Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato (Solanum tuberosum L.) Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Soil Sampling
2.3. Soil Analysis and Microbial Indices
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tittonell, P. Ecological intensification of agriculture-sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Maharjan, B.; Das, S.; Acharya, B.S. Soil Health Gap: A concept to establish a benchmark for soil health management. Glob. Ecol. Conserv. 2020, 23, e01116. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The soil health tool—Theory and initial broad-scale application. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, C.; Lynch, D.; Fillmore, S.; Mills, A. Relationships between field management, soil health, and microbial community composition. Appl. Soil Ecol. 2019, 144, 12–21. [Google Scholar] [CrossRef]
- Agbede, T.M. Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in southwestern Nigeria. Soil Tillage Res. 2010, 110, 25–32. [Google Scholar] [CrossRef]
- Rasmussen, K.J. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Idowu, O.J.; Sultana, S.; Darapuneni, M.; Beck, L.; Steiner, R.; Omer, M. Tillage effects on cotton performance and soil quality in an irrigated arid cropping system. Agriculture 2020, 10, 531. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 2021, 11, 666. [Google Scholar] [CrossRef]
- Allam, M.; Radicetti, E.; Petroselli, V.; Mancinelli, R. Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture 2021, 11, 823. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Allam, M.; Radicetti, E. Potential Role of Fertilizer Sources and Soil Tillage Practices to Mitigate Soil CO2 Emissions in Mediterranean Potato Production Systems. Sustainability 2020, 12, 8543. [Google Scholar] [CrossRef]
- Langeroodi, A.; Reza, S.; Adewale Osipitan, O.; Radicetti, E. Benefits of sustainable management practices on mitigating greenhouse gas emissions in soybean crop (Glycine max). Sci. Total Environ. 2019, 660, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.H.; Bergkvist, G.; Campiglia, E.; Radicetti, E.; Wittwer, R.A.; Finckh, M.R.; Hallmann, J. Effect of tillage, subsidiary crops and fertilisation on plant-parasitic nematodes in a range of agro-environmental conditions within Europe. Ann. Appl. Biol. 2017, 171, 477–489. [Google Scholar] [CrossRef]
- Willekens, K.; Vandecasteele, B.; Buchan, D.; De Neve, S. Soil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping system. Appl. Soil Ecol. 2014, 82, 61–71. [Google Scholar] [CrossRef]
- Papp, R.; Marinari, S.; Moscatelli, M.C.; van der Heijden, M.G.A.; Wittwer, R.; Campiglia, E.; Radicetti, E.; Mancinelli, R.; Fradgley, N.; Pearce, B.; et al. Short-term changes in soil biochemical properties as affected by subsidiary crop cultivation in four European pedo-climatic zones. Soil Tillage Res. 2018, 180, 126–136. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Doane, T.A.; Horwath, W.R.; Mitchell, J.P.; Jackson, J.; Miyao, G.; Brittan, K. Nitrogen supply from fertilizer and legume cover crop in the transition to no-tillage for irrigated row crops. Nutr. Cycl. Agroecosystems 2009, 85, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Wichrowska, D.; Szczepanek, M. Possibility of limiting mineral fertilization in potato cultivation by using bio-fertilizer and its influence on protein content in potato tubers. Agriculture 2020, 10, 442. [Google Scholar] [CrossRef]
- Qu, Y.; Tang, J.; Li, Z.; Zhou, Z.; Wang, J.; Wang, S.; Cao, Y. Soil enzyme activity and microbial metabolic function diversity in soda Saline–Alkali rice paddy fields of northeast China. Sustainability 2020, 12, 10095. [Google Scholar] [CrossRef]
- Powlson, D.S.; Prookes, P.C.; Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Bengtsson, G.; Bengtson, P.; Månsson, K.F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 2003, 35, 143–154. [Google Scholar] [CrossRef]
- Roldán, A.; Salinas-García, J.R.; Alguacil, M.M.; Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 2005, 30, 11–20. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Di Felice, V.; Savin, M.C.; Campiglia, E. Soil property, CO2 emission and aridity index as agroecological indicators to assess the mineralization of cover crop green manure in a Mediterranean environment. Ecol. Indic. 2013, 34, 31–40. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Moscatelli, M.C.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Wittmann, C.; Kähkönen, M.A.; Ilvesniemi, H.; Kurola, J.; Salkinoja-Salonen, M.S. Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Biol. Biochem. 2004, 36, 425–433. [Google Scholar] [CrossRef]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Marinari, S.; Bonifacio, E.; Moscatelli, M.C.; Falsone, G.; Antisari, L.V.; Vianello, G. Soil development and microbial functional diversity: Proposal for a methodological approach. Geoderma 2013, 192, 437–445. [Google Scholar] [CrossRef]
- Li, Q.; Liang, J.H.; He, Y.Y.; Hu, Q.J.; Yu, S. Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, Southwest China. Plant. Soil Environ. 2014, 60, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Waldrop, M.P.; Balser, T.C.; Firestone, M.K. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 2000, 32, 1837–1846. [Google Scholar] [CrossRef]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D. SAS System for Mixed Models; SAS Institute Inc.: Cary, NC, USA, 1996; ISBN 1555447791. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; Indian Statistical Institute: Kolkata, India, 1984; pp. 296–299. [Google Scholar]
- Lazicki, P.; Geisseler, D. Relating indicators to soil health functions in conventional and organic Mediterranean cropping systems. Soil Sci. Soc. Am. J. 2021, 85, 1843–1857. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. microorganisms Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N 2 O Emissions: A Review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Holík, L.; Hlisnikovský, L.; Honzík, R.; Trögl, J.; Burdová, H.; Popelka, J. Soil microbial communities and enzyme activities after long-term application of inorganic and organic fertilizers at different depths of the soil profile. Sustainability 2019, 11, 3251. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Liu, J.; Wang, X.; Gao, L. Carbon mineralization in the soils under different cover crops and residue management in an intensive protected vegetable cultivation. Sci. Hortic. (Amsterdam) 2011, 127, 198–206. [Google Scholar] [CrossRef]
- Tian, W.; Wang, L.; Li, Y.; Zhuang, K.; Li, G.; Zhang, J.; Xiao, X.; Xi, Y. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric. Ecosyst. Environ. 2015, 213, 219–227. [Google Scholar] [CrossRef]
- Heidari, G.; Mohammadi, K.; Sohrabi, Y. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) Production. Front. Plant. Sci. 2016, 7, 1730. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Koal, P.; Liu, D.; Gerl, G.; Schroll, R.; Gattinger, A.; Joergensen, R.G.; Munch, J.C. Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Appl. Soil Ecol. 2016, 108, 16–24. [Google Scholar] [CrossRef]
- Chen, X.; Henriksen, T.M.; Svensson, K.; Korsaeth, A. Long-term effects of agricultural production systems on structure and function of the soil microbial community. Appl. Soil Ecol. 2020, 147, 103387. [Google Scholar] [CrossRef]
- Choudhary, M.; Meena, V.S.; Panday, S.C.; Mondal, T.; Yadav, R.P.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A. Long-term effects of organic manure and inorganic fertilization on biological soil quality indicators of soybean-wheat rotation in the Indian mid-Himalaya. Appl. Soil Ecol. 2021, 157, 103754. [Google Scholar] [CrossRef]
- Aon, M.A.; Colaneri, A.C., II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil Ecol. 2001, 18, 255–270. [Google Scholar] [CrossRef]
- Degrune, F.; Theodorakopoulos, N.; Colinet, G.; Hiel, M.P.; Bodson, B.; Taminiau, B.; Daube, G.; Vandenbol, M.; Hartmann, M. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front. Microbiol. 2017, 8, 1127. [Google Scholar] [CrossRef] [PubMed]
- Lagomarsino, A.; Benedetti, A.; Marinari, S.; Pompili, L.; Moscatelli, M.C.; Roggero, P.P.; Lai, R.; Ledda, L.; Grego, S. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem. Biol. Fertil. Soils 2011, 47, 283–291. [Google Scholar] [CrossRef]
- Coonan, E.C.; Kirkby, C.A.; Kirkegaard, J.A.; Amidy, M.R.; Strong, C.L.; Richardson, A.E. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr. Cycl. Agroecosystems 2020, 117, 273–298. [Google Scholar] [CrossRef]
- Carter, M.R. Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res. 1986, 7, 29–40. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- López, R.; Burgos, P.; Hermoso, J.M.; Hormaza, J.I.; González-Fernández, J.J. Long term changes in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil Tillage Res. 2014, 143, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Bielińska, E.J.; Mocek-PŁóciniak, A. Impact of the tillage system on the soil enzymatic activity. Arch. Environ. Prot. 2012, 38, 75–82. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Seasonal dynamics of active soil carbon and nitrogen pools under intensive cropping in conventional and no tillage. Z. Fur Pflanzenernahr. Und Bodenkd. 1996, 159, 343–349. [Google Scholar] [CrossRef]
- Dilly, O.; Blume, H.P.; Sehy, U.; Jimenez, M.; Munch, J.C. Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices. Chemosphere 2003, 52, 557–569. [Google Scholar] [CrossRef]
Cmic/Corg | Nmic/Ntot | |||||||
---|---|---|---|---|---|---|---|---|
----------------------------------------- % ----------------------------------------- | ||||||||
2015 | 2016 | 2015 | 2016 | |||||
P | 1.69 | bB | 3.01 | bA | 2.10 | aB | 2.96 | bA |
R | 1.81 | aB | 3.51 | aA | 1.84 | bB | 3.20 | aA |
S | 1.65 | bB | 3.04 | bA | 1.36 | cB | 2.34 | cA |
M | 1.74 | aB | 3.02 | bA | 1.88 | aB | 2.54 | bA |
O | 1.69 | bB | 3.35 | aA | 1.65 | bB | 3.13 | aA |
SEI (nmol MUF g−1 h−1) | ||||
---|---|---|---|---|
2015 | 2016 | |||
P | 4281.04 | aA | 1752.74 | cB |
R | 4227.36 | aA | 2067.82 | bB |
S | 3934.38 | bA | 2290.27 | aB |
M | 4040.94 | bA | 1818.40 | bB |
O | 4254.25 | aA | 2255.49 | aB |
SEI/Cmic (nmol MUF mg Cmic−1 h−1) | ||||
2015 | 2016 | |||
P | 17.96 | aA | 5.21 | abB |
R | 15.85 | cA | 4.43 | bB |
S | 16.90 | bA | 6.18 | aB |
M | 16.78 | aA | 5.32 | aB |
O | 17.02 | aA | 5.23 | aB |
LC/TOC | LN/TN | |||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | |||||
P | 0.182 | aB | 0.333 | aA | 0.402 | aB | 0.484 | aA |
R | 0.187 | aB | 0.320 | aA | 0.376 | bA | 0.395 | bA |
S | 0.186 | aB | 0.323 | aA | 0.384 | bA | 0.383 | bA |
M | 0.187 | aB | 0.313 | bA | 0.413 | aA | 0.460 | aA |
O | 0.183 | aB | 0.338 | aA | 0.361 | bA | 0.381 | bA |
TOC | TON | Cmic | Nmic | Cmic/Corg | Labile C | Labile N | |
---|---|---|---|---|---|---|---|
Cmic | ns | ns | - | ||||
Nmic | ns | ns | 0.77 *** | - | |||
Cmic/Corg | −0.64 ** | −0.50 * | 0.97 *** | 0.76 *** | - | ||
Labile C | −0.58 * | ns | 0.81 *** | 0.76 *** | 0.87 *** | - | |
Labile N | ns | ns | −0.60 * | ns | −0.56 | ns | - |
Cellobioidrolase | 0.57 * | 0.54 * | −0.77 *** | −0.54 * | −0.80 *** | −0.81 *** | ns |
Chitinase | 0.70 ** | 0.73 ** | −0.76 *** | ns | −0.81 *** | −0.76 *** | ns |
β-glucosidase | 0.61 * | 0.69 ** | −0.85 *** | −0.58 * | −0.86 *** | −0.80 *** | 0.50 * |
α-glucosidase | ns | ns | ns | 0.58 * | 0.54 | 0.59 * | ns |
Acid Phosphatase | 0.64 ** | 0.66 ** | −0.86 *** | −0.55 * | −0.89 *** | −0.85 *** | 0.50 * |
Arylsulfatase | 0.66 ** | 0.72 ** | −0.84 *** | −0.56 * | −0.88 *** | −0.82 *** | 0.55 * |
Xylosidase | 0.67 ** | 0.70 ** | −0.82 *** | −0.57 * | −0.85 *** | −0.80 *** | ns |
Butyrate esterase | 0.67 ** | 0.63 ** | −0.71 ** | ns | −0.78 *** | −0.79 *** | ns |
SEI/Cmic | 0.65 ** | 0.56 * | −0.91 *** | −0.66 ** | −0.95 *** | −0.90 *** | 0.50 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinari, S.; Radicetti, E.; Petroselli, V.; Allam, M.; Mancinelli, R. Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato (Solanum tuberosum L.) Crop. Agriculture 2022, 12, 415. https://doi.org/10.3390/agriculture12030415
Marinari S, Radicetti E, Petroselli V, Allam M, Mancinelli R. Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato (Solanum tuberosum L.) Crop. Agriculture. 2022; 12(3):415. https://doi.org/10.3390/agriculture12030415
Chicago/Turabian StyleMarinari, Sara, Emanuele Radicetti, Verdiana Petroselli, Mohamed Allam, and Roberto Mancinelli. 2022. "Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato (Solanum tuberosum L.) Crop" Agriculture 12, no. 3: 415. https://doi.org/10.3390/agriculture12030415
APA StyleMarinari, S., Radicetti, E., Petroselli, V., Allam, M., & Mancinelli, R. (2022). Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato (Solanum tuberosum L.) Crop. Agriculture, 12(3), 415. https://doi.org/10.3390/agriculture12030415