Effects of Dietary Natural Mycotoxins Exposure on Performance, Biochemical Parameters and Milk Small Molecule Metabolic Pathways of Lactating Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Sample Preparation
- Control (Cont) group: fed the basal diet;
- 50Cot group: 50% cottonseed in the basal diet was substituted with the moldy cottonseed;
- 100Cot group: all cottonseed in the basal diet were substituted with the moldy cottonseed;
- 50CotCorn group: 50% cottonseed and 50% corn meal in the basal diet were substituted with the moldy cottonseed and moldy corn meal;
- 100CotCorn: all cottonseed and corn meal in the basal diet substituted with the moldy cottonseed and moldy cornmeal.
Item (µg/kg) | Non-Mildewed | Mildewed | ||
---|---|---|---|---|
Corn Meal | Cottonseed | Corn Meal | Cottonseed | |
Aflatoxins | <3 | 3 | 3 | >150 2 |
Zearalenones | <272 | 40 | 490 | 84 |
Deoxynivalenol | <350 | 0 | 1250 | ND 3 |
Item (µg/kg) | Control | 50Cot | 100Cot | 50CotCorn | 100CotCorn |
---|---|---|---|---|---|
Aflatoxin B1 | 0.02 | 28.67 | 61.34 | 30.10 | 59.91 |
Zearalenones | 160.33 | 161.25 | 165.14 | 216.85 | 248.34 |
Deoxynivalenol | 1654.31 | 1672.03 | 1697.74 | 1736.91 | 1791.16 |
Aflatoxin B2 | 0.83 | 1.58 | 2.82 | 1.44 | 2.98 |
Aflatoxin G1 | 12.94 | 13.07 | 12.09 | 12.66 | 14.38 |
Aflatoxin G2 | ND 2 | ND | ND | ND | ND |
Lysergol | ND | ND | ND | ND | ND |
Sterigmatocysin | ND | ND | ND | ND | ND |
T-2 Toxin | ND | ND | ND | ND | ND |
HT-2 Toxin | ND | ND | ND | ND | ND |
Zearalanoe | ND | ND | ND | ND | ND |
α-Zearalenol | ND | ND | ND | ND | ND |
2.2. Sample Collection and Preparations
2.3. Sample Analyses
2.4. Data Calculation and Statistical Analysis
3. Results
3.1. Mycotoxin Residues in Milk
3.2. Feed Intake, Milk Yield, and Milk Composition
3.3. Serum Biochemical Parameters
3.4. Rumen Function
3.5. Mycotoxin-Induced Metabolomic Changes in Milk
4. Discussion
4.1. Natural Mycotoxins Residues in Milk
4.2. Effects of Natural Mycotoxin in Feed Intake, Milk Yield and Milk Composition
4.3. Effects of Natural Mycotoxin in Serum Biochemical Parameters
4.4. Effects of Natural Mycotoxins in Rumen Fermentation
4.5. Milk Metabolomic Pathway Changes Induced by Natural Mycotoxins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of Regulation Limits in Mycotoxin Contamination in Asia and Risk Management Programs at the National Level. J. Food Drug Anal. 2013, 21, 227–241. [Google Scholar] [CrossRef] [Green Version]
- FDA. Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed; Center for Food Safety and Applied Nutrition: Washington, DC, USA, 1986. [Google Scholar]
- EC. Directive 2002/32/Ec of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed—Council Statement; European Parliament, Council of the European Union: Bruxelles, Belgium, 2002. [Google Scholar]
- AQSIQ. Hygienical Standard for Feeds; GB 13078–2001; China Standard Press: Beijing, China, 2001. [Google Scholar]
- Ma, R.; Zhang, L.; Liu, M.; Su, Y.-T.; Xie, W.-M.; Zhang, N.-Y.; Dai, J.-F.; Wang, Y.; Rajput, S.A.; Qi, D.-S.; et al. Individual and Combined Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds in China. Toxins 2018, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.C.; Zheng, N.; Zheng, B.Q.; Wen, F.; Cheng, J.B.; Han, R.W.; Xu, X.M.; Li, S.L.; Wang, J.Q. Simultaneous Determination of Aflatoxin M-1, Ochratoxin a, Zearalenone and Alpha-Zearalenol in Milk by Uhplc-Ms/Ms. Food Chem. 2014, 146, 242–249. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 9–562. [Google Scholar]
- Zhang, F.; Liu, L.; Ni, S.; Deng, J.; Liu, G.-J.; Middleton, R.; Inglis, D.W.; Wang, S.; Liu, G. Turn-on Fluorescence Aptasensor on Magnetic Nanobeads for Aflatoxin M1 Detection Based on an Exonuclease III—Assisted Signal Amplification Strategy. Nanomaterials 2019, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, S.; Wang, J.; Luo, C.; Zhao, S.; Zheng, N. Modulation of Intestinal Epithelial Permeability in Differentiated Caco-2 Cells Exposed to Aflatoxin M1 and Ochratoxin a Individually or Collectively. Toxins 2018, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.Y.; Kim, J.; Cheong, D.H.; Hong, H.; Jeong, J.Y.; Kim, B.G. An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals 2022, 12, 333. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodriguez-Carrasco, Y.; Ruiz, M.J.; Vila-Donat, P. Multi-Mycotoxin Occurrence in Feed, Metabolism and Carry-over to Animal-Derived Food Products: A Review. Food Chem. Toxicol. 2021, 158, 112661. [Google Scholar] [CrossRef]
- Feng, J.; Dou, J.; Wu, Z.; Yin, D.; Wu, W. Controlled Release of Biological Control Agents for Preventing Aflatoxin Contamination from Starch-Alginate Beads. Molecules 2019, 24, 1858. [Google Scholar] [CrossRef] [Green Version]
- Savic, Z.; Dudas, T.; Loc, M.; Grahovac, M.; Budakov, D.; Jajic, I.; Krstovic, S.; Barosevic, T.; Krska, R.; Sulyok, M.; et al. Biological Control of Aflatoxin in Maize Grown in Serbia. Toxins 2020, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, P.; Ammar, R.B.; Al-Saeedi, F.J.; Mohamed, M.E.; ElNaggar, M.A.; Al-Ramadan, S.Y.; Bekhet, G.M.; Soliman, A.M. Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis Via the Pi3k/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2021, 22, 217. [Google Scholar] [CrossRef]
- Hlavova, K.; Stepanova, H.; St’astny, K.; Leva, L.; Hodkovicova, N.; Vicenova, M.; Matiasovic, J.; Faldyna, M. Minimal Concentrations of Deoxynivalenol Reduce Cytokine Production in Individual Lymphocyte Populations in Pigs. Toxins 2020, 12, 190. [Google Scholar] [CrossRef] [Green Version]
- Vandicke, J.; De Visschere, K.; Ameye, M.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Multi-Mycotoxin Contamination of Maize Silages in Flanders, Belgium: Monitoring Mycotoxin Levels from Seed to Feed. Toxins 2021, 13, 202. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.L.; Wang, Y.M.; Nennich, T.D.; Li, Y.; Liu, J.X. Transfer of Dietary Aflatoxin B-1 to Milk Aflatoxin M-1 and Effect of Inclusion of Adsorbent in the Diet of Dairy Cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef]
- Huang, S.; Zheng, N.; Fan, C.; Cheng, M.; Wang, S.; Jabar, A.; Wang, J.; Cheng, J. Effects of Aflatoxin B1 Combined with Ochratoxin a and/or Zearalenone on Metabolism, Immune Function, and Antioxidant Status in Lactating Dairy Goats. Asian-Australas J. Anim. Sci. 2018, 31, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, Y.; Zheng, N.; Zhao, S.; Li, S.; Wang, J. The Biochemical and Metabolic Profiles of Dairy Cows with Mycotoxins-Contaminated Diets. Peerj 2020, 8, 42. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Zheng, N.; Guo, L.; Song, X.; Zhao, S.; Wang, J. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Duan, H.; Hong, H. A Comparative Study of Composite Kernels for Landslide Susceptibility Mapping: A Case Study in Yongxin County, China. Catena 2019, 183, 104217. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. Effects of Mycotoxin-Contaminated Feed on Farm Animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef]
- Seeling, K.; Lebzien, P.; Danicke, S.; Spilke, J.; Sudekum, K.H.; Flachowsky, G. Effects of Level of Feed Intake and Fusarium Toxin-Contaminated Wheat on Rumen Fermentation as Well as on Blood and Milk Parameters in Cows. J. Anim. Physiol. Anim. Nutr. 2006, 90, 103–115. [Google Scholar] [CrossRef]
- Bartosh, A.V.; Urusov, A.Е.; Petrakova, A.V.; Kuang, H.; Zherdev, A.V.; Dzantiev, B.B. Highly Sensitive Lateral Flow Test with Indirect Labelling for Zearalenone in Baby Food. Food Agric. Immunol. 2020, 31, 653–666. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.-H.; Moon, J.-Y.; An, J.-A.; Kim, Y.-W.; Chung, S.-H.; Lee, C. Distribution Analysis of Twelve Mycotoxins in Corn and Corn-Derived Products by Lc-Ms/Ms to Evaluate the Carry-over Ratio During Wet-Milling. Toxins 2018, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- AOAC, Horwitz, W.; Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1984.
- Hu, W.L.; Liu, J.X.; Ye, J.A.; Wu, Y.M.; Guo, Y.Q. Effect of Tea Saponin on Rumen Fermentation In Vitro. Anim. Feed Sci. Technol. 2005, 120, 333–339. [Google Scholar] [CrossRef]
- Lee, J.W.; Ji, S.-H.; Kim, G.-S.; Song, K.-S.; Um, Y.; Kim, O.T.; Lee, Y.; Hong, C.P.; Shin, D.-H.; Kim, C.-K.; et al. Global Profiling of Various Metabolites in Platycodon Grandiflorum by Uplc-Qtof/Ms. Int. J. Mol. Sci. 2015, 16, 26786–26796. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, H.F.; Reid, J.T. Prediction of the Energy Value of Cow’s Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Pi, Y.; Gao, S.T.; Ma, L.; Zhu, Y.X.; Wang, J.Q.; Zhang, J.M.; Xu, J.C.; Bu, D.P. Effectiveness of Rubber Seed Oil and Flaxseed Oil to Enhance the Alpha-Linolenic Acid Content in Milk from Dairy Cows. J. Dairy Sci. 2016, 99, 5719–5730. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane Production by Ruminants: Its Contribution to Global Warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Keese, C.; Meyer, U.; Rehage, J.; Spilke, J.; Boguhn, J.; Breves, G.; Daenickle, S. On the Effects of the Concentrate Proportion of Dairy Cow Rations in the Presence and Absence of a Fusarium Toxin-Contaminated Triticale on Cow Performance. Arch. Anim. Nutr. 2008, 62, 241–262. [Google Scholar] [CrossRef]
- Queiroz, O.C.M.; Han, J.H.; Staples, C.R.; Adesogan, A.T. Effect of Adding a Mycotoxin-Sequestering Agent on Milk Aflatoxin M-1 Concentration and the Performance and Immune Response of Dairy Cattle Fed an Aflatoxin B-1-Contaminated Diet. J. Dairy Sci. 2012, 95, 5901–5908. [Google Scholar] [CrossRef]
- Jones, M.G.; Ewart, J.M. Effects on Milk Production Associated with Consumption of Decorticated Extracted Groundnut Meal Contaminated with Aflatoxin. Vet. Rec. 1979, 105, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Battacone, G.; Nudda, A.; Palomba, M.; Pascale, M.; Nicolussi, P.; Pulina, G. Transfer of Aflatoxin B1 from Feed to Milk and from Milk to Curd and Whey in Dairy Sheep Fed Artificially Contaminated Concentrates. J. Dairy Sci. 2005, 88, 3063–3069. [Google Scholar] [CrossRef]
- Kutz, R.E.; Sampson, J.D.; Pompeu, L.B.; Ledoux, D.R.; Spain, J.N.; Vazquez-Anon, M.; Rottinghaus, G.E. Efficacy of Solis, Novasilplus, and Mtb-100 to Reduce Aflatoxin M-1 Levels in Milk of Early to Mid Lactation Dairy Cows Fed Aflatoxin B-1. J. Dairy Sci. 2009, 92, 3959–3963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef]
- Lipkens, Z.; Piepers, S.; Verbeke, J.; De Vliegher, S. Infection Dynamics across the Dry Period Using Dairy Herd Improvement Somatic Cell Count Data and Its Effect on Cow Performance in the Subsequent Lactation. J. Dairy Sci. 2019, 102, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.; Qi, M.; Wang, S.; Diao, Q.; Zhang, N. Dietary Energy and Protein Levels Influenced the Growth Performance, Ruminal Morphology and Fermentation and Microbial Diversity of Lambs. Sci. Rep. 2019, 9, 16612. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Yang, H.J.; Lund, P. Effect of Aflatoxin B1 on in Vitro Ruminal Fermentation of Rations High in Alfalfa Hay or Ryegrass Hay. Anim. Feed Sci. Technol. 2012, 175, 85–89. [Google Scholar] [CrossRef]
- Santos, R.R.; Fink-Gremmels, J. Mycotoxin Syndrome in Dairy Cattle: Characterisation and Intervention Results. World Mycotoxin J. 2014, 7, 357–366. [Google Scholar] [CrossRef]
- Mattaini, K.R.; Sullivan, M.R.; Vander Heiden, M.G. The Importance of Serine Metabolism in Cancer. J. Cell Biol. 2016, 214, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Mok, W.K.; Tan, Y.X.; Lee, J.; Kim, J.; Chen, W.N. A Metabolomic Approach to Understand the Solid-State Fermentation of Okara Using Bacillus Subtilis Wx-17 for Enhanced Nutritional Profile. AMB Express 2019, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Huang, S.; Fan, C.; Zheng, N.; Zhang, Y.; Li, S.; Wang, J. Metabolomic Analysis of Alterations in Lipid Oxidation, Carbohydrate and Amino Acid Metabolism in Dairy Goats Caused by Exposure to Aflotoxin B1. J. Dairy Res. 2017, 84, 401–406. [Google Scholar] [CrossRef]
- Liu, G.; Yan, T.; Wang, J.; Huang, Z.; Chen, X.; Jia, G.; Wu, C.; Zhao, H.; Xue, B.; Xiao, L.; et al. Biological System Responses to Zearalenone Mycotoxin Exposure by Integrated Metabolomic Studies. J. Agric. Food Chem. 2013, 61, 11212–11221. [Google Scholar] [CrossRef]
- Guo, H.; Guo, H.; Zhang, L.; Fan, Y.; Wu, J.; Tang, Z.; Zhang, Y.; Fan, Y.; Zeng, F. Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Genotype-Recalcitrant Somatic Embryogenesis Transdifferentiation in Cotton. Genes 2020, 11, 519. [Google Scholar] [CrossRef]
- Qiao, W.; Qiao, Y.; Liu, F.; Zhang, Y.; Li, R.; Wu, Z.; Xu, H.; Saris, P.E.J.; Qiao, M. Engineering Lactococcus Lactis as a Multi-Stress Tolerant Biosynthetic Chassis by Deleting the Prophage-Related Fragment. Microb. Cell Fact. 2020, 19, 225. [Google Scholar] [CrossRef]
- Lu, H.; Chen, H.; Tang, X.; Yang, Q.; Zhang, H.; Chen, Y.Q.; Chen, W. Time-Resolved Multi-Omics Analysis Reveals the Role of Nutrient Stress-Induced Resource Reallocation for Tag Accumulation in Oleaginous Fungusmortierella Alpina. Biotechnol. Biofuels 2020, 13, 116. [Google Scholar] [CrossRef]
- Yarru, L.P.; Settivari, R.S.; Antoniou, E.; Ledoux, D.R.; Rottinghaus, G.E. Toxicological and Gene Expression Analysis of the Impact of Aflatoxin B-1 on Hepatic Function of Male Broiler Chicks. Poult. Sci. 2009, 88, 360–371. [Google Scholar] [CrossRef]
- Wan, Q.; He, Q.; Deng, X.; Hao, F.; Tang, H.; Wang, Y. Systemic Metabolic Responses of Broiler Chickens and Piglets to Acute T-2 Toxin Intravenous Exposure. J. Agric. Food Chem. 2016, 64, 714–723. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Liu, Y.; Gao, X. Effects of a Sudden Drop in Salinity on Immune Response Mechanisms of Anadara Kagoshimensis. Int. J. Mol. Sci. 2019, 20, 4365. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, X.-G.; Fang, Q.; Liu, Q.; Du, R.-R.; Yang, G.-S.; Wang, Q.; Hu, J.-H. Supplemental Effect of Different Levels of Taurine in Modena on Boar Semen Quality During Liquid Preservation at 17 Degrees C. Anim. Sci. J. 2017, 88, 1692–1699. [Google Scholar] [CrossRef]
Item | Amount (%) |
---|---|
Ingredients, % of DM | |
Soybean extract | 1.07 |
Corn DDGS | 10.60 |
Wheat bran | 4.00 |
Soybean meal | 8.88 |
Whole cottonseed | 4.14 |
Cornmeal | 22.51 |
Spray grain corn | 8.65 |
Premix 1 | 2.09 |
Yeast | 0.05 |
Carb-fine | 0.47 |
Sodium bicarbonate | 1.12 |
Salt | 0.14 |
Corn silage | 21.77 |
Oat grass | 10.19 |
Alfalfa hay | 4.33 |
Nutrient, % of DM | |
Crude protein | 17.65 |
Fat | 4.15 |
Neutral detergent fiber | 29.49 |
Nonfiber carbohydrate | 39.50 |
Calcium | 0.80 |
Phosphorus | 0.48 |
Ash | 9.27 |
Energy (Mcal/Kg) | |
Metabolizable energy | 2.88 |
Net energy | 1.67 |
Item | Control | 50Cot | 100Cot | 50CotCorn | 100CotCorn | SEM | p-Value |
---|---|---|---|---|---|---|---|
Productive performance 1 | |||||||
DMI (kg/d) | 20.71 a | 20.99 a | 19.99 b | 19.58 bc | 19.36 c | 0.08 | <0.01 |
MY (kg/d) | 21.30 b | 23.91 a | 20.93 b | 19.74 b | 19.77 b | 0.24 | <0.01 |
4% FCM (kg/d) | 23.18 ab | 24.64 a | 22.14 b | 20.82 b | 20.83 b | 0.43 | <0.01 |
ECM (kg/d) | 25.63 ab | 27.25 a | 24.54 b | 23.29 b | 23.27 b | 0.02 | <0.01 |
FER | 1.25 | 1.32 | 1.22 | 1.21 | 1.20 | 0.35 | 0.08 |
Milk composition | |||||||
Fat (%) | 4.52 a | 4.20 b | 4.37 ab | 4.37 ab | 4.18 b | 0.03 | 0.01 |
Protein (%) | 3.84 a | 3.77 a | 3.83 a | 3.99 a | 3.41 b | 0.03 | <0.01 |
Lactose (%) | 4.98 b | 5.10 a | 4.94 b | 4.94 b | 5.03 ab | 0.01 | <0.01 |
Total solids (%) | 14.01 a | 13.63 a | 13.85 a | 13.96 a | 13.27 b | 0.06 | <0.01 |
SCC (104/mL) 2 | 14.96 a | 7.39 b | 14.44 a | 7.52 b | 9.09 b | 1.08 | <0.01 |
MUN (µg/mL) 2 | 12.94 | 13.07 | 12.09 | 12.66 | 14.38 | 0.29 | 0.16 |
Item 1 | Control | 50Cot | 100Cot | 50CotCorn | 100CotCorn | SEM | p-Value |
---|---|---|---|---|---|---|---|
TP (g/L) | 73.06 | 72.79 | 72.71 | 73.86 | 72.76 | 0.82 | 0.99 |
ALB (g/L) | 36.10 | 34.39 | 35.50 | 37.55 | 36.40 | 0.38 | 0.09 |
GLOB (g/ L) | 36.96 | 38.40 | 37.21 | 36.31 | 36.88 | 0.88 | 0.96 |
CR (µmol/L) | 75.88 a | 66.56 ab | 66.75 ab | 72.43 a | 64.00 b | 1.50 | 0.01 |
ALT (U/L) | 27.75 | 26.63 | 28.43 | 29.25 | 27.75 | 0.69 | 0.81 |
AST (U/L) | 67.29 | 68.00 | 71.86 | 67.57 | 72.86 | 1.88 | 0.81 |
A/G | 1.01 | 0.91 | 0.98 | 1.08 | 0.99 | 0.03 | 0.47 |
ALP (U/L) | 53.76 | 58.11 | 78.35 | 81.95 | 70.00 | 4.00 | 0.09 |
TBiL (µmol/L) | 8.88 | 10.97 | 9.82 | 12.25 | 10.60 | 0.42 | 0.11 |
DBiL (µmol/L) | 1.92 | 2.42 | 2.40 | 2.54 | 2.46 | 0.08 | 0.09 |
IBiL (µmol/L) | 6.97 | 8.55 | 7.42 | 9.71 | 8.14 | 0.36 | 0.11 |
GGT (U/L) | 35.16 | 33.23 | 33.98 | 33.98 | 37.20 | 1.19 | 0.85 |
TC (mmol/L) | 5.88 | 6.35 | 5.72 | 6.67 | 6.08 | 0.20 | 0.61 |
TG (mmol/L) | 0.04 b | 0.04 b | 0.06 a | 0.06 ab | 0.07 a | 0.003 | <0.01 |
UA (µmol/L) | 27.28 | 24.95 | 27.23 | 16.74 | 25.23 | 1.40 | 0.08 |
Urea (mmol/L) | 3.89 | 3.57 | 3.89 | 3.67 | 3.86 | 0.07 | 0.55 |
Item | Control | 50Cot | 100Cot | 50CotCorn | 100CotCorn | SEM | p-Value |
---|---|---|---|---|---|---|---|
Acetate (mmol/L) | 65.15 | 73.74 | 58.96 | 75.35 | 65.27 | 2.07 | 0.07 |
Propionate (mmol/L) | 21.79 b | 26.71 a | 21.56 b | 23.12 ab | 22.44 ab | 0.61 | 0.05 |
Acetate/Propionate | 3.01 | 2.84 | 2.99 | 3.14 | 3.04 | 0.04 | 0.16 |
Isobutyrate (mmol/L) | 0.74 a | 0.87 a | 0.80 a | 1.02 b | 1.09 b | 0.03 | <0.01 |
Butyrate (mmol/L) | 12.68 ab | 14.04 a | 9.78 b | 12.76 ab | 13.48 ab | 0.49 | 0.05 |
Isovalerate (mmol/L) | 1.43 bc | 1.64 abc | 1.24 c | 1.85 ab | 2.08 a | 0.08 | <0.01 |
Valerate (mmol/L) | 1.48 ab | 1.90 a | 1.32 b | 1.67 ab | 1.70 ab | 0.06 | 0.02 |
TVFA (mmol/L) 1 | 101.27 | 116.89 | 99.63 | 124.29 | 114.07 | 2.32 | 0.12 |
CH4 (mmol/L) 2 | 28.27 | 31.64 | 27.26 | 32.62 | 28.55 | 0.76 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Guo, L.; Huang, G.; Tang, W.; Zhao, S.; Wang, J.; Zhang, Y. Effects of Dietary Natural Mycotoxins Exposure on Performance, Biochemical Parameters and Milk Small Molecule Metabolic Pathways of Lactating Cows. Agriculture 2022, 12, 420. https://doi.org/10.3390/agriculture12030420
Wu X, Guo L, Huang G, Tang W, Zhao S, Wang J, Zhang Y. Effects of Dietary Natural Mycotoxins Exposure on Performance, Biochemical Parameters and Milk Small Molecule Metabolic Pathways of Lactating Cows. Agriculture. 2022; 12(3):420. https://doi.org/10.3390/agriculture12030420
Chicago/Turabian StyleWu, Xufang, Liya Guo, Guoxin Huang, Wenhao Tang, Shengguo Zhao, Jiaqi Wang, and Yangdong Zhang. 2022. "Effects of Dietary Natural Mycotoxins Exposure on Performance, Biochemical Parameters and Milk Small Molecule Metabolic Pathways of Lactating Cows" Agriculture 12, no. 3: 420. https://doi.org/10.3390/agriculture12030420
APA StyleWu, X., Guo, L., Huang, G., Tang, W., Zhao, S., Wang, J., & Zhang, Y. (2022). Effects of Dietary Natural Mycotoxins Exposure on Performance, Biochemical Parameters and Milk Small Molecule Metabolic Pathways of Lactating Cows. Agriculture, 12(3), 420. https://doi.org/10.3390/agriculture12030420