Selection and Fitting of Mixed Models in Sugarcane Yield Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Data Collection
2.2. Statistical Methodology
2.3. Model Development Stages
2.4. Evaluated Models
3. Results
3.1. Descriptive Statistics
3.2. Model Selection
3.3. Mean Square Error (MSE) between Models
3.4. Ratoon Crop
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Anuario Estadístico de la Producción Agrícola. México City, México. 2019. Available online: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/ (accessed on 19 February 2019).
- Xu, F.; Wang, Z.; Lu, G.; Zeng, R.; Que, Y. Sugarcane Ratooning Ability: Research Status, Shortcomings, and Prospects. Biology 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Berding, N.; Hogarth, M.; Cox., M. Plant Improvement of Sugarcane, 2nd ed.; Glyn, J., Ed.; Blackwell Science Ltd.: Oxford, UK, 2004; 216p. [Google Scholar]
- Stroup, W.W.; Milliken, G.A.; Claassen, E.A.; Wolfinger, R.D. SAS® for Mixed Models: Introduction and Basic Applications; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Akbaş, Y.; Fırat, M.Z.; Yakupoğlu, C. Comparison of Different Models Used in the Analysis of Repeated Measurements in Animal Science and Their SAS Applications 2001. In Agricultural Information Technology Symposium; Sütçü İmam University, Agricultural Faculty: Kahramanmaraş, Turkey; pp. 20–22.
- Menezes, G.G.; Pio, V.A.; Teixeira, A.J.A.; Vileda, R.M. Breeding new sugarcane clones by mixed models under genotype by environmental interaction. Sci. Agric. 2013, 71, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Ostengo, S.; Cuenya, M.I.; Balzarini, M. Modeling spatial correlation structure in sugarcane (Saccharum spp.) Multi-enviroment trials. J. Crop Improv. 2015, 28, 53–64. [Google Scholar] [CrossRef]
- Henderson, C.R. Applications of Linear Models in Animal Breeding; University of Guelph: Guelph, ON, Canada, 1984. [Google Scholar]
- Patterson, H.D.; Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 1971, 58, 545–554. [Google Scholar] [CrossRef]
- Wolfinger, R.D.; Chang, M. Comparing the SAS GLM and MIXED procedures for repeated measures. In Proceedings of the Twentieth Annual SAS Users Group Conference, Orlando, FL, USA, 2–5 April 1995; SAS Institute Inc.: Cary, NC, USA, 1998; pp. 1–11. Available online: https://stats.idre.ucla.edu/wp-content/uploads/2016/02/mixedglm.pdf (accessed on 21 April 2020).
- Kenward, M.G.; Roger, J.H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Analys 2009, 53, 2583–2595. [Google Scholar] [CrossRef]
- Welham, S.J.; Thompson, R. Likelihood ratio tests for fixed model terms using residual maximum likelihood. J. Royal Stat. Soc. Ser. B 1997, 59, 701–714. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, AC-19, 716–723. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. Available online: http://www.jstor.org/stable/2958889 (accessed on 10 January 2020). [CrossRef]
- Shapiro, A. Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika 1985, 72, 133–144. [Google Scholar] [CrossRef]
- Keselman, H.J.; Algina, J.; Kowalchuk, R.K.; Wolfinger, R.D. A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements. Comm. Stat.-Simul. Comp. 1998, 27, 591–604. [Google Scholar] [CrossRef]
- Viator, R.P.; Dalley, C.D.; Johnson, R.M.; Richard, E.P. Early harvest affects sugarcane ratooning ability in Louisiana. Sugar Cane Int. 2010, 28, 123–127. [Google Scholar]
- Matsuoka, S.; Stolf, R. Sugarcane Tillering and Ratooning: Key Factors for a Profitable Cropping; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 137–157. ISBN 978-1-61942-213-1. [Google Scholar]
- Nuss, K.J. The contribution of variety NCo376 to sugar production in South of Africa from 1955 to 2000 and its value as a parent in the breeding programe. Proc. S. Afr. Sug. Technol. Ass. 2001, 75, 154–159. [Google Scholar]
- Kingston, G. Ratooning and Ratoons Management in Overseas Cane Sugar Industries. Final Report–SRDC Project BSS110. Bureau of Sugar Experiment Station, Queensland, Australia. 2003, p. 24. Available online: http://hdl.handle.net/11079/1038 (accessed on 18 July 2020).
Location Code | Fields | Plots | Average Surface of Plots (ha) |
---|---|---|---|
11 | 59 | 840 | 1.91 |
12 | 51 | 726 | 1.60 |
13 | 74 | 1379 | 1.69 |
14 | 47 | 992 | 1.46 |
21 | 34 | 925 | 1.38 |
22 | 27 | 1145 | 1.29 |
23 | 36 | 828 | 1.53 |
24 | 26 | 275 | 1.87 |
31 | 31 | 824 | 1.52 |
32 | 35 | 798 | 1.99 |
33 | 41 | 1139 | 1.49 |
34 | 31 | 769 | 1.92 |
35 | 27 | 893 | 1.43 |
36 | 13 | 238 | 4.35 |
37 | 11 | 49 | 5.88 |
41 | 37 | 966 | 1.89 |
42 | 33 | 644 | 2.42 |
43 | 28 | 745 | 2.31 |
44 | 30 | 653 | 2.36 |
45 | 24 | 553 | 2.51 |
46 | 23 | 279 | 2.28 |
47 | 34 | 342 | 2.86 |
48 | 36 | 485 | 2.20 |
51 | 24 | 349 | 2.39 |
Ratoon Number | |||||||||
---|---|---|---|---|---|---|---|---|---|
Production Cycle | R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
2012–2013 | 555 | 476 | 456 | 1330 | 259 | 6352 | 0 | 0 | 0 |
2013–2014 | 1055 | 473 | 507 | 612 | 234 | 295 | 6301 | 0 | 0 |
2014–2015 | 1401 | 1885 | 731 | 600 | 309 | 339 | 425 | 7105 | 0 |
2015–2016 | 782 | 1048 | 1805 | 724 | 585 | 334 | 404 | 439 | 6767 |
Production Cycle | Surface (ha) | Yield (Mg) | Average Yield (Mg ha−1) |
---|---|---|---|
2012–2013 | 19,057.5 | 1,388,215.8 | 73.4 |
2013–2014 | 13,016.6 | 926,264.9 | 71.2 |
2014–2015 | 24,909.8 | 1,565,579.6 | 62.8 |
2015–2016 | 25,275.3 | 1,589,721.5 | 62.9 |
Total | 82,259.4 | 5,469,781.9 | 67.4 |
Model Approach | |||||
---|---|---|---|---|---|
Fit Statistics | (1) | (2) | (3) | (4) | (5) |
-2 Res Log Likelihood | 387,416.1 | 377,760.3 | 376,031.9 | 376,484.9 | 377,713.8 |
AIC | 387,470.1 | 377,764.3 | 376,035.9 | 376,490.9 | 377,719.8 |
AICC | 387,470.1 | 377,764.3 | 376,035.9 | 376,490.9 | 377,719.8 |
BIC | 387,705.1 | 377,773.7 | 376,052.6 | 376,505.0 | 377,733.9 |
CAIC | 387,732.1 | 377,775.7 | 376,054.6 | 376,508.0 | 377,736.9 |
Model Approach | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | ||||||
Variety | Estimate | Standard Error | Estimate | Standard Error | Estimate | Standard Error | Estimate | Standard Error | Estimate | Standard Error |
ITV 92-373 | 105.33 | 10.78 | 98.47 | 9.51 | 84.99 | 8.51 | 96.61 | 9.33 | 95.37 | 9.95 |
ATEMEX 96-40 | 86.66 | 1.51 | 82.03 | 1.42 | 78.41 | 1.28 | 79.26 | 3.05 | 72.92 | 3.50 |
L 77-50 | 83.1 | 0.85 | 82.3 | 0.87 | 77.03 | 0.74 | 87.30 | 2.37 | 89.36 | 2.60 |
M.Y. 5514 | 87.34 | 2.23 | 88.03 | 2.03 | 76.15 | 1.86 | 76.78 | 4.27 | 90.96 | 4.98 |
BCO. DE VARS. | 90.94 | 2.61 | 78.28 | 2.55 | 75.32 | 2.66 | 67.09 | 3.87 | 73.17 | 6.02 |
ITV 92-1424 | 75.64 | 0.52 | 77.53 | 0.63 | 72.71 | 0.46 | 71.93 | 0.82 | 73.32 | 1.10 |
LGMex 92-156 | 75.5 | 3.20 | 77.77 | 2.97 | 70.95 | 2.38 | 64.38 | 3.89 | 60.73 | 4.40 |
CP 72-2086 | 71.65 | 0.29 | 71.07 | 0.49 | 70.73 | 0.30 | 70.82 | 0.30 | 69.71 | 0.53 |
MEX 73-523 | 61.6 | 8.35 | 56.16 | 7.59 | 69.90 | 6.72 | 69.77 | 7.51 | 56.98 | 8.03 |
MEX 79-431 | 69.94 | 0.25 | 69.00 | 0.47 | 69.49 | 0.26 | 69.18 | 0.25 | 68.54 | 0.50 |
MEZCLA PREC | 67.09 | 0.24 | 68.32 | 0.46 | 68.34 | 0.25 | 67.35 | 0.29 | 67.28 | 0.52 |
MEX 56-476 (P-01) | 69.55 | 5.63 | 70.92 | 5.02 | 67.99 | 4.82 | 65.36 | 5.00 | 71.15 | 5.32 |
CP 72-1210 | 66.64 | 1.25 | 70.38 | 1.19 | 67.98 | 1.08 | 68.02 | 1.09 | 70.13 | 1.39 |
RD 75-11 | 67.02 | 0.69 | 73.60 | 0.77 | 67.88 | 0.62 | 67.13 | 0.74 | 71.87 | 1.05 |
Mezcla Media | 65.23 | 0.26 | 66.52 | 0.47 | 66.98 | 0.27 | 66.93 | 0.30 | 67.08 | 0.54 |
PR 1013 | 66.43 | 4.99 | 68.92 | 4.48 | 66.71 | 4.39 | 64.20 | 4.53 | 69.60 | 4.96 |
MEX 69-290 | 65.95 | 0.09 | 67.42 | 0.41 | 66.64 | 0.14 | 66.33 | 0.13 | 66.75 | 0.41 |
MEX 56-18 | 57.44 | 6.22 | 61.71 | 5.53 | 64.87 | 4.65 | 62.95 | 7.28 | 72.15 | 8.99 |
MEX 57-473 | 61.08 | 2.95 | 58.72 | 2.68 | 64.20 | 2.71 | 66.37 | 4.95 | 55.37 | 4.90 |
CP 70-1133 | 68.11 | 6.22 | 61.15 | 5.53 | 63.51 | 5.08 | 58.95 | 9.17 | 50.24 | 9.51 |
MEX 68-P-23 | 59.39 | 0.64 | 66.89 | 0.72 | 63.18 | 0.58 | 63.12 | 0.58 | 65.52 | 0.82 |
CP 44-101 | 52.94 | 0.93 | 64.14 | 0.96 | 60.94 | 0.79 | 60.27 | 0.85 | 63.06 | 1.23 |
SP 70-1284 | 59.5 | 13.2 | 59.45 | 11.98 | 56.94 | 9.88 | 22.15 | 16.11 | 43.64 | 17.8 |
Co 997 | 49.84 | 3.73 | 60.54 | 3.54 | 55.61 | 3.48 | 54.68 | 3.77 | 58.70 | 4.11 |
P.O.J 2878 | 47.18 | 1.34 | 65.41 | 1.51 | 50.58 | 1.27 | 52.63 | 2.14 | 60.86 | 3.22 |
B 43-62 | 38.75 | 9.33 | 48.49 | 8.33 | 40.22 | 9.23 | 39.96 | 11.21 | 40.14 | 12.45 |
Average | 68.07 | 3.40 | 69.74 | 3.16 | 66.86 | 2.86 | 65.37 | 3.99 | 67.10 | 4.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Ruíz, J.; Hernández-Valladolid, S.L.; Hidalgo-Contreras, J.V.; Romero-Padilla, J.M. Selection and Fitting of Mixed Models in Sugarcane Yield Trials. Agriculture 2022, 12, 416. https://doi.org/10.3390/agriculture12030416
Salinas-Ruíz J, Hernández-Valladolid SL, Hidalgo-Contreras JV, Romero-Padilla JM. Selection and Fitting of Mixed Models in Sugarcane Yield Trials. Agriculture. 2022; 12(3):416. https://doi.org/10.3390/agriculture12030416
Chicago/Turabian StyleSalinas-Ruíz, Josafhat, Sandra Luz Hernández-Valladolid, Juan Valente Hidalgo-Contreras, and Juan Manuel Romero-Padilla. 2022. "Selection and Fitting of Mixed Models in Sugarcane Yield Trials" Agriculture 12, no. 3: 416. https://doi.org/10.3390/agriculture12030416
APA StyleSalinas-Ruíz, J., Hernández-Valladolid, S. L., Hidalgo-Contreras, J. V., & Romero-Padilla, J. M. (2022). Selection and Fitting of Mixed Models in Sugarcane Yield Trials. Agriculture, 12(3), 416. https://doi.org/10.3390/agriculture12030416