Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. Soil Collecting
2.4. Laboratory Method
2.5. Statistical Analysis
3. Results
3.1. Size Distribution of Water–Stable Aggregates
3.2. The MWD, GMD, and D Values within Soil Aggregates
3.3. SOC within Bulk Soil in Different Treatments
3.4. SOC Content and Storage within Soil Aggregates in Different Treatments
3.5. Correlations among Each Measured Soil Parameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Gao, L.L.; Becker, E.; Liang, G.; Houssou, A.A.; Wu, H.; Wu, X.; Cai, D.; Degré, A. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon. Geoderma 2017, 288, 97–104. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Filho, C.C.; Lourenço, A.; Guimarães, M.F.; Fonsecac, I.C.B. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Till. Res. 2002, 65, 45–51. [Google Scholar] [CrossRef]
- Strickling, E. The effects of soybeans on volume weight and water stability of soil aggregates, soil organic matter content, and crop yield. Soil Sci. Soc. Am. J. 1951, 15, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Martens, D.A. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 2000, 29, 723–727. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Acunto, L.D.; Andrade, J.F.; Poggio, S.L.; Semmartin, M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agric. Ecosyst. Environ. 2018, 257, 159–164. [Google Scholar] [CrossRef]
- Karlen, D.L.; Kovar, J.L.; Cambardella, C.A.; Colvin, T.S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil Till. Res. 2013, 130, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Liu, Z.X.; Liu, J.J.; Yu, Z.H.; Yao, Q.; Li, Y.; Liang, A.; Zhang, W.; Mi, G.; Jin, J.; Liu, X.B.; et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Till. Res. 2020, 197, 104503. [Google Scholar] [CrossRef]
- Miller, D.R.; Chen, S.Y.; Porter, P.M.; Johnson, G.A.; Wyse, D.L.; Stetina, S.R.; Klossner, L.D.; Nelson, G.A. Rotation crop evaluation for management of the soybean cyst nematode in Minnesota. Agron. J. 2006, 98, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Farmaha, B.S.; Eskridge, K.M.; Cassman, K.G.; Specht, J.E.; Yang, H.; Grassini, P. Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated maize-soybean systems. Agron. J. 2016, 108, 2313–2321. [Google Scholar] [CrossRef] [Green Version]
- Poffenbarger, H.J.; Barker, D.W.; Helmers, M.J.; Miguez, F.E.; Olk, D.C.; Sawyer, J.E.; Six, J.; Castellano, M.J. Maximum soil organic carbon storage in Midwest, U.S. cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 2017, 12, e0172293. [Google Scholar] [CrossRef]
- Reganold, J.P. Soil quality and profitability of biodynamic and conventional farming systems: A review. Am. J. Altern. Agric. 1995, 10, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Sun, Q.; Yuan, H.; Lian, B. A practical soil management to improve soil quality by applying mineral organic fertilizer. Acta Geochim. 2017, 36, 198–204. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, C.; Xie, Z.; Li, Y.; Zhang, X.; Wang, G.; Jin, J.; Ding, G.; Liu, X. Humic substances and distribution in Mollisols affected by six-year organic amendments. Agron. J. 2020, 112, 4723–4740. [Google Scholar] [CrossRef]
- Khaleel, R.; Reddy, K.R.; Overcash, M.R. Changes in soil physical properties due to organic waste applications: A Review. J. Environ. Qual. 1981, 10, 133–141. [Google Scholar] [CrossRef]
- Nyamangara, J.; Gotosa, J.; Mpofu, S.E. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Till. Res. 2001, 62, 157–162. [Google Scholar] [CrossRef]
- Biswas, A.K.; Mohanty, M.; Hati, K.M.; Misra, A.K. Distillery effluents effect on soil organic carbon and aggregate stability of a Vertisol in India. Soil Till. Res. 2009, 104, 241–246. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Shen, S. Response of soil aggregate stability and distribution of organic carbon to alpine grassland degradation in Northwest Sichuan. Geoderma Reg. 2020, 22, e00309. [Google Scholar] [CrossRef]
- Lal, R. The Role of Residues Management in Sustainable Agricultural Systems. J. Sustain. Agr. 1995, 5, 51–78. [Google Scholar] [CrossRef]
- Duiker, S.W.; Lal, R. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Till. Res. 1999, 52, 73–81. [Google Scholar] [CrossRef]
- Gao, F.; Hu, J.; Ren, B.; Liu, P.; Zhao, B.; Zhang, J. Improving soil properties and grains yield of winter wheat and summer corn under residue management strategies. Agron. J. 2020, 112, 4287–4302. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Xu, X.; Pei, J.; Xu, Y.; Wang, J. Soil organic carbon depletion in global Mollisols regions and restoration by management practices: A review. J. Soils Sediment. 2020, 20, 1173–1181. [Google Scholar] [CrossRef]
- Kravchenko, Y.S.; Zhang, X.; Liu, X.; Song, C.; Cruse, R.M. Mollisols properties and changes in ukraine and china. Chin. Geogr. Sci. 2011, 21, 257–266. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Zhang, X.; Ding, G.; Cruse, R.M. Soil erosion control practices in Northeast China: A mini-review. Soil Till. Res. 2011, 117, 44–48. [Google Scholar] [CrossRef]
- Novelli, L.E.; Caviglia, O.P.; Wilson, M.G.; Sasal, M.C. Land use intensity and cropping sequence effects on aggregate stability and C storage in a Vertisol and a Mollisol. Geoderma 2013, 195-196, 260–267. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Liu, J.; Yuan, J.; Liang, Y.; Ren, J.; Cai, H. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil Till. Res. 2019, 190, 1–9. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J.; et al. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.Y.; Jin, J.; Liu, X.B.; Zhang, X.Y.; Li, Y.S.; Zhou, K.Q.; Wang, G.H.; Di, G.L.; Herbert, S.J. Soil carbon sequestration and crop yield in response to application of chemical fertilizer combined with cattle manure to an artificially eroded Phaeozem. Arch. Agron. Soil Sci. 2017, 63, 1510–1522. [Google Scholar] [CrossRef]
- Yang, Z.H.; Singh, B.R.; Hansen, S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil Till. Res. 2007, 95, 161–171. [Google Scholar] [CrossRef]
- Xing, B.; Liu, X.; Liu, J.; Han, X. Physical and chemical characteristics of a typical Mollisols in China. Commun. Soil Sci. Plant. Anal. 2004, 35, 1829–1838. [Google Scholar] [CrossRef]
- Ye, L.; Tan, W.; Fang, L.; Ji, L. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction. Soil Till. Res. 2019, 192, 1–11. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Perkins, K.S. Method of soil analysis. In Aggregates Stability and Size Distribution, 4th ed.; SSSA: Madison, WI, USA, 2002; pp. 317–328. [Google Scholar]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter, I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Das, B.; Chakraborty, D.; Singh, V.K.; Aggarwal, P. Effect of organic inputs on strength and stability of soil aggregates under rice-wheat rotation. Int. Agrophys. 2014, 28, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Xiao, Y.; Li, Y.; Zhang, X.; Wang, G.; Jin, J.; Ding, G.; Liu, X. Soil quality index evaluation model in responses to six-year fertilization practices in Mollisols. Arch. Agron. Soil Sci. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, R.; Zhang, X.; Zhang, Y.; Wu, D.; McLaughlin, N.; Zhang, S.; Chen, X.; Jia, S.; Liang, A. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Sci. Total. Environ. 2020, 703, 134617. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tang, C.; Chen, Z. Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biol. Biochem. 2006, 38, 544–552. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Calvo-Cases, A.; Imeson, A.C.; Soriano-Soto, M.D. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 2001, 44, 47–67. [Google Scholar] [CrossRef]
- Cerdà, A. Soil aggregate stability in three Mediterranean environments. Soil Technol. 1996, 9, 129–133. [Google Scholar] [CrossRef]
- Lehrsch, G.A.; Sojka, R.E.; Carter, D.L.; Jolley, P.M. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Sci. Soc. Am. J. 1991, 55, 1401–1406. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Domingo-Olivé, F.; Bosch-Serra, À.D.; Poch, R.M.; Boixadera, J. Dairy cattle manure effects on soil quality: Porosity, earthworms, aggregates and soil organic carbon fractions. Land. Degrad. Dev. 2016, 27, 1753–1762. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, S.; Li, C.; Zhang, J.; Wang, L. Effects of temperature on soil organic carbon fractions contents, aggregate stability and structural characteristics of humic substances in a Mollisol. J. Soils Sediment. 2016, 16, 1849–1857. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, M.; Guo, X.; Wang, H.B.; Sui, B.; Zhao, L.P. Organic carbon content and humus composition after application aluminum sulfate and rice straw to soda saline-alkaline soil. Environ. Sci. Pollut. Res. 2019, 26, 13746–13754. [Google Scholar] [CrossRef]
- Dimoyiannis, D. Seasonal soil aggregate stability variation in relation to rainfall and temperature under Mediterranean conditions. Earth Surf. Proc. Land. 2009, 34, 860–866. [Google Scholar] [CrossRef]
- Algayer, B.; Bissonnais, Y.L.; Darbou, F. Short-term dynamics of soil aggregate stability in the field. Soil Sci. Soc. Am. J. 2014, 78, 1168–1176. [Google Scholar] [CrossRef]
- Cong, P.; Wang, J.; Li, Y.; Liu, N.; Dong, J.; Pang, H.; Zhang, L.; Gao, Z. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil Till. Res. 2020, 204, 104735. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, P.; Mei, F.; Ling, Y.; Qiao, Y.; Liu, C.; Leghari, S.J.; Guan, X.; Wang, T. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manag. 2021, 288, 112391. [Google Scholar] [CrossRef] [PubMed]
- Gale, W.J.; Cambardella, C.A. Carbon dynamics of surface residue- and root-derived organic matter under stimulated no-till. Soil Sci. Soc. Am. J. 2000, 64, 190–195. [Google Scholar] [CrossRef]
- Xiao, L.L.; Zheng, S.L.; Lichtfouse, E.; Luo, M.; Tan, Y.; Liu, F.H. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure culture to anaerobic soil. Soil Biol. Biochem. 2020, 150, 107938. [Google Scholar] [CrossRef]
- Bottinelli, N.; Angers, D.A.; Hallaire, V.; Michot, D.; Guillou, L.; Cluzeau, D.; Heddadj, D.; Menasseri-Aubry, S. Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Till. Res. 2017, 170, 14–17. [Google Scholar] [CrossRef]
- Maillard, E.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
pH | Bulk Density (g cm−3) | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) |
---|---|---|---|---|---|
6.8 | 1.45 | 32.2 | 1.63 | 17 | 248 |
Soil Depths | Aggregate Sizes | Treatments | ||||
---|---|---|---|---|---|---|
CNoF–SNoF | CCF–SNoF | CCR–SNoR | CCF–SCF | CCF–SFYM | ||
0–10 cm | >2 mm | 13.6 ± 0.21 b | 8.88 ± 0.15 c | 17.4 ± 0.22 a | 8.40 ± 0.12 c | 4.59 ± 0.11 d |
0.25–2 mm | 41.0 ± 0.55 c | 45.0 ± 0.64 a | 42.0 ± 0.35 bc | 43.5 ± 0.53 ab | 43.1 ± 0.66 abc | |
0.053–0.25 mm | 7.91 ± 0.13 c | 12.1 ± 0.23 b | 12.2 ± 0.18 b | 16.3 ± 0.31 a | 13.9 ± 0.32 b | |
<0.053 mm | 37.5 ± 0.28 a | 34.0 ± 0.42 b | 28.5 ± 0.36 d | 31.9 ± 0.52 c | 38.5 ± 0.35 a | |
10–20 cm | >2 mm | 5.42 ± 0.10 c | 6.90 ± 0.02 c | 6.32 ± 0.09 c | 28.4 ± 0.34 a | 9.50 ± 0.06 b |
0.25–2 mm | 41.5 ± 0.25 b | 37.6 ± 0.34 c | 45.2 ± 0.53 a | 35.9 ± 0.38 c | 43.3 ± 0.15 b | |
0.053–0.25 mm | 6.61 ± 0.18 d | 11.6 ± 0.29 b | 16.7 ± 0.32 a | 9.20 ± 0.14 c | 9.09 ± 0.17 c | |
<0.053 mm | 46.5 ± 0.39 a | 43.9 ± 0.37 b | 31.8 ± 0.44 d | 26.5 ± 0.27 e | 38.1 ± 0.45 c | |
20–30 cm | >2 mm | 3.36 ± 0.04 c | 8.20 ± 0.10 a | 5.70 ± 0.04 b | 7.60 ± 0.15 a | 4.20 ± 0.08 bc |
0.25–2 mm | 39.0 ± 0.36 d | 49.7 ± 0.55 a | 32.7 ± 0.61 e | 46.9 ± 0.46 b | 43.2 ± 0.42 c | |
0.053–0.25 mm | 16.2 ± 0.36 bc | 14.3 ± 0.28 bc | 20.1 ± 0.26 a | 17.8 ± 0.34 b | 16.2 ± 0.27 c | |
<0.053 mm | 41.4 ± 0.33 a | 27.9 ± 0.37 c | 41.6 ± 0.27 a | 27.8 ± 0.16 c | 36.3 ± 0.22 b |
Soil Depths | Item | Treatments | ||||
---|---|---|---|---|---|---|
CNoF–SNoF | CCF–SNoF | CCR–SNoR | CCF–SCF | CCF–SFYM | ||
0–10 cm | Bulk density (g cm−3) | 1.30 ± 0.02 a | 1.20 ± 0.01 b | 1.21 ± 0.02 b | 1.27 ± 0.02 a | 1.14 ± 0.01 c |
moisture content (%) | 22.5 ± 0.30 d | 22.6 ± 0.16 d | 24.1 ± 0.22 c | 25.6 ± 0.15 b | 26.9 ± 0.23 a | |
SOC within bulk soils (g kg−1) | 19.2 ± 0.28 d | 20.0 ± 0.17 d | 22.5 ± 0.20 b | 21.1 ± 0.22 c | 23.5 ± 0.19 a | |
10–20 cm | Bulk density (g cm−3) | 1.32 ± 0.02 c | 1.38 ± 0.01 b | 1.27 ± 0.01 d | 1.53 ± 0.02 a | 1.23 ± 0.01 e |
moisture content (%) | 23.8 ± 0.22 cd | 23.3 ± 0.12 d | 26.5 ± 0.31 a | 24.6 ± 0.14 c | 25.6 ± 0.27 b | |
SOC within bulk soils (g kg−1) | 17.5 ± 0.17 d | 18.6 ± 0.11 c | 20.0 ± 0.21 b | 18.9 ± 0.25 c | 21.8 ± 0.15 a | |
20–30 cm | Bulk density (g cm−3) | 1.52 ± 0.01 bc | 1.55 ± 0.01 b | 1.40 ± 0.01 d | 1.62 ± 0.02 a | 1.50 ± 0.01 c |
moisture content (%) | 25.3 ± 0.32 c | 24.8 ± 0.13 cd | 24.0 ± 0.26 d | 27.6 ± 0.17 a | 26.6 ± 0.19 b | |
SOC within bulk soils (g kg−1) | 14.7 ± 0.10 b | 16.0 ± 0.18 a | 15.8 ± 0.14 a | 16.6 ± 0.15 a | 16.1 ± 0.15 a |
Soil Depths | Aggregate Sizes | Treatments | ||||
---|---|---|---|---|---|---|
CNoF–SNoF | CCF–SNoF | CCR–SNoR | CCF–SCF | CCF–SFYM | ||
0–10 cm | >2 mm | 22.2 ± 0.34 a | 19.9 ± 0.40 b | 22.4 ± 0.46 a | 21.4 ± 0.58 ab | 22.9 ± 0.29 a |
0.25–2 mm | 21.3 ± 0.74 abc | 19.4 ± 0.56 c | 22.9 ± 0.35 a | 20.2 ± 0.44 bc | 22.2 ± 0.34 ab | |
0.053–0.25 mm | 18.2 ± 0.28 b | 18.4 ± 0.18 b | 20.7 ± 0.29 a | 17.9 ± 0.22 b | 22.1 ± 0.33 a | |
<0.053 mm | 20.8 ± 0.35 a | 18.0 ± 0.22 b | 20.2 ± 0.34 ab | 17.8 ± 0.41 b | 19.4 ± 0.51 ab | |
10–20 cm | >2 mm | 19.4 ± 0.06 b | 18.6 ± 0.15 b | 19.3 ± 0.46 b | 19.2 ± 0.34 b | 20.8 ± 0.16 a |
0.25–2 mm | 17.9 ± 0.44 b | 16.8 ± 0.15 c | 18.6 ± 0.35 ab | 19.3 ± 0.17 a | 19.4 ± 0.27 a | |
0.053–0.25 mm | 17.0 ± 0.23 ab | 17.0 ± 0.04 ab | 16.4 ± 0.17 b | 17.6 ± 0.06 a | 17.8 ± 0.33 a | |
<0.053 mm | 16.7 ± 0.33 ab | 17.0 ± 0.42 ab | 16.6 ± 0.21 b | 17.3 ± 0.41 a | 17.3 ± 0.27 a | |
20–30 cm | >2 mm | 19.5 ± 0.21 a | 14.0 ± 0.33 d | 18.0 ± 0.34 b | 18.9 ± 0.25 ab | 16.1 ± 0.19 c |
0.25–2 mm | 19.8 ± 0.21 a | 13.4 ± 0.10 c | 16.0 ± 0.06 b | 17.0 ± 0.03 b | 14.8 ± 0.20 bc | |
0.053–0.25 mm | 19.5 ± 0.04 a | 12.6 ± 0.22 c | 14.8 ± 0.31 bc | 16.0 ± 0.24 b | 13.0 ± 0.10 c | |
<0.053 mm | 16.9 ± 0.14 a | 10.1 ± 0.19 c | 15.8 ± 0.33 a | 13.0 ± 0.40 b | 10.5 ± 0.06 c |
Soil Depths | Aggregates Sizes | Treatments | ||||
---|---|---|---|---|---|---|
CNoF–SNoF | CCF–SNoF | CCR–SNoR | CCF–SCF | CCF–SFYM | ||
0–10 cm | >2 mm | 3.93 ± 0.10 b | 1.38 ± 0.04 d | 4.71 ± 0.12 a | 2.27 ± 0.06 c | 1.20 ± 0.03 d |
0.25–2 mm | 11.4 ± 0.30 a | 10.9 ± 0.32 a | 11.6 ± 0.29 a | 11.1 ± 0.32 a | 10.9 ± 0.28 a | |
0.053–0.25 mm | 1.87 ± 0.06 c | 2.78 ± 0.09 b | 3.04 ± 0.08 b | 3.71 ± 0.12 a | 3.49 ± 0.09 a | |
<0.053 mm | 10.1 ± 0.28 a | 7.51 ± 0.24 c | 6.95 ± 0.20 c | 7.22 ± 0.23 c | 8.51 ± 0.25 b | |
10–20 cm | >2 mm | 1.39 ± 0.04 c | 1.78 ± 0.06 c | 1.55 ± 0.05 c | 8.33 ± 0.25 a | 2.44 ± 0.07 b |
0.25–2 mm | 9.80 ± 0.31 a | 8.70 ± 0.30 b | 10.7 ± 0.33 a | 10.6 ± 0.32 a | 10.3 ± 0.30 a | |
0.053–0.25 mm | 1.49 ± 0.05 d | 2.73 ± 0.09 b | 3.48 ± 0.12 a | 2.49 ± 0.08 b | 1.99 ± 0.06 c | |
<0.053 mm | 10.2 ± 0.36 a | 10.3 ± 0.35 a | 6.70 ± 0.23 c | 7.02 ± 0.23 c | 8.10 ± 0.27 b | |
20–30 cm | >2 mm | 1.00 ± 0.03 d | 1.78 ± 0.07 b | 1.44 ± 0.05 c | 2.31 ± 0.07 a | 1.02 ± 0.03 d |
0.25–2 mm | 11.8 ± 0.34 a | 10.3 ± 0.43 b | 7.31 ± 0.26 c | 12.9 ± 0.44 a | 9.62 ± 0.37 b | |
0.053–0.25 mm | 4.79 ± 0.14 a | 2.77 ± 0.12 c | 4.15 ± 0.16 b | 4.61 ± 0.17 ab | 3.17 ± 0.14 c | |
<0.053 mm | 10.6 ± 0.36 a | 4.36 ± 0.25 e | 9.21 ± 0.33 b | 5.84 ± 0.26 d | 6.72 ± 0.31 c |
Indicators in Y | Indicators in X | Regression Model | R2 | F | P |
---|---|---|---|---|---|
Aggregate stability (MWD) in water–stable aggregates | The proportion of aggregate size fractions (ASF) in water–stable aggregates particle sizes | YMWD = 0.055 ASFWSA>2mm + 0.596 (9) | 0.855 | 83.649 | 0 |
Aggregate stability (MWD) in water–stable aggregates | Soil organic carbon storage (SOCS) in water–stable aggregates particle sizes | YMWD = 0.183 SOCSWSA>2mm + 0.661 (10) | 0.848 | 78.978 | 0 |
Aggregate stability (GMD) in water–stable aggregates | The proportion of aggregate size fractions (ASF) in water–stable aggregates particle sizes | YGMD = 0.012 ASFWSA>2mm + 0.476 (11) | 0.814 | 62.118 | 0 |
Aggregate stability (GMD) in water–stable aggregates | Soil organic carbon storage (SOCS) in water–stable aggregates particle sizes | YGMD = 0.036 SOCSWSA>2mm −0.011 SOCSWSA<0.053mm + 0.584 (12) | 0.848 | 6.359 | 0.027 |
Aggregate stability (D) in water–stable aggregates | The proportion of aggregate size fractions (ASF) in water–stable aggregates particle sizes | YD = −0.003 ASFWSA>2mm + 0.003 ASFWSA<0.053mm + 2.751 (13) | 0.744 | 21.337 | 0 |
Aggregate stability (D) in water–stable aggregates | Soil organic carbon storage (SOCS) in water–stable aggregates particle sizes | YD = −0.014 SOCSWSA>2mm + 0.009 SOCSWSA<0.053 mm + 2.782 (14) | 0.790 | 14.521 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Zhou, M.; Li, Y.; Zhang, X.; Wang, G.; Jin, J.; Ding, G.; Zeng, X.; Liu, X. Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols. Agriculture 2022, 12, 265. https://doi.org/10.3390/agriculture12020265
Xiao Y, Zhou M, Li Y, Zhang X, Wang G, Jin J, Ding G, Zeng X, Liu X. Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols. Agriculture. 2022; 12(2):265. https://doi.org/10.3390/agriculture12020265
Chicago/Turabian StyleXiao, Yang, Meng Zhou, Yansheng Li, Xingyi Zhang, Guanghua Wang, Jian Jin, Guangwei Ding, Xiannan Zeng, and Xiaobing Liu. 2022. "Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols" Agriculture 12, no. 2: 265. https://doi.org/10.3390/agriculture12020265
APA StyleXiao, Y., Zhou, M., Li, Y., Zhang, X., Wang, G., Jin, J., Ding, G., Zeng, X., & Liu, X. (2022). Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols. Agriculture, 12(2), 265. https://doi.org/10.3390/agriculture12020265