Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia
Abstract
:1. Introduction
2. Oil Palm Industry in Malaysia
2.1. Soil Characteristics in Malaysian Oil Palm Plantation
2.2. Soil Management Practices in Oil Palm Plantation
3. Beneficial Impacts of Liming on Soil Processes in Oil Palm Plantations
3.1. Neutralizing Soil Acidity
3.2. Liming Impacts on Soil Nutrient Processes, Minerals, and Heavy Metals
3.3. Impacts on Soil Microbial Communities and Biological Processes
3.4. Improving Soil Physical Condition
4. Beneficial Impacts of Liming on Oil Palm Trees
4.1. Increasing Oil Palm Tree Biomass and Yields of Fresh Fruits Bunches
4.2. Controlling Oil Palm Tree Diseases
5. Recommendations and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassler, E.; Corre, M.D.; Tjoa, A.; Damris, M.; Utami, S.R.; Veldkamp, E. Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 2015, 12, 5831–5852. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, T.T.; Donough, C.R.; Lim, Y.L.; Härdter, R.; Norton, R.; Tao, H.H.; Jaramillo, R.; Satyanarayana, T.; Zingore, S.; Oberthür, T. Feeding the palm: A review of oil palm nutrition. Adv. Agron. 2018, 152, 149–243. [Google Scholar]
- Food and Agriculture Organization (FAO). The Future of Food and Agriculture—Trends and Challenges. Rome. 2017. Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 5 September 2021).
- Goh, Y.K.; Zoqratt, M.Z.H.M.; Goh, Y.K.; Ayub, Q.; Ting, A.S.Y. Determining Soil Microbial Communities and Their Influence on Ganoderma Disease Incidences in Oil Palm (Elaeis guineensis) via High-Throughput Sequencing. Biology 2020, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Auler, A.C.; Pires, L.F.; Dos Santos, J.A.B.; Caires, E.; Borges, J.A.R.; Giarola, N.F.B. Effects of surface-applied and soil-incorporated lime on some physical attributes of a Dystrudept soil. Soil Use Manag. 2017, 33, 129–140. [Google Scholar] [CrossRef]
- Da Costa, C.H.M.; Crusciol, C.A.C. Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties. Eur. J. Agron. 2016, 74, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, S.; Corre, M.D.; Utami, S.; Veldkamp, E. Soil Biochemical Properties and Nutrient Leaching from Smallholder Oil Palm Plantations, Sumatra-Indonesia. AGRIVITA J. Agric. Sci. 2018, 40, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.; Baligar, V. Chapter 7 Ameliorating Soil Acidity of Tropical Oxisols by Liming for Sustainable Crop Production. Adv. Agron. 2008, 99, 345–399. [Google Scholar] [CrossRef]
- Junior, E.C.; Jr, A.C.G.; Seidel, E.P.; Ziemer, G.L.; Zimmermann, J.; De Oliveira, V.H.D.; Schwantes, D.; Zeni, C.D. Effects of Liming on Soil Physical Attributes: A Review. J. Agric. Sci. 2020, 12, 278. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Passos, A.B.R.J.; Souza, M.F.; Saraiva, D.T.; da Silva, A.A.; Queiroz, M.E.L.R.; Carvalho, F.P.; Silva, D.V. Effects of Liming and Urochloa brizantha Management on Leaching Potential of Picloram. Water Air Soil Pollut. 2019, 230, 12. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of Soil Acidity of South American Soils for Sustainable Crop Production. Adv. Agron. 2014, 128, 221–275. [Google Scholar] [CrossRef]
- Holland, J.; Bennett, A.; Newton, A.; White, P.; McKenzie, B.; George, T.; Pakeman, R.; Bailey, J.; Fornara, D.; Hayes, R. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.; Xu, Y.; Mandal, S.; Gleeson, D.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C.; et al. Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux. Adv. Agron. 2016, 139, 1–71. [Google Scholar] [CrossRef]
- Paradelo, R.; Virto, I.; Chenu, C. Net effect of liming on soil organic carbon stocks: A review. Agric. Ecosyst. Environ. 2015, 202, 98–107. [Google Scholar] [CrossRef]
- Kalkhoran, S.S.; Pannell, D.; Polyakov, M.; White, B.; Haghighi, M.C.; Mugera, A.W.; Farre, I. A dynamic model of optimal lime application for wheat production in Australia. Aust. J. Agric. Resour. Econ. 2021, 65, 472–490. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Pires, L.F.; Wildenschild, D.; Brinatti, A.M.; Borges, J.A.; Auler, A.; DOS Reis, A.M.H. Lime application effects on soil aggregate properties: Use of the mean weight diameter and synchrotron-based X-ray μCT techniques. Geoderma 2019, 338, 585–596. [Google Scholar] [CrossRef]
- Anikwe, M.; Eze, J.; Ibudialo, A. Influence of lime and gypsum application on soil properties and yield of cassava (Manihot esculenta Crantz.) in a degraded Ultisol in Agbani, Enugu Southeastern Nigeria. Soil Tillage Res. 2016, 158, 32–38. [Google Scholar] [CrossRef]
- Sa, M.V.D.C.E.; Boyd, C.E. Variability in the solubility of agricultural limestone from different sources and its pertinence for aquaculture. Aquac. Res. 2017, 48, 4292–4299. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Che Fauziah, I.; Bell, L.C. Effect of dolomitic limestone and gypsum applications on soil solution properties and yield of corn and groundnut grown on ultisols. Malays. J. Soil Sci. 2009, 13, 1–12. [Google Scholar]
- Reeza, A.A. Effect of Liming and Fertilizer Application on Mineralization of Nitrogen in Hemic and Sapric of Tropical Peat Material. Pertanika J. Trop. Agric. Sci. 2019, 42, 779 –790. [Google Scholar]
- Connor, D.J.; Loomis, R.S.; Cassman, K.G. Crop Ecology: Productivity and Management in Agricultural Systems; Cambridge University Press: Cambridge, UK, 2011; pp. 779–790. [Google Scholar]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Aini, A.A.; Fauzia h, C.I.; Samsuri, A.W. Cadmium and Zinc Content in Oil Palm Seedlings and their Phase Associations in Jawa Series Soil Applied with Phosphate Rock and Amended with Palm Oil Mill Effluent Sludge and Lime. Malays. J. Soil Sci. 2021, 25, 29–44. [Google Scholar]
- Rosilawati, A.; Shamshuddin, J. Effects of incubating an acid sulfate soil treated with various liming materials under submerged and moist conditions on pH, Al and Fe. Afr. J. Agric. Res. 2014, 9, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Farid, M.A.A.; Hassan, M.A.; Othman, M.R.; Shirai, Y.; Ariffin, H. Sustainability of Oil Palm Biomass-Based Products. In Lignocellulose for Future Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–242. [Google Scholar]
- Yusof, S.J.H.M.; Zakaria, M.R.; Roslan, A.M.; Ali, A.A.M.; Shirai, Y.; Ariffin, H.; Hassan, M.A. Oil Palm Biomass Biorefinery for Future Bioeconomy in Malaysia. In Lignocellulose for Future Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 265–285. [Google Scholar]
- Ayanda, A.F.; Jusop, S.; Ishak, C.F.; Othman, R. Utilization of magnesium-rich synthetic gypsum as magnesium fertilizer for oil palm grown on acidic soil. PLoS ONE 2020, 15, e0234045. [Google Scholar] [CrossRef]
- Soumare, A.; Boubekri, K.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: Status and needs. Front. Bioeng. Biotechnol. 2020, 7, 425. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Upadhyay, N. Effects of organophosphate pesticides on siderophore producing soils microorganisms. Biocatal. Agric. Biotechnol. 2019, 21, 101359. [Google Scholar] [CrossRef]
- Kamil, N.N.; Omar, S.F. Climate variability and its impact on the palm oil industry. Oil Palm Ind. Econ. J. 2016, 16, 18–30. [Google Scholar]
- Food and Agriculture Organization (FAO). Modern Palm Oil Cultivation. 2021. Available online: http://www.fao.org/3/t0309e/T0309E01.htm (accessed on 5 September 2021).
- Lim, K.H.; Goh, K.J.; Kee, K.K.; Henson, I.E. Climatic requirements of oil palm. In Agronomic Principles and Practices of Oil Palm Cultivation; CABI: Wallingford, UK, 2011; pp. 1–46. [Google Scholar]
- Pirker, J.; Mosnier, A.; Kraxner, F.; Havlík, P.; Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 2016, 40, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.F.; Er, A.C.; Begum, H. Malaysian oil palm industry: Prospect and problem. J. Food Agric. Environ. 2015, 13, 143–148. [Google Scholar]
- Basiron, Y. Palm oil production through sustainable plantations. Eur. J. Lipid Sci. Technol. 2007, 109, 289–295. [Google Scholar] [CrossRef]
- Malaysian Palm Oil Board (MPOB). Uses in Food and Non-Food Applications of Palm Oil. 2021. Available online: http://www.palmoilworld.org/applications.html (accessed on 8 September 2021).
- REA, UK. Annual Report and Accounts. 2020. Available online: https://www.rea.co.uk/download/companies/reaholdingsplc/Annual%20Reports/REAH_AR_2020_web.pdf (accessed on 10 September 2021).
- Malaysian Palm Oil Board (MPOB). Overview of the Malaysian Oil Palm Industry. 2019. Available online: http://palmoilis.mpob.gov.my/V4/wp-content/uploads/2020/03/Overview_of_Industry_2019.pdf (accessed on 10 September 2021).
- Laurance, W.F.; Koh, L.P.; Butler, R.; Sodhi, N.S.; Bradshaw, C.; Neidel, J.D.; Consunji, H.; Vega, J.M. Improving the Performance of the Roundtable on Sustainable Palm Oil for Nature Conservation. Conserv. Biol. 2010, 24, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Hamshuddin, J.; Daud, N.W. Classification and management of highly weathered soils in Malaysia for production of plantation crops. In Principles, Application and Assessment in Soil Science; BoD Books on Demand: Hamburg, Germany, 2011; pp. 75–86. [Google Scholar]
- Fuady, Z.; Satriawan, H. The Morphological Growth Response of Immature Oil Palm on Single Fertilizer (N., P and K); SciTePress: Setúbal, Portugal, 2018; pp. 261–267. [Google Scholar]
- Darras, K.F.A.; Corre, M.D.; Formaglio, G.; Tjoa, A.; Potapov, A.; Brambach, F.; Sibhatu, K.T.; Grass, I.; Rubiano, A.A.; Buchori, D.; et al. Reducing Fertilizer and Avoiding Herbicides in Oil Palm Plantations—Ecological and Economic Valuations. Front. For. Glob. Change 2019, 2, 65. [Google Scholar] [CrossRef] [Green Version]
- Husain, S.H.; Mohammed, A.; Ch’Ng, H.Y.I.; Khalivulla, S. Residual effects of calcium amendments on oil palm growth and soil properties. IOP Conf. Ser. Earth Environ. Sci. 2021, 756, 12060. [Google Scholar] [CrossRef]
- Bonfim-Silva, E.M.; Costa, A.S.; José, J.V.; Ferraz, A.P.F.; Damasceno, A.P.A.B.; da Silva, T.J.A. Correction of Acidity of a Brazilian Cerrado Oxisol with Limestone and Wood Ash on the Initial Growth of Cowpea. Agric. Sci. 2019, 10, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Caires, E.F.; Joris, H.A.W.; Churka, S. Long-term effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manag. 2010, 27, 45–53. [Google Scholar] [CrossRef]
- Caires, E.; Haliski, A.; Bini, A.; Scharr, D. Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil. Eur. J. Agron. 2015, 66, 41–53. [Google Scholar] [CrossRef]
- Álvarez, E.; Viadé, A.; Marcos, M.L.F. Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 2009, 152, 1–8. [Google Scholar] [CrossRef]
- Iren, O.B.; Uwah, I.D. Effects of local liming materials on soil properties and yield of waterleaf (Talinum fructicosum (L.) Juss.) in an ultisol of southeast Nigeria. World News Nat. Sci. 2018, 21, 53–63. [Google Scholar]
- Sidhu, M.; Hasyim, A.; Rambe, E.F.; Sinuraya, Z.; Aziz, A.; Sharma, M. Evaluation of various sources of magnesium fertiliser for correction of acute magnesium deficiency in oil palm. Oil Palm Bull. 2014, 69, 27–37. [Google Scholar]
- Herviyanti, H.; Maulana, A.; Prasetyo, T.B.; Darfis, I.; Hakim, L.; Ryswaldi, R. Activation of sub-bituminous coal with dolomite to improve chemical properties and palm oil growth on ultisols. IOP Conf. Ser. Earth Environ. Sci. 2021, 741, 12032. [Google Scholar] [CrossRef]
- Mulana, F.; Fuadi, Z. Synthesis of Kieserite fertilizer by using natural magnesite Ore as raw material. IOP Conf. Ser. Mater. Sci. Eng. 2019, 523, 12019. [Google Scholar] [CrossRef] [Green Version]
- Cahyono, P.; Loekito, S.; Wiharso, D.; Afandi; Rahmat, A.; Nishimura, N.; Noda, K.; Masateru, S. Influence of Liming on Soil Chemical Properties and Plant Growth of Pineapple (Ananas comusus, L.Merr.) On Red Acid Soil, Lampung, Indonesia. Commun. Soil Sci. Plant Anal. 2019, 50, 2797–2803. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Naher, U.A.; Shamshuddin, J.; Ismail, M.R. Effects of Biochar and Ground Magnesium Limestone Application, with or without Bio-Fertilizer Addition, on Biochemical Properties of an Acid Sulfate Soil and Rice Yield. Agronomy 2020, 10, 1100. [Google Scholar] [CrossRef]
- Bothe, H. The lime–silicate question. Soil Biol. Biochem. 2015, 89, 172–183. [Google Scholar] [CrossRef]
- McCallum, H.M.; Wilson, J.D.; Beaumont, D.; Sheldon, R.; O’Brien, M.G.; Park, K.J. A role for liming as a conservation intervention? Earthworm abundance is associated with higher soil pH and foraging activity of a threatened shorebird in upland grasslands. Agric. Ecosyst. Environ. 2016, 223, 182–189. [Google Scholar] [CrossRef]
- Prasetyo, T.B.; Harianti, M.; Panjaitan, N.P. Activation of Sub-bituminous Powder with Urea and Dolomite to Improve Nutrient Content of Ultisols and The Growth of Oil Palm [Elaeis guineensis Jacq] Seedlings. Malays. J. Soil Sci. 2018, 22, 147–160. [Google Scholar]
- Comte, I.; Colin, F.; Grünberger, O.; Follain, S.; Whalen, J.K.; Caliman, J.-P. Landscape-scale assessment of soil response to long-term organic and mineral fertilizer application in an industrial oil palm plantation, Indonesia. Agric. Ecosyst. Environ. 2013, 169, 58–68. [Google Scholar] [CrossRef]
- Cristancho, J.A.; Hanafi, M.M.; Omar, S.R.S.; Rafii, M.Y. Alleviation of soil acidity improves the performance of oil palm progenies planted on an acid Ultisol. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 487–498. [Google Scholar] [CrossRef]
- Mariotte, P.; Mehrabi, Z.; Bezemer, M.; De Deyn, G.; Kulmatiski, A.; Drigo, B.; Veen, C.; van der Heijden, M.G.; Kardol, P. Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends Ecol. Evol. 2018, 33, 129–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, K.A.; Othman, R. Influence of pH levels on disease development in oil palm seedling roots infected with Ganoderma boninensis. Rhizosphere 2020, 13, 100181. [Google Scholar] [CrossRef]
- Cook, R.J.; Papendick, R.I. Effect of Soil Water on Microbial Growth, Antagonism, and Nutrient Availability in Relation to Soil-borne Fungal Diseases of Plants. In Root Diseases and Soil-Borne Pathogens; University of California Press: Berkeley, CA, USA, 1970; pp. 81–88. [Google Scholar]
- Tay, Z.H.; Chong, K.P. The potential of papaya leaf extract in controlling Ganoderma boninense. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 012027. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.P.; Elda, P.A.; Dayou, J. Relation of Ganoderma ergosterol content to Basal Stem Rot disease severity index. Adv. Environ. Biol. 2014, 8, 14–19. [Google Scholar]
- Alexander, A.; Abdullah, S.; Rossall, S.; Chong, K.P. Evaluation of the Efficacy and Mode of Action of Biological Control for Suppression of Ganoderma boninense in Oil Palm. Pak. J. Bot. 2017, 49. [Google Scholar]
- Chong, K.P.; Abdullah, A.; Ng, T.L. Molecular fingerprint of Ganoderma spp. from Sabah, Malaysia. Int. J. Agric. Biol. 2013, 15, 1112–1118. [Google Scholar]
- Chong, K.P.; Dayou, J.; Alexander, A. Pathogenic nature of Ganoderma boninense and basal stem rot disease. In Detection and Control of Ganoderma boninense in Oil Palm Crop; Springer: Cham, Switzerland, 2017; pp. 5–12. [Google Scholar]
Commercial Name | Chemical Composition | Neutralizing Value (%) | Characteristics |
---|---|---|---|
Calcium carbonate or calcitic lime | CaCO3 | 100 | It contains mainly CaCO3 (>30% Ca) and MgCO3 (<5% Mg). Most commonly used agricultural lime. |
Dolomitic lime | CaMg(CO3)2 | 95–109 | It typically contains 42% CaCO3 and 53% MgCO3). |
Calcium oxide or burnt lime | CaO | 179 | It reacts quickly and is hard to manage. |
calcium hydroxide | Ca(OH)2 | 136 | It reacts quickly and is hard to manage. |
Slag lime | CaSiO3 | 86 | It reacts quickly and is hard to manage. |
Soil Microorganism | Change in Population | Associated Process | Overall Functional Impacts |
---|---|---|---|
Bacteria | Thriving | Decomposition | +ve (nutrient cycling) |
Rhizobia | Composition change | Nutrient delivery | +ve (nutrient cycling) |
Arbuscular Mycorrhizae fungi | 1. Thrives between pH 5 and 6, but decreases at pH 7 2. Composition change | Nutrient delivery, soil aggregation, antagonist defense | Variable |
Fungi | Thriving | Recalcitrant decomposition | +ve (C storage) |
Microarthropods | No effect | Decomposition | Variable |
Nematodes | Variable | Disease, decomposition, predation | -ve (disease regulation) |
Earthworms | Thriving | Decomposition, soil aggregation | +ve (nutrient cycling) |
Pathogens | Decrease | Disease | +ve (disease regulation) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, M.S.; Chong, K.P. Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. Agriculture 2022, 12, 322. https://doi.org/10.3390/agriculture12030322
Mahmud MS, Chong KP. Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. Agriculture. 2022; 12(3):322. https://doi.org/10.3390/agriculture12030322
Chicago/Turabian StyleMahmud, Md Shawon, and Khim Phin Chong. 2022. "Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia" Agriculture 12, no. 3: 322. https://doi.org/10.3390/agriculture12030322
APA StyleMahmud, M. S., & Chong, K. P. (2022). Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. Agriculture, 12(3), 322. https://doi.org/10.3390/agriculture12030322