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Abstract: In this paper, a Model Predictive Control (MPC)-based approach for vineyard spraying is
presented, able to adapt to different vine row structures and suitable for real-time applications. In the
presented approach, the mobile base moves along a row of vines while the robotic arm controls the
position and orientation of the spray nozzle. A reference lawnmower pattern trajectory is generated
from the vine canopy description, with the aim of minimizing waste while ensuring vine coverage.
MPC is used to compute the trajectory of the vehicle along the row and the manipulator tool trajectory,
which follow the spray reference, while minimizing vehicle acceleration and tool displacement. The
manipulator tool velocity commands provided by the MPC algorithm are tracked using task space
control. The presented approach is evaluated in two experiments: a vineyard spraying scenario and
an external evaluation scenario in an indoor environment equipped with the Optitrack camera system.

Keywords: mobile manipulation; optimization and optimal control; agricultural robotics; viticulture

1. Introduction

Agricultural robotics is an exciting, emerging research field that offers a potential
solution to the problem of increasing global demand for food production due to exponential
population growth and labor shortages [1]. Existing automated agricultural technologies
use large and expensive machines that are strictly tied to a specific production process
and usually have a significant environmental impact, especially ones used for pesticide,
insecticide and herbicide application [2].

The research presented in this paper is a part of the HEKTOR project [3,4], which
aims to replace such machines with heterogeneous autonomous robotic systems, capable of
jointly performing different tasks in viticulture and mariculture. As a part of the project, a
custom flipper-tracked mobile base was developed and equipped with a torque-controlled
7-DoF Kinova Gen3 robotic arm (Figure 1). For the task of vineyard spraying, a spray nozzle
is attached to the manipulator end-effector, and its position and orientation are controlled
by the robotic arm (Figure 1). This allows for precise control of the spray area, and is
suitable for treating the entire vine canopy or specific areas of the plant. The HEKTOR
project addresses viticulture activities that need to be carried out on steep terrain, typical of
the Mediterranean islands. However, the method presented in this paper is general and
was not developed specifically for steep terrains. The design of the mobile robot and the
high torques of the track drives allow the storage and transport of a sufficient quantity of
protective agent for spraying in conditions that are otherwise difficult for human workers.

This paper attempts to present a solution to the following problem: given a descrip-
tion of a row of grapevines, one must select coordinated mobile vehicle and robot arm
commands that result in satisfactory canopy coverage, while aiming to minimize spraying
agent waste, and perform the task as quickly as possible. This kind of problem setup calls
for a control method that is able to adapt to different row structures, accelerate in areas of
the row without grapevines and slow down in areas with the largest foliage heights.
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Figure 1. Mobile manipulator developed for the HEKTOR project, with an emphasis on manipulation
ability and maneuverability in steep terrain.

1.1. Related Work

Research efforts have already been directed towards the development of robots
for vineyard-related tasks [5–22]. The same applies to robots in agricultural spraying
tasks [2,6–9,11,13,23]. In [21], Bouloumpasi et al. discuss the possibilities and limitations of au-
tonomous robot technology for performing different tasks in viticulture. Vrochnidou et al. [22]
present the system architecture of an autonomous robot for grape harvesting, and discuss
the vision system used for the task of grape harvesting.

Monta et al. [5] designed a multipurpose robot for viticulture applications as early
as 1995. Approaches for robotic harvesting, berry thinning, spraying and bagging are
presented in the paper. At a conceptual level, the authors’ approach to vineyard spraying is
similar to the one presented in this paper, in which a spray nozzle is mounted on a robotic
manipulator that follows a lawnmower pattern path. Monta et al. conclude that this kind
of approach results in uniform spraying of the fixed-height foliage, but they do not discuss
in detail the control algorithm used to achieve this. In this paper, an expansion of the
following idea is given, able to handle different foliage shapes, with controls that allow for
spraying where the mobile manipulator is able to adapt to a specific vine row description.
Oberti et al. [7,8] mounted a precision spraying end-effector on a robotic manipulator and
used it to spray specific disease-affected areas of the vine. In [13], Cantelli et al. present
a mobile vehicle developed for autonomous spraying in agriculture, with emphasis on
vehicle navigation and mission planning. Berenstein et al. [6] report on grape cluster and
foliage detection algorithms for autonomous selective vineyard spraying. The authors
present a mobile vehicle with multiple spray nozzles mounted at different heights and use
visual feedback to select which nozzles should be active.

Similar work has been done with mobile manipulators for paint spraying [24–26]. Here,
a lawnmower path is often used as a reference for the position of the tool, an approach that
was adopted in the currently presented work.

Model Predictive Control (MPC) has been a subject of a number of research appli-
cations in robotics, such as manipulation, autonomous vehicle control and legged robot
control [27–31]. Wieber [27] presents the application of linear MPC to the bipedal walk-
ing robot, and discusses the advantages of this kind of controller for this particular task.
In [29], Elsisi presents an optimally designed nonlinear model predictive controller, and its
application to the robot manipulator. The parameters for the MPC algorithm presented by
Elsisi are selected by a modified multitracker optimization algorithm, rather than by trial
and error. In later work, Elsisi et al. focus on autonomous vehicle control [30,31]. In [30],
an MPC algorithm with a small number of parameters is presented, which is optimally
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designed using the social ski diver algorithm. In [31], an adaptive MPC algorithm is
used for autonomous vehicle control, utilizing a modified grey wolf optimizer, based on
opposition-based learning and quasi opposition-based learning. In this paper, MPC param-
eters are selected experimentally, while the more sophisticated MPC tuning algorithms will
be considered as part of future work.

The use of different trajectory optimization algorithms in mobile manipulation is also a
well-researched topic [28,32–35]. These trajectory planning algorithms are often designed to
be as general as possible, capable of performing multiple tasks while considering obstacles,
mobile manipulator dynamics and stability. In [28], Pankert et al. present a nonlinear MPC
scheme for continuous mobile manipulation, and show its ability to perform several tasks.
The strength of the authors’ approach lies in the variety of tasks it can perform, involving
position or force control, while avoiding obstacles. One of the experiments presented in
the paper is spraying a pattern on a flat surface, which is similar to the presented vision
of vineyard spraying with a mobile manipulator. However, the method presented in
this paper simplifies the planning problem by using certain insights into this particular
task. The complexity of the general mobile manipulation problem includes vehicle path
planning while considering obstacles, and controlling the forces or positions of the robot
arm end-effector. Grapevines are typically planted in structured rows, the area between
the rows being obstacle free. During vineyard spraying, the mobile base is limited to
movement between the rows. For this particular application, this paper proposes a task
space MPC algorithm that considers only the motion of the mobile base along the row
and the two-dimensional motion of the manipulator tool. The result is a low-dimensional
linear MPC algorithm that can be solved in real time even with large prediction horizons.
Additionally, in the spraying experiment presented in [28], the orientation of the spray
nozzle is kept constant throughout the task execution. This greatly reduces the maximum
and minimum heights that the spray area can reach, which also depends on the reach of
the particular robot arm. Knowing the typical foliage heights and the reach of the Kinova
Gen3 robotic arm, it was concluded that constant tool orientation was not appropriate for
the vineyard spraying task.

1.2. Contribution

This paper presents a novel method for vineyard spraying with a mobile manipulator
that combines the following methodological elements:

• Row-specific reference trajectory generation based on grapevine canopy description;
• Forward mobile base and two-dimensional task space manipulator command genera-

tion using linear reference tracking MPC;
• Manipulator joint space velocity command selection using task space control.

Compared to other state-of-the-art autonomous vineyard spraying methods, the pre-
sented method includes multiple novelties. The lawnmower spraying reference trajectory
is generated based on a specific grapevine row description, aiming to minimize spraying
waste and reduce the risk of excessive pollution. The control design based on task space
model predictive control allows the spraying agent to follow this reference while optimizing
coordinated mobile base and robot arm movements. This results in the desired behavior,
where the mobile base keeps constantly moving, accelerating in areas of the row without
grapevines and slowing down in areas with foliage of the largest heights. The predictive
nature of MPC allows for such behavior, which would be difficult to achieve using standard,
instantaneous control methods. Predictive control allows the controller to anticipate any
changes in the reference trajectory and optimally select how the mobile base and the robot
arm should react to it.

Compared to the state of the art in mobile manipulation, a control algorithm for the
specific purpose of vineyard spraying is developed instead of using a general trajectory
optimization algorithm. Unlike the general trajectory optimization algorithms, which
usually include end-effector pose planning, the presented algorithm combines MPC and
task space control in such a way that the MPC plans only the positions of the end-effector
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while disregarding its orientations, which are handled by an instantaneous task space
control algorithm.

This kind of approach results in two quadratic programming problems, for MPC and
task space control, which can be solved in real time even for large prediction horizons.

To summarize, our contributions are as follows:

• A novel method for vineyard spraying with mobile manipulators able to adapt to a
specific grapevine row description;

• Reference trajectory generation based on grapevine row description;
• Control design based on computationally efficient task space trajectory tracking MPC

that exploits the insight into the motion constraints imposed by the specific task of
vineyard spraying.

2. Task Space Model Predictive Control Approach

Since the vines are usually planted in structured rows, it is assumed that the vehicle
moves in a straight line at a constant distance from the vines, and, because of this, the spray
reference for the MPC is generated in a two-dimensional space. As shown in Figure 2, three
coordinate frames are defined: a ground-level global frame LG, a mobile base frame LB
and the spray frame LS. The spray frame LS is defined at a fixed distance from the spray
nozzle, and its position is computed using a single static transformation from the last link
of the robot manipulator. The goal is to control the global position of the LS frame, which
depends on the position of the LB frame with respect to LG, and the pose of the robot arm.
The y-coordinate of the LS frame is assumed to be constant at the MPC stage, which is
enforced by task space control. The z-coordinate of the LS frame, pS,z, is controlled by the
robot arm alone, while the x-coordinate pS,x is a sum of two components

pS,x = pB,x + pA,x (1)

where pA,x is the x coordinate of the position of the LS frame with respect to LB, controlled
by the robot arm, and pB,x is the x coordinate of the position of LB with respect to LG,
controlled by the mobile base.

Figure 2. Three coordinate frames are defined: a global frame at the ground level LG, mobile base
frame LB and the spray frame LS. The x, y and z axes of the coordinate frames are represented with
red, green and blue arrows, respectively.
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The overall control diagram of the system is shown in Figure 3. The reference trajectory
for the spray frame is computed based on the canopy description, explained in Section 2.1.
This reference is used as an input to the MPC solver, which selects optimal mobile base and
manipulator task space trajectories. Only the first set of optimized control inputs is sent to
the robot, after which the trajectories are recalculated based on the system state feedback
and the updated reference trajectory. The task space commands for the manipulator are
converted into joint velocities by the task space controller.

Figure 3. Overall system control diagram. The trajectory of the reference spray frame is generated
based on the canopy description and used as input to the MPC solver. The MPC solver provides the
velocity of the mobile base along the row and the velocities of the robot arm in the task space. The task
space control solver converts the desired velocities in the task space into joint velocity commands q̇.

2.1. Reference Spray Frame Trajectory

A reference lawnmower trajectory is generated within the upper and lower boundaries
of the foliage, with the aim of providing spray coverage while reducing waste (Figure 4).
The foliage canopy description is used to compute the vertices of the lawnmower pattern,
along with the Spray Width and Height Offset parameters (Figure 4). These parameters
are tuned with respect to the spray pattern of the nozzle mounted at the end-effector
of the robot arm. A constant velocity piecewise linear function is used as the reference
trajectory between the lawnmower pattern vertices. The reference velocity of the spray
frame, together with the flow of the spraying agent through the nozzle, affects the coverage
of a fixed area of the canopy. For a fixed amount of spray flow, lower reference velocity will
result in more coverage.

Figure 4. A reference lawnmower trajectory is shown with an orange line. The canopy descrip-
tion is represented by a blue and a red line, representing the upper and lower boundaries of the
foliage, respectively.
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The canopy description can be created either manually, by an operator, or using foliage
detection. In the experiments presented in this paper, the manual approach was used to
select the boundaries. In the future work, the plan is to use a foliage detection algorithm
for this purpose.

2.2. MPC Algorithm

The MPC algorithm selects trajectories for the mobile base and the robot arm task
space that follow a two-dimensional reference, while minimizing an objective function
described in this section. The optimization is performed over a prediction horizon N, with
fixed discretization time steps T. Although the velocities of the mobile base and the robot
arm are used for low-level control (as seen in Figure 3), MPC operates in the acceleration
space to achieve the desired behavior. The system state and control inputs in the k-th step,
x(k) and u(k), respectively, are

x(k) =



pB,x(k)
pA,x(k)
pS,z(k)
ṗB,x(k)
ṗA,x(k)
ṗS,z(k)

 ∈ R6 u(k) =

 p̈B,x(k)
p̈A,x(k)
p̈S,z(k)

 ∈ R3 (2)

System state consists of positions pB,x(k), pA,x(k) and pS,z(k), seen in Figure 2, as well
as the corresponding velocities. System inputs are the accelerations of the spray frame p̈B,x,
p̈A,x and p̈S,z. The output of the system is a two-dimensional position of the spray frame
LS, relative to the global frame LG. The output of the system in the k-th step y(k) is

y(k) =
[

pB,x(k) + pA,x(k)
pS,z(k)

]
∈ R2 (3)

As already mentioned, the z component of the spray frame position pS,z is controlled
solely by the robot arm, and the x component is controlled by both the robot arm and the
mobile base (Equation (1)).

The system is therefore linear and its discretization results in the following system dynamics:

x(k + 1) =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


A

x(k) +



T2

2 0 0
0 T2

2 0
0 0 T2

2
T 0 0
0 T 0
0 0 T


B

u(k) (4)

y(k) =
[

1 1 0 0 0 0
0 0 1 0 0 0

]
C

x(k) (5)

MPC optimizes over a system input vector U containing N control inputs,

U =


u(0)
u(1)

...
u(N − 1)

 ∈ R3N (6)
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The system state and output vectors X and Y are, respectively,

X =


x(0)
x(1)

...
x(N − 1)

 ∈ R6N , Y =


y(0)
y(1)

...
y(N − 1)

 ∈ R2N (7)

The MPC optimization problem is defined as the following QP problem:

min
U

Wy‖Y − Yd‖2 + ‖WuU‖2 + ‖W xX‖2

s.t. x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

x(0) = x0

x ≤ x(k) ≤ x

u ≤ u(k) ≤ u

(8)

where Yd is the desired system output and Wy is the reference tracking weight. Wu and
W x are control input and system state weight matrices, respectively.

The reference tracking part of the criterion function (Wy‖Y − Yd‖2) is used to ensure
that the system output follows the reference trajectory for the spray frame. The second part
(‖WuU‖2) minimizes the system inputs: the acceleration of the vehicle along the row and
the task space acceleration of the manipulator. The control input weight matrix is

Wu =


wu
wu

...
wu


T

, wu =

w p̈B,x 0 0
0 w p̈A,x 0
0 0 w p̈S,z

 (9)

where the scalars w p̈B,x , w p̈A,x and w p̈A,z represent weights with respect to the acceleration
of the mobile base along the row, and the acceleration of the robot arm in the x and z
directions, respectively.

The third and final part of the criterion function (‖W xX‖2) minimizes a function of
the system state vector. In particular, it minimizes the displacement of the robot arm in the
x direction, with a weight matrix of the following form:

W x =


wx
wx

...
wx


T

, wx =



0 0 0 0 0 0
0 wpA,x 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (10)

2.2.1. MPC Parameter Tuning

The main challenge in tuning the parameters of the criterion function (8) is the balance
between robot arm and mobile base motion. The x component of the reference trajectory
can be tracked by either robot arm or mobile base. The idea behind minimizing arm
displacement and mobile base acceleration is to achieve the effect where the mobile base is
responsible for slower, global changes in the reference trajectory and the arm is responsible
for faster, local changes. Parameters are tuned by trial and error to achieve this effect.
Extreme examples of mobile base and robot arm trajectories are shown in Figure 5, with
the corresponding optimization weights presented in Table 1.
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Figure 5. Solutions to the MPC optimization problem in the x direction using different criterion
function parameters. Parameters are given in Table 1. Spray frame trajectory pS,x is a sum of pA,x

and pB,x.

Table 1. MPC criterion function parameters resulting in trajectories shown in Figure 5.

Figure 5. (a) (b) (c)

Wy 800.0 800.0 800.0
w p̈B,x 800.0 80.0 8.0

w p̈A,x , w p̈S,z 4.0 8.0 16.0
wpA,x 0.5 1.0 2.0

The behavior of the trajectories selected by the MPC algorithm depends on the ratios
between the different optimization weights rather than their exact value. Figure 5 shows
solutions to the MPC problem with different ratios between the optimization weights, where
the system assumes an initial state with zero velocity. Increasing the weight corresponding
to the vehicle acceleration w p̈B,x too much leads to small accelerations of the mobile base
and thus to a large arm displacement (Figure 5a). Lowering the value of wpA,x and w p̈A,x

has a similar effect. Lowering w p̈B,x or increasing wpA,x and w p̈A,x too much (Figure 5c)
leads to the effect where the mobile base follows the reference with large accelerations,
while the robot arm displacement remains close to zero. To achieve the desired behavior
(Figure 5b), parameters are tuned following a general tuning rule: a larger weight is used for
minimization of the vehicle acceleration than for that of the robot arm. This, in combination
with the minimization of the arm displacement, leads to the already discussed effect.

For a set of reference trajectories generated as shown in Section 2.1, it was concluded
that different values can be used as weights for the MPC criterion function and still result
in satisfactory overall system behavior. The values for the sampling period, horizon and
weights of the criterion function used in the experiments can be found in Section 3.

2.2.2. MPC Constraints

The constraints on the system state and the control inputs have the following form:

−pmax
B,x

−pmax
A,x

−pmax
S,z

− ṗmax
B,x

− ṗmax
A,x

− ṗmax
S,z


≤ x(k) ≤



pmax
B,x

pmax
A,x

pmax
S,z

ṗmax
B,x

ṗmax
A,x

ṗmax
S,z


(11)
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− p̈max
B,x

− p̈max
A,x

− p̈max
S,z

 ≤ u(k) ≤

 p̈max
B,x

p̈max
A,x

p̈max
S,z

 (12)

The motion of the mobile base is left unconstrained (pmax
B,x = ∞). The maximum

velocity and acceleration of the mobile base, ṗmax
B,x and p̈max

B,x , respectively, are known and
directly enforced by these constraints. The maximum values of the robot arm velocities and
accelerations in the task space (ṗmax

A,x , ṗmax
S,z , p̈max

A,x and p̈max
S,z ) must be determined experimen-

tally, as they depend on the current arm configuration and the velocity and acceleration
limits of each joint, which are not considered by the MPC algorithm. Instead, the joint
space constraints are enforced at the level of the task space control algorithm.

2.3. Manipulator Task Space Control

Joint velocities q̇ are selected through task space control and are used to control the
robot arm (q represents joint positions). As mentioned earlier, the MPC algorithm only
considers the x and z coordinates of the spray frame position. In the planning phase
(phase of the MPC algorithm), the position of the spray frame in the y direction (pS,y) is
assumed to be constant, and its roll, pitch and yaw angles are not considered (φT , θT and
ψT , respectively, as shown in Figure 6).

Figure 6. The orientation of the spray frame depends on the joint configuration of the robot arm. Roll,
pitch and yaw angles are referred to as φT , θT and ψT , respectively.

To achieve the assumption of constant pS,y, the desired task space velocity in the y
direction, ṗS,y, is computed with a proportional controller

ṗS,y = KP,y(pd
S,y − pS,y) (13)

where pd
S,y is a desired value of pS,y and KP,y is the controller gain.

The desired linear spray frame velocity can be achieved with different angular veloc-
ities. To achieve the largest possible linear spray frame velocities, only the roll angle is
controlled directly, while the pitch and yaw angles are not considered. The desired roll
angle velocity is calculated with a proportional controller

φ̇T = −KP,φφT (14)

where KP,φ is the controller gain and the desired roll angle is zero.
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The desired task space velocity is four-dimensional and considers x, y, z position
coordinates and the roll angle of the LS frame,

v4D
d =


ṗM

A,x
ṗS,y
ṗM

S,z
φ̇T

 (15)

ṗM
A,x and ṗM

S,z are provided by MPC, and ṗS,y and φ̇T are provided by proportional
controllers (13) and (14), respectively. The four-dimensional task space velocity depends
on the joint velocities as follows:

v4D = J4Dq̇ (16)

where J4D is the task space Jacobian.
In general, there are multiple solutions for q̇ that achieve the desired task space

velocities. For this reason, an additional criterion by which the joint commands are selected
is introduced. The desired joint velocities q̇d that drive the robot arm to a desired pose qd
are computed by another proportional controller,

q̇d = KP,q(qd − q) (17)

where KP,q is the controller gain.
Finally, the joint velocity commands are selected by solving the following QP problem:

min
q̇

∥∥∥J4Dq̇− v4D
d

∥∥∥2
+ wp‖q̇d − q̇‖2

s.t. q̇ ≤ q̇ ≤ q̇
(18)

where q̇ and q̇ are the lower and upper bounds of the joint velocities, respectively, and wp
is the arm pose weight.

3. Results

Two experiments were conducted to evaluate the presented approach: a spraying
demonstration in a vineyard and an external validation in an indoor environment equipped
with Optitrack cameras. Both experiments were performed with the following optimization
weights: Wy = 800, w p̈B,x = 80, w p̈A,x = 8, w p̈A,z = 8, wpA,x = 1. Parameter values were
determined experimentally, as described in Section 2.2.1. Values of proportional controller
gains used in the experiments were KP,y = 0.9, KP,φ = 0.1 and KP,q = 1.5. These values were
also determined experimentally. The velocity of the reference lawnmower trajectory used
in all experiments was 0.3 m/s. A prediction horizon of 40 steps was used, with a sampling
period of T = 0.1 s. The optimization problems for the MPC and task space control were
both solved using the BPMPD interior point solver for convex QP problems [36]. The
average computation times of the MPC and task space control optimization problems were
3.998 ms and 0.201 ms, respectively, for 600 trials. This allows the presented approach to be
used in a real-time scenario, even with larger prediction horizons. All experiments were
performed on an Intel Core i7-10710U CPU @ 1.60 GHz.

3.1. Equipment

The control equipment used in the experiments is shown in Figure 7. All the software
was run on an Intel NUC 10 PC with a Ubuntu 20.04 operating system. The Robot Operating
System (ROS) was used as the middleware for controlling the robot arm, the mobile vehicle
and the spraying agent pump.
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Figure 7. Communication diagram of the equipment used in the vineyard spraying experiments.

The Kinova Gen3 7 DoF robot arm uses an ethernet connection to communicate with
ROS drivers running on the PC. As can be seen in Figure 3, low-level control of the robot
arm is achieved via joint velocity commands q̇. Encoder measurements from the robot
arm are used as process feedback. As feedback for the MPC algorithm, the robot arm
components of the spray frame position pA,x and pA,z are calculated at every step of the
control loop, using forward kinematics and joint position measurements q. For the task
space control algorithm, joint position data from the encoder are also used as feedback, to
calculate the task space Jacobian J4D.

Mobile vehicle flipper tracks are actuated by Maxon EC 45 brushless motors, which
are controlled using EPOS 70/10 brushless motor drives. EPOS drives communicate with
the PC via a CAN bus. ROS drivers for the EPOS drives are used to control the velocities
and gather encoder data of each motor. The mobile base component of the spray frame
position pB,x is calculated using encoder data odometry and is used as feedback for the
MPC algorithm.

Finally, the spraying agent pump is controlled with an Arduino Nano microcontroller
board and is either turned on or off based on the current position of the spray frame with
respect to the row description.

3.2. Vineyard Spraying Demonstration

The first experiment is a demonstration of the presented approach in a vineyard
(Figure 8). The canopy description used in the experiment (Figure 9) was selected manually
by an operator through a simple graphical user interface (GUI).

A graph showing the reference lawnmower trajectory tracking during the experiment
is given in Figure 10. Here, the position of the spray frame pS is calculated based on
the encoder feedback from the robot arm, and the odometry of the mobile base. Since
only the odometry feedback is used for mobile base control, its reference tracking is also
evaluated with an external sensor, as part of the second experiment in Section 3.3. The
MPC criterion function is tuned to follow the reference trajectory imperfectly, to minimize
the accelerations of the mobile base and the robot arm end-effector. Figure 11 shows the
reference tracking with respect to the actual reference trajectory of the spray frame p∗S,
which is formed by accumulating the first control inputs of the optimal control sequences
calculated by the MPC algorithm at each control step. There is still some error in the
reference tracking caused by the non-ideal following of the joint velocity commands and
the error in task space control. The task space Jacobian depends on the joint positions and
is computed at the beginning of each control time step. During this time step, the joint
positions, and the Jacobian, change. Larger joint velocities and larger time steps result in
larger task space control errors. The position tracking errors are shown in Table 2. Spray
frame position tracking was evaluated, with a measured root mean square (RMS) error of
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4.32 mm, and the maximum error of 22.16 mm. The magnitude of the errors is a result of
the fact that the spraying frame is defined at a certain distance to the last link of the robot
arm, which makes its position sensitive to small errors in the robot arm joint positions.
Based on the imperfections of the spray nozzle and its spraying area, the presented errors
are adequate to ensure the effectiveness of the vineyard spraying task. There is a trade-off
between reference tracking errors and the velocity of the reference spray frame trajectory.
Reducing this velocity would result in slower task execution, but would also reduce the
reference tracking errors.

Figure 8. Mobile manipulator performing a spraying experiment in a vineyard.

Figure 9. The canopy description used for the experiment selected by the operator.
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Figure 10. Overall spray frame reference tracking. pRef
S represents a reference lawnmower trajectory

generated based on the row description, where zR and zR represent the upper and lower foliage
boundaries, respectively. The spray frame position pS during the experiment is represented by a
red line.

Figure 11. Spray frame tracking with respect to the optimal reference trajectory generated by the
MPC algorithm. p*

S represents the optimal trajectory of the spray frame. This differs from the
ideal lawnmower trajectory due to MPC tuning that sacrifices reference tracking to minimize the
accelerations of the mobile base and the manipulator end-effector. zR and zR represent the upper
and lower foliage boundaries, respectively. The spray frame position pS during the experiment is
represented by a red line.

Table 2. Spray frame position errors during the vineyard spraying experiment.

pS pS,x pS,y pS,z

RMS error [mm] 4.32 0.90 3.60 2.20
max error [mm] 22.16 3.92 22.16 18.93

A non-uniform vine row structure allows the demonstration of the adaptability of
the presented approach. The velocity of the vehicle adapts to the row description by
automatically accelerating in areas without vines and decelerating to the lowest velocities
in areas with the highest vines (Figure 12). The footage of the vineyard spraying experiment
can be seen in the accompanying video https://youtu.be/BDO7qQldmyQ, accessed on
8 March 2022.

https://youtu.be/BDO7qQldmyQ
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Figure 12. The upper diagram shows the x component of the reference trajectory pS,x, along with the
robot arm and mobile base components, pA,x and pB,x, respectively. The bottom graph shows the
forward velocity of the vehicle during the experiment.

3.3. Optitrack Validation

The second experiment was conducted in an indoor environment equipped with
the Optitrack camera system, which was used to evaluate the reference tracking with an
external sensor. The reference tracking error in this experiment includes the error of the
odometry-based mobile base control, the vibrations of the mobile base, the errors present in
the robot arm encoder measurements and the Optitrack measurement noise. For practical
reasons, the Optitrack markers were placed at the last joint of the robot arm (Figure 13),
and the position of the spray frame was calculated using a single static transformation.

Graphs showing the x and z components of the spray frame position during the
experiment, along with the tracking errors, are shown in Figures 14 and 15, respectively,
and the corresponding error data are given in Table 3. In this experiment, the measured
root mean square (RMS) error and the maximum error are equal to 9.76 mm and 52.81 mm,
respectively. Errors are larger than the ones in the previous experiment, which is expected
due to the already mentioned additional errors that the external sensors are able to capture,
and a significant amount of measurement noise. External sensor data confirm that the
odometry-based control does not result in a significant drift of the mobile base, as seen
in Figure 14.

In Figure 16, the overall spray frame position calculated from the Optitrack data is
compared to the position calculated using the joint encoder and vehicle odometry feedback.
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Figure 13. For the second experiment, reference tracking is externally validated using Optitrack
cameras to measure the position of the spray frame in the real world. Optitrack markers are attached
to the end-effector of the robot arm.

Figure 14. Comparison between the x component of the spray frame position determined by the
encoder measurements, and that determined externally via the Optitrack camera system, denoted
pS,x and pO

S,x, respectively. The bottom plot shows the corresponding error perr
S,x.

Table 3. Spray frame position errors measured with the Optitrack camera system, during the indoor
experiment.

pS pS,x pS,z

RMS error [mm] 9.76 7.86 5.79
max error [mm] 52.81 36.59 52.779
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Figure 15. Comparison between the z component of the spray frame position determined by the
encoder measurements, and that determined externally via the Optitrack camera system, denoted
pS,z and pO

S,z, respectively. The bottom plot shows the corresponding error perr
S,z.

Figure 16. Comparison between the position of the spray frame obtained by the encoder measure-
ments and the position obtained externally via the Optitrack camera system, denoted as pS and pO

S ,

respectively. pRe f
S represents the reference lawnmower trajectory, and zR and zR represent the upper

and lower foliage boundaries, respectively.

As mentioned earlier, the task space controller selects joint velocities that follow the
desired linear and roll spray frame velocities, while attempting to maintain the desired
robot arm joint configuration. This results in the yaw and pitch angles of the spray frame
shown in Figure 17. This type of control results in a pitch orientation (θT) graph similar to
the z position, as shown in Figure 15. Similarly, the yaw orientation graph (ψT) follows the
motion of the robot arm in the x direction.
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Figure 17. Spray frame orientation during the indoor experiment. The pitch and yaw angles of the
spray frame are denoted as θT and ψT , respectively. These angles are not directly controlled, but are a
result of the task space control criterion function.

4. Conclusions and Future Work

In this paper, a vineyard spraying algorithm for mobile manipulators is presented,
based on task space model predictive control. The reference is generated based on grapevine
canopy description, with the aim of minimizing unnecessary spraying waste and pollution.

There are certain limitations to the presented method. The time required to spray a row
of grapevines is limited by the maximum velocity of the vehicle, as well as the maximum
joint velocities of the robot arm. Task space control is used to calculate the joint velocity
commands for the robot arm, which are not considered in the planning phase (MPC phase)
of the algorithm. This could potentially lead to large spray frame velocities that cannot
be tracked by the task space controller. Therefore, some experimentation is required to
determine the maximum feasible velocity of the lawnmower pattern reference trajectory.
Moreover, the task space control algorithm has no direct way of considering joint position
constraints of the robot arm. This problem is dealt with indirectly, by allowing different
angular velocities of the spraying frame, and constraining the optimization problem in such
a way that the solutions moving the joints towards the desired configuration are preferred.
No problems were encountered in the experiments regarding joint position constraints. The
mobile base is controlled based on odometry feedback, which may lead to certain reference
tracking problems since there is no external sensing. The second experiment shows that the
open loop control performs well, mainly due to the fact that the vehicle moves in a straight
line, which allows precise odometry. In future work, the plan is to close this control loop
using a localization algorithm. Moreover, the tilt of the vehicle and other effects of uneven
terrain are not taken into account in the current state of the algorithm, which could also be
incorporated into future work. In the presented experiments, operator-selected grapevine
row description was used. Manual selection of canopy areas proved to be error-prone,
tedious and time-consuming. In the future work, a foliage detection algorithm is going
to be incorporated for the purpose of generating a grapevine row description. Since the
detection algorithm must be robust to changing lighting conditions, it is planned to be
based on a combination of deep learning and depth information captured by an RGBD
camera. The depth information acquired by the RGBD camera using infrared projection
is sensitive to sunlight, so a camera based on pure stereo vision would be suitable for
this task.

The presented method was evaluated in a vineyard spraying experiment, demonstrat-
ing its ability to adapt to a specific grapevine row structure. Mobile base velocity adapts to
the row structure, which can be seen in the accompanying video and the graphs presented
in Section 3.2. An additional experiment was performed evaluating the reference tracking
with Optitrack cameras as external sensors. Error data show the 4.32 mm and 9.76 mm
RMS errors in spray frame position, during the first and second experiment, respectively.
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Since the spray frame is located at a certain distance to the last link of the robot arm, its
position is sensitive to small joint position errors. The presented error values are sufficiently
small for the task of vineyard spraying, while a trade-off exists between reference tracking
precision and the time required to execute the task.

The focus of this work was on the control algorithm that sprays a single row of vines.
In the future, mission planning and navigation would allow the mobile manipulator to
autonomously treat the entire vineyard by entering each row and executing the presented
algorithm. Experiments evaluating the spray quality using a water-sensitive paper are
planned in the future. Extensive experiments to determine the impact of the presented
method on plant health and fruit production and compare it to manual spraying are to
be conducted. The presented method will be tested for the task of fruit spraying rather
than spraying the entire foliage, which is the focus of this article. Another challenge is
the presence of dust in the vineyard, from the influence of which the equipment must be
adequately protected. Moreover, while excessive robot arm heating was not noticed during
the presented experiments, it could present a potential problem in the case of prolonged
robot operation. In this case, some form of active cooling could be used to mitigate the
problem. Currently, the spray tank has a volume of 30 L, which will be increased in
the future.
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