gwangju; Guwol-dong,
Incheon; Buk-gu, Daegu; and Ojeong-dong, Daejeon. The trading volume from the top
five local markets is equal to the sum of the trading volumes from the aforementioned
five wholesale markets. The daily data on the trading volumes of cabbage and radish were
grouped monthly, and the sum was calculated and used.

2.1.3. Meteorological Data

Because cabbages and radishes are mainly grown in open fields, their yields are greatly
affected by meteorological conditions [2]. Changes in the yield also affect changes in the
price. Therefore, in this study, meteorological data provided by the Korean Meteorological
Administration (KMA) was used as an input variable for the model. Meteorological
indicators used include average temperature and humidity, accumulated precipitation,
and typhoon advisory and warning in the main production area. Typhoon advisories and
warnings have binary values indicating whether or not they are issued. The day typhoon
advisories and warnings are issued is marked as 1, and a value counting the number of
occurrences per month was used.

Meteorological data are generally provided by region; however, it is difficult to use all
of this data in practice. Not all meteorological conditions in all regions affect the cultivation
of specific agricultural commodities. In this study, the meteorological conditions of the
main production area, where cabbages and radishes were grown, were examined. To use
the meteorological data of the main production areas, it is necessary to know where the
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main production areas for each agricultural commodity are located. Although the Korean
Statistical Information Service (KOSIS) [37] provides information on the main production
areas of agricultural commodities every year, it is difficult to explain the main production
areas that change according to the seasons because the data are provided annually. In the
previous study [11], the main production area of agricultural commodities by harvest time
provided by aT was used. In this method, different main production areas were used for
each cropping season, but the same main production area is applied to the same cropping
season in different years. Using this method, the selected main production area can be
defined as a static main production area. However, the main production area may change
slightly over time owing to climate change or urban development. To solve this problem,
this study proposes a method for selecting a dynamic main production area. An area with
a high yield based on its monthly yield, where agricultural commodities are grown, is
selected as the dynamic main production area. In this study, the three regions with the
highest yields were selected as the main production areas based on the yield a year back.
Table 1 shows the main production areas of radish in July–September 2015, when the static
and dynamic main production areas selection method were used.

Table 1. Example of static and dynamic production area.

Date Static Dynamic

July 2015 Gangneung, Teabeak,
PyeongChang

Gangneung, Jeongseon,
PyeongChange

August 2015 Gangneung, Teabeak,
PyeongChang

Gangneung, Teabeak,
PyeongChang

September 2015 Gangneung, Teabeak,
PyeongChang

Gangneung, Teabeak,
PyeongChang

Data were collected from September 2013 to May 2021 for the price, trading volume,
and weather. Among them, data from September 2014 to January 2021 based on price
were used as training data, and the remaining data from February 2021 to May 2021 were
used as test data. Fixed data sizes were used for model training. Specifically, data from
September 2014 to December 2020 were used as input data, and data up to January 2021
were used as target data. Data were forecasted a month ahead for testing the model by
using actual observed past data. For example, to predict the price in February 2021, real
data from previous months, such as January 2021, December 2020, etc., were used as inputs
to the model. To predict the price during March 2021, the observed real data up until
February 2021 were used as inputs to the model. The number of months of past data used
to predict future prices depended on the hyperparameter of the time step.

2.2. Proposed Dual Input Attention LSTM (DIA-LSTM)

The dual input attention LSTM (DIA-LSTM) model proposed in this study predicts
the price of the next month using various variables that affect agricultural commodity
prices. The n variables that affect the price of agricultural commodities can be expressed as
I =

(
x1, x2, · · · , xn), where xn means the time series for the n-th variable that affects

the price. That is, X> = (x1, x2, · · · , xT) ∈ Rn×T , where T is the length of the time
step (or window size). That is, the price of the next month is predicted using data
from the past T months. The k-th input variable whose time step is T is expressed as

xk =
(

xk
1, xk

2, · · · , xk
T

)>
∈ RT , and the values of n input variables at time t is expressed

as xt =
(

x1
t , x2

t , · · · , xn
t
)> ∈ Rn. The DIA-LSTM model uses the price of past agricul-

tural commodities, y = (y1, y2, · · · , yT), with yt ∈ R and past values of n input variables,
(x1, x2, · · · , xT) with xt ∈ Rn, to predict the price value of the next time step. For instance,
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next year, it will be yT+1 ∈ R. This is expressed in Equation (1), where M means the
proposed DIA-LSTM.

ŷT+1 =M(x1, x2, · · · , xT , y1, y2, · · · , yT). (1)

DIA-LSTM consists of a feature attention layer, temporal attention layers, and a
recurrent prediction layer. The structure is shown in Figure 2. The feature attention
layer learns feature correlation in the input data X = (x1, x2, · · · , xt), and the temporal
attention layer models the temporal relationship based on the transposed input data
X> = ( f1, f2, · · · , fn). The output of the feature and temporal attention layer is generated
by doing an element-wise multiplication (denoted by ∗) of the attention weights with the
input data. The recurrent prediction layer predicts the final result value using the combined
value of the output from the feature and temporal attention layers.

Agriculture 2022, 12, x FOR PEER REVIEW  7  of  18 
 

 

2.2. Proposed Dual Input Attention LSTM (DIA‐LSTM) 

The dual input attention LSTM (DIA‐LSTM) model proposed in this study predicts 

the price of  the next month using various variables  that affect agricultural commodity 

prices. The  𝑛  variables that affect the price of agricultural commodities can be expressed 

as  𝐼 ൌ ሺ𝑥ଵ,𝑥ଶ,⋯ , 𝑥ሻ, where  𝑥 means  the  time series  for  the  𝑛‐th variable  that affects 
the price. That is,  𝑋ୃ ൌ ሺ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥்ሻ ∈ ℝൈ், where  𝑇  is the length of the time step (or 

window size). That is, the price of the next month is predicted using data from the past  𝑇 
months.  The  𝑘 ‐th  input  variable  whose  time  step  is  𝑇   is  expressed  as  𝑥 ൌ
ሺ𝑥ଵ

 ,𝑥ଶ
,⋯ , 𝑥்

ሻୃ ∈ ℝ், and the values of  𝑛  input variables at time  𝑡  is expressed as  𝑥௧ ൌ
ሺ𝑥௧ଵ, 𝑥௧ଶ,⋯ , 𝑥௧ሻୃ ∈ ℝ. The DIA‐LSTM model uses the price of past agricultural commodi‐

ties,  𝑦 ൌ ሺ𝑦ଵ,𝑦ଶ,⋯ , 𝑦்ሻ, with  𝑦௧ ∈ ℝ  and past values of  𝑛  input variables,  ሺ𝑥ଵ,𝑥ଶ,⋯ , 𝑥்ሻ 
with  𝑥௧ ∈ ℝ, to predict the price value of the next time step. For instance, next year, it 

will be  𝑦்ାଵ ∈ ℝ. This is expressed in Equation (1), where ℳ means the proposed DIA‐

LSTM. 

𝑦ො்ାଵ ൌ ℳሺ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥் ,𝑦ଵ,𝑦ଶ,⋯ ,𝑦்ሻ.  (1) 

DIA‐LSTM consists of a feature attention layer, temporal attention layers, and a re‐

current prediction layer. The structure is shown in Figure 2. The feature attention layer 

learns feature correlation in the input data  𝑋 ൌ ሺ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௧ሻ, and the temporal attention 

layer  models  the  temporal  relationship  based  on  the  transposed  input  data  Xୃ ൌ
ሺ𝑓ଵ,𝑓ଶ,⋯ ,𝑓ሻ. The output of the feature and temporal attention layer is generated by doing 

an element‐wise multiplication  (denoted by  ∗) of  the attention weights with  the  input 

data. The recurrent prediction  layer predicts  the  final result value using  the combined 

value of the output from the feature and temporal attention layers. 

 

Figure 2. DIA‐LSTM architecture. 

In previous studies, the dual attention mechanism was applied to the deep learning 

model of the encoder‐decoder structure. Specifically, attention mechanisms were applied 

Figure 2. DIA-LSTM architecture.

In previous studies, the dual attention mechanism was applied to the deep learning
model of the encoder-decoder structure. Specifically, attention mechanisms were applied
to the input and temporal axes in the encoder and decoder, respectively, and attention
weights were calculated using LSTM and softmax. In this study, instead of using the
encoder-decoder structure, a structure was used to input the input data into the LSTM
model by concatenating the results of applying the attention mechanism to the input and
temporal axes of the input data. In addition, a simple attention weight calculation method
using a single linear layer and softmax was used. The difference between the structure of
the existing dual attention mechanism and the proposed structure is shown in Figure 3.(

x1, x2, · · · , xn) denotes the inputs of the attention mechanism, and (a1, a2, · · · , an) is the
attention weights obtained by the attention mechanism. The output can be generated
by doing an element-wise multiplication (denoted by ×) of the attention weights with
the inputs.
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The feature attention layer (Appendix A.3) and temporal attention layer (Appendix A.4)
were implemented by simplifying the single-layer perceptron. This was inspired by the
self-attention mechanism (Appendix A.2) that can construct attention using only input
values. Attention weights were applied to each input variable in the feature attention layer,
as well as to each time step in the temporal attention layer.

The recurrent prediction layer consists of a single-layer stateful LSTM (Appendix A.1)
and two fully connected layers (denoted by FC in Figure 2). The stateful LSTM model means
that the hidden state ht learned in the current time step is transferred to the initial state
during the next learning. The LSTM model receives the concatenation of the output X f of
the feature attention layer and the output Xt of the temporal attention layer. Subsequently,
dropout is applied to the output of LSTM, and, after flattening (denoted by Flatten in
Figure 2), it is input to the fully connected layer (FC). Table 2 shows the hyperparameter
settings used in each layer. To predict the final single real value, the number of neurons in
the last fully connected layer is set to 1.

Table 2. Model configurations.

Layer Name Parameter Name Value

LSTM
Unit size 6

Activation function Tanh
Stateful True

Dropout Dropout rate 0.2

Fully connected

Number of neurons in the 1st FC layer 10
Activation functions in the 1st FC layer None
Number of neurons in the 2nd FC layer 1
Activation function in the 2nd FC layer None

2.3. Training Procedure

An Adam optimizer with a learning rate of 0.001 was used to train the model. To train
the stateful LSTM, the size of the minibatch was set to 1, which was the highest common
factor of the training and test data. Because DIA-LSTM is end-to-end differentiable, the
parameters of the model can be learned through the backpropagation algorithm with the
mean squared error as an objective function, as shown in Equation (2), where O means the
objective function.

O(yT+1, ŷT+1) =
1
N

N

∑
i=1

(
ŷi

T+1 − yi
T+1

)2
. (2)

In Equation (2), N denotes the number of training samples, ŷi
T+1 is the value predicted

by DIA-LSTM, and yi
T+1 denotes the actual observed price value.
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3. Results

This section describes the performance evaluation metrics used in the experiment and
the experimental method to measure the performance of the proposed model. In this study,
three experiments were conducted. The first experiment was to find the most suitable time
step for the proposed DIA-LSTM model. The second experiment compares the performance
of the model using meteorological data for the dynamic main production area and the
model using meteorological data for the static main production area. The third experiment
compares the performance of the DIA-LSTM model proposed in this study with the models
proposed in other studies.

3.1. Evaluation Metrics

In this study, two different evaluation metrics were used to evaluate the performance
of the model: root mean square error (RMSE) and mean absolute percentage error (MAPE).
RMSE measures the difference between the real value and the predicted value. The defini-
tion is as follows:

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
. (3)

MAPE is a widely used metrics in time series prediction and expresses the error
between the real value and the predicted value as a percentage. The definition of MAPE is
as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100%. (4)

In Equations (3) and (4), N is the number of data samples, and ŷi and yi are the real
and predicted values of the i-th sample data, respectively. RMSE is obtained by subtracting
the real value from the predicted value of each data sample. Subsequently, the average of
the square values is calculated, and the root operation is performed. MAPE is obtained
by calculating the absolute value after dividing the value obtained by subtracting the real
value from the predicted value of each sample by the real value again. MAPE is more
intuitive as it expresses the error as a percentage, regardless of the scale of the numbers
it predicts.

3.2. Optimal Time-Step Search

In time series prediction, the time step is a hyperparameter that determines how
many past data samples are used to predict future data; the optimal time step may differ
depending on the task to be solved. In previous studies [11,32], several candidate values
were set and a grid search was conducted to find the optimal time step. Different optimal
time-step values were used for these studies. In this study, an experiment was conducted
to find the most suitable time step for the data of two agricultural commodities (cabbage
and radish).

In this experiment, the model was trained and performance was measured while
changing the time step of the proposed DIA-LSTM. To find the optimal time step, a grid
search was performed by setting the time step T ∈ {1, 2, 4, 6, 8, 12}. Table 3 shows
the performance measurement results of the proposed model when the grid search was
performed for time step T.

Consequently, both agricultural commodities recorded the lowest MAPE and RMSE
when t = 6. In a two-dimensional rectangular coordinate system, the graph was plotted
with the x-axis as time step and the MAPE value as the y-axis, as shown in Figure 4. In
the graph, both cabbage and radish had the lowest MAPE with t = 6, and the error rate
gradually increased when the time step became smaller or larger than t = 6. This indicates
that too small or large time steps in time series prediction can negatively affect model
performance. If the time step is too small, it is difficult to learn sufficient information
from past data. As the prediction is performed using only one data sample when t = 1,
the characteristics of the time series cannot be ascertained. Conversely, an increase in the
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MAPE with an increase in the time-step value may have been due to a decrease in the
number of training data as the time-step value increased. This means that there were
insufficient data to proceed with learning. In particular, because the size of the dataset used
in the experiment was small, a large time step resulted in insufficiency in the training of
the model.

Table 3. Performance comparison between different time steps.

Time Step
Cabbage Radish

RMSE MAPE RMSE MAPE

1 113.38 13.72 111.81 19.65
2 88.42 10.94 48.88 8.73
4 67.03 7.81 11.91 2.56
6 41.76 4.39 9.31 2.13
8 59.28 4.81 23.69 4.08
12 58.73 6.65 29.94 6.54
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3.3. Dynamic Main Production Area

To prove the superiority of the proposed dynamic main production area selection
method, an experiment was conducted to compare the performance of a model using the
meteorological data of the dynamic main production area, dynamically selected based
on the yield, and a model using the predefined meteorological information of the main
production area. The predefined main production area was adopted from a previous
study [11], and all other data and parameter settings, except the main production area,
were kept consistent. Table 4 shows the performance of the proposed model when the
meteorological data of the dynamic and static main production areas are used.

For both cabbages and radishes, the model demonstrated higher performance when
using the meteorological data of the dynamically selected main production area than that of
the meteorological data of the predefined main production area. For cabbages, the MAPE
when the dynamic main production area was used was 4.39%, which was approximately
5.51% lower than when the static main production area was used. For radishes, the MAPE
when the dynamic main production area was used was 2.13%, which was improved by
approximately 2.8% compared to when the static main production area was used.
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Table 4. Performance comparison between static and dynamic area selection method.

No

Cabbage Radish

Static Dynamic Static Dynamic

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

1 88.66 11.54 7.37 0.96 33.95 8.05 13.56 3.21
2 86.83 9.29 17.95 1.92 37.83 9.78 6.98 1.80
3 152.26 16.44 71.38 7.71 5.88 1.43 6.10 1.48
4 12.92 2.33 38.77 6.98 2.07 0.47 8.76 2.00

Average 98.43 9.90 41.76 4.39 25.61 4.93 9.31 2.13

3.4. Comparison with Benchmark Models

To verify the performance of the proposed model, various time series prediction
models proposed in previous studies were selected as benchmark models, and an exper-
iment was conducted to compare their performance. The benchmark models used for
performance comparison are as follows.

Simple LSTM: The LSTM model proposed by Hochreiter and Schmidhuber [38] is
often used for time series prediction owing its excellent long-term dependency learning
ability. In this study, the part of the recurrent prediction layer that eliminated the feature
and time attention layers from the DIA-LSTM model was used as a simple SLTM model.

GCN-LSTM: The GCN-LSTM model is based on the T-GCN model structure proposed
by Zhao et al. [39]. T-GCN combines the graph convolutional layer [40] and the GRU model
and has been applied to traffic prediction. In the GCN-LSTM used in this study, the GRU
model of T-GCN was replaced with LSTM, and the dropout and density layers were added.

STL-ATTLSTM: The STL-ATTLSTM proposed by Yin et al. [11] is a model that com-
bines the STL preprocessing technique and the attention mechanism-based LSTM model.
The study predicts the prices of five crops, including cabbage and radish, using a variety of
input variables.

DA-RNN: The DA-RNN model proposed by Qin et al. [33] is an encoder-decoder struc-
ture model, which consists of an encoder with an input attention mechanism applied and a
decoder with a temporal attention mechanism. The proposed DA-RNN model recorded an
impressive performance in indoor temperature prediction and stock price prediction.

Each model was tested using the same training and test datasets. Table 5 shows the
results of measuring the performance of each model using RMSE and MAPE.

Table 5 shows the results of comparing the performance of the proposed DIA-LSTM
model with the benchmark models. As shown in Table 5, the proposed DIA-LSTM model
recorded the lowest RMSE and MAPE for cabbage and radish. Among the tested models,
the average MAPE of simple LSTM was the highest, at 7.55%. This may have been due to
the relatively simple LSTM model having weak learning ability compared to other bench-
mark models. Subsequently, GCN-LSTM recorded the second-highest error rate, with an
average MAPE of 6.71%. Compared to the time series prediction method with the attention
mechanism, the graph convolutional layer optimized for learning spatial information seems
to have limitations in learning the characteristics of agricultural commodities with strong
time series characteristics. STL-ATTLSTM and DSA-LSTM with an attention mechanism
recorded an average MAPE of 4.67% and 4.90%, respectively. This is a lower error rate com-
pared to the errors of simple LSTM and GCN-LSTM. Based on the results, the dual-stage
attention-based model with the STL preprocessing technique and attention mechanism of
STL-ATTLSTM, as well as the encoder with an input attention mechanism and a decoder
with a temporal attention mechanism of DA-RNN, showed excellent performance. The
reason for these results is that the attention mechanism used in the two studies can learn
the time series characteristics of the input data and the characteristics of the input variables
well. The DIA-LSTM model proposed in this study recorded the lowest error rate, of 3.26%.
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The model that combines the time and feature attention layers with LSTM was proven to
be superior in solving the agricultural commodity price prediction problem.

Table 5. Performance comparison with the benchmark models.

Model
Cabbage Radish

RMSE MAPE RMSE MAPE

LSTM 88.44 (+112%) 7.75 (+77%) 33.54 (+260%) 7.34 (+245%)
GCN-LSTM [39] 76.19 (+82%) 8.92 (+103%) 21.07 (+126%) 4.50 (+111%)

STL-ATTLSTM [11] 55.81 (+34%) 6.45 (+47%) 13.61 (+46%) 2.89 (+36%)
DA-RNN [33] 53.43 (+30%) 6.34 (+44%) 16.39 (+76%) 3.45 (+62%)

DIA-LSTM (Ours) 41.76 4.39 9.31 2.13

Figure 5 shows the predicted value of the cabbage price for each model. The graph
shows that the simple LSTM model has a large prediction error rate in March 2021 and
April 2021, and the GCM-LSTM model has a large prediction error rate for the price
in May 2021. STL-LSTM predicted all values smaller than the actual values, whereas
DA-RNN predicted the price for the rest of the time steps with relatively high accuracy,
except for the price for February 2021. Conversely, the proposed DIA-LSTM provided
reliable predictions for all time steps. Figure 6 shows the predicted values of each model
for the price of radish. LSTM showed a relatively large error rate in all forecasts, except
for March 2021. GCN-LSTM was not stable, with large fluctuations in predicted values.
DA-LSTM was able to predict the price of each time step relatively accurately, except for
April 2021. Both the STL-LTM and the proposed DIA-LSTM could predict the price of
radish relatively accurately.
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4. Conclusions

This study introduces the feature and temporal attention layers that could capture
feature correlations and temporal relationships for input variables, respectively, by applying
the attention mechanism. Furthermore, a DIA-LSTM model combining two attention layers
and an LSTM was proposed to predict the monthly price of cabbage and radish. The
proposed model utilizes not only vegetable prices but also trading volumes from various
markets, such as the national wholesale and top five local market trading volumes, and
meteorological information for the main production areas. For the selection of the main
production areas, the top three regions with high production volumes were dynamically
selected as the main production areas, rather than using pre-defined static main production
areas, as done by previous studies. Consequently, the performance of the model using the
meteorological information of the dynamic main production area recorded approximately
5.51% and 2.8% lower error rates for cabbage and radish, respectively, than the model
that uses predefined meteorological information of the static main production area. The
proposed DIA-LSTM model averaged approximately 3.26% MAPE, with an error rate of
approximately 1.41% to 4.26% lower than that of benchmark models.

Fluctuations in agricultural commodity prices affect the supply and demand of agricul-
tural commodities and have a significant impact on consumers and farmers. Fluctuations
in agricultural prices leads to uncertainty in the consumer’s daily consumption budget and
income instability for the farmer. As a result of abnormal climate patterns, price fluctuations
of agricultural products have intensified, making it difficult for the government to establish
policies and stabilize supply and demand. The agricultural commodity price prediction
model proposed in this study will help stabilize the supply and demand of agricultural
products through more accurate predictions, thereby reducing the risk of price fluctuations.

The empirical results in this study are constrained by the lack of data and the fluctua-
tion of prediction results. Monthly predictions about the agricultural commodity prices
were made using data from September 2013 to May 2021, resulting in insufficient data to
train a deep learning model. Sufficient price data can be collected from the 2000s, but the
problem lies with the meteorological data, which are only available from 2012. Additional
meteorological data should be obtained from the Meteorological Society or other agencies.
The volume of data can also be increased by using weekly price forecasts instead of monthly
forecasts. Although the prediction accuracy of the proposed model is relatively high, there
are still large fluctuations between individual predictions. The stability of the model’s
predictions can be improved by increasing the number of training variables that have an
impact on prices, such as the export and import volumes of agricultural commodities.
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Appendix A

Appendix A.1 LSTM Model

The LSTM proposed by Hochreiter et al. [38] constructs a recurrent neural network
using a memory cell and three gates: output, forget, and input gates, efficiently solving the
vanishing gradient problem that may occur during the training process of a simple recurrent
neural network. The memory cell is a mechanism that exists in LSTM; its characteristic is
that it flows only within the LSTM layer. The memory cell is denoted by c; ct stores the
memory of the LSTM at time t, and it stores necessary information from the past to time
t. The forget gate tells which of the memory cells to “forget”, and the result is obtained
through the calculation in Equation (A1).

f = sigmoid
(

xtW
f
x + ht−1W f

h + b f
)

. (A1)

As shown in Equation (A1), the input xt in the forget gate performs matrix multi-
plication with the weight W f

x and the hidden state ht−1 of the previous time step with
the weight W f

h . The result f is obtained through the sigmoid function on the result of
adding the two results and the bias b f of the forget gate. Considering that the sigmoid
function converts the input to a value between zero and one, it acts as a gate by preserving
more information in Ct−1 when the value of ft is close to one, and by discarding more
information from Ct−1 when the value is close to zero. The superscript f of the weight W
used here means a forget gate, and the subscripts x and h mean that the corresponding
weight is an input, a hidden state, and a weight on which an operation is performed. The
forget gate can erase the memory to be forgotten from the memory cell of the previous time
step; however, it cannot decide which contents to remember. The gate that determines the
information to be newly remembered is the input gate, which is defined by Equation (A3).
The information to which the input gate that determines the information to be memorized
is applied is calculated by Equation (A2).

g = tanh
(

xtW
g
x + ht−1Wg

h + bg
)

, (A2)

i = sigmoid
(

xtWi
x + ht−1Wi

h + bi
)

, (A3)

ct = f � ct−1 + g� i. (A4)
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The process of updating the memory cell by applying the forget and input gates is
shown in Equation (A4), where � means element-wise multiplication, and f � ct−1 deletes
the memory to be forgotten from the previous time step’s memory cell and adds new
information to the memory cell through g � i. By adding the two parts, we obtain the
current time step’s memory cell ct.

The output gate adjusts the importance of each element in the next hidden state ht,
where the output o of the output gate that determines the importance of each element is
calculated by Equation (A5). The hidden state ht is the result of simply applying the tanh
function to the memory cell ct, as shown in Equation (A6), and multiplying by element
with the output o of the output gate.

o = sigmoid(xtWo
x + ht−1Wo

h + bo), (A5)

ht = o� tanh(ct). (A6)

Appendix A.2 Attention Mechanism

The attention mechanism for sequence modeling was first introduced by Bahdanau et al. [29].
The rationale behind it is that, whenever the decoder predicts an output word, the encoder
refers to the full input sentence once again. Instead of referring to all input sentences at
the same ratio, the weight is raised on the word relevant to the word to be predicted at
the moment to focus more on the word. There are several methods to calculate the weight;
however, the method used by Bahdanau et al. [29] is as follows.

score(st, hi) = v>a tanh(Wa[st; hi]), (A7)

αt,i =
exp(score(st−1, hi))

∑n
i′=1 exp(score(st−1, hi′))

. (A8)

First, Equation (A7) is used to calculate the alignment score, where st denotes the
hidden state of the decoder, and t denotes the position of the output word as t = 1, . . . , m,
with m representing the number of words in the output sentence. The alignment score can
be calculated as a feed-forward network with a single hidden layer, enabling end-to-end
training with other parts of the model. In the attention mechanism, the weights va and Wa
are learned. Subsequently, the attention weight αt,i calculated by Equation (A8) means the
alignment weight between the t-th output word and the i-th input word. An input with an
attention weight applied can be obtained by applying such an attention mechanism to the
input time series data. Using the attention mechanism, a layer that can model feature and
temporal correlations for input data was introduced in this study. The result was used as
an input to the LSTM model to predict the final value.

Appendix A.3 Feature Attention Layer

Inspired by the self-attention mechanism that can construct attention using only
input values, a feature attention layer was implemented by simplifying the single-layer
perceptron. Specifically, given the values xt =

(
x1

t , x2
t , · · · , xn

t
)> ∈ Rn and the price yt for n

input variables at time t, the attention weight αk
t of the k-th input variable at time step t

was calculated using Equations (A9) and (A10). The softmax function is applied to et so
that the sum of all attention weights becomes one.

et = We[xt; yt] + be, (A9)

αk
t =

exp
(

ek
t

)
∑n+1

i=1 exp
(
ei

t
) , (A10)
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where We ∈ Rn+1×n+1 and be ∈ Rn+1 are parameters to be learned. After the attention
weight of each time step is calculated, it is used to calculate the average attention weights
of the k-th input variable, as shown in Equation (A11).

αk =
1
T

T

∑
t=1

αk
t . (A11)

Finally, we compute the value X f of the weighted input variable by applying attention
weights to each input variable.

X f =
(

x1α1, x2α2, · · · , xnαn, yαn+1
)

. (A12)

The output X f ∈ RT×(n+1) of the feature attention layer is input to the recurrent
prediction layer.

Appendix A.4 Temporal Attention Layer

If attention weights are applied to each input variable in the feature attention layer,
the temporal attention layer applies attention weights to each time step. Given the time

series data xk =
(

xk
1, xk

2, · · · , xk
T

)>
∈ RT for the k-th input variable, a temporal attention

mechanism was implemented in a similar manner to the feature attention mechanism. The
difference between the mechanisms is that attention weights are calculated based on the
temporal axis. It is calculated by Equations (A13) and (A14).

ek = Wtxk + bt, (A13)

αk
t =

exp
(

ek
t

)
∑T

i=1 exp
(
ek

t
) , (A14)

where Wt ∈ RT×T and bt ∈ RT are parameters to be learned. Temporal attention is also
applied to the price data y before the prediction time, in addition to the input variable. The
weights are used when calculating attention weights for input variables.

ey = Wty + bt, (A15)

α
y
t =

exp
(

ey
t

)
∑T

i=1 exp
(

ey
i

) . (A16)

When attention weights for each input variable and historical price data are estimated,
the variables are used to calculate the average attention weights at time step t, as shown in
Equation (A17), where αl ∈

(
α1, α2, · · · , αn, αy).

αl =
1
N

T

∑
t=1

αl
t. (A17)

Attention weights can be applied at each time step to calculate the input variable Xt to
which the weight is applied for each time step.

Xt =
(

x1α1, x2α2, · · · , xnαn, yαy
)

. (A18)

The output Xt ∈ RT×(n+1) of the temporal attention layer is input to the recurrent
prediction layer, along with the output of the feature attention layer.
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