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Abstract: In the North China Plain, drought usually occurs during the interval between wheat
harvest and maize sowing in normal and dry years. The first irrigation for maize plays a critical
role in guaranteeing seed germination and grain yields. Using experimental data from Xinxiang
in 2019 and survey data of 641 farmers from the North China Plain in 2020, this study adopts a
cost-benefit analysis method to investigate the impacts of irrigation time and well depths on farmers’
costs and benefits in maize production. The results showed that farms with well depth > 120 m
accounted for 49% of total farms, especially in Hebei Province, and 38% wells had low water yield
< 2.7 m3 kW−1 h−1. Delaying the time of the first irrigation made maize yields decline by up to
307 kg ha−1 day−1. Well depths increased irrigation costs and total maize production cost in an
exponential manner, causing farmers’ benefits to decrease exponentially with well depths. With well
depth > 180 m, the proportion of irrigation cost to total cost rose to 14%, whereas well depth > 230 m
directly caused the farmers’ profits negative. A critical well depth of 230 m was put forward as the
upper limit for farmers adopting maize planting in the NCP. The concept of ‘rotational irrigation
strategy’ and suggestions of adopting drip irrigation, sprinkler irrigation, or hose-reel sprinkler
irrigation were recommended to advance 6–8 days for the first irrigation period, compared with
traditional flood irrigation.

Keywords: North China Plain; social survey; irrigation strategy; agricultural output; Zea mays L.

1. Introduction

The North China Plain (NCP) is one of China’s major granary, producing 61% wheat
(Triticum aestivum L.) and 31% maize (Zea mays L.) of the domestic food production [1].
So far, the agricultural sector has been the major consumer of water resources in China,
accounting for 70% of total groundwater use [2]. With the increasing demand for food
and water resources, irrigated farmland has substantially increased in the NCP [3]. Con-
sequently, several areas in the NCP have become the severest groundwater depression
zone in the world. To maximize the land-use efficiency and profits, irrigated areas in the
NCP are dominated by a winter wheat-summer maize rotation [4]. The shortage of surface
water resources and uneven distribution of precipitation have made agricultural planting
principally dependent upon compensatory irrigation. In general, soil water storage left
for summer maize after wheat harvest was often insufficient, and the topsoil (0–30 cm)
moisture content was only 10–13%, not adequately guaranteeing the germination of maize
seeds [5]. Therefore, we should pay close attention to soil moisture status prior to maize
sowing. If the weather before maize sowing continued to be dry, and the soil moisture
content was lower than 14% (or 55% of field capacity), it was necessary to apply the first
irrigation after maize sowing in time [6]. In practice, it was essential for local farmers to
apply supplementary irrigation immediately after sowing due to an extremely poor soil
moisture condition induced by the previous crops in the NCP.
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In recent years, rapid decline in groundwater level has made the irrigation coverage
area per well shrink from 10 ha to 5 ha, and the water level has deepened to a maximum
depth of 350 m in the NCP [7]. This has caused a recession of vegetation, intensification of
salinization, and an increasing water crisis for local residents [8]. Moreover, water yield per
well has also been declining year by year [9]. In China, as public interest for agricultural
development, the construction of water conservancy projects was mainly invested in by
local governments and was then transferred to farmers after the project was completed [10].
However, neither side paid much attention to the maintenance of the projects, accelerating
the aging of canal systems, wells, and irrigation equipment [11].

In a winter wheat-summer maize cropping rotation, the first irrigation is key to maize
seed germination due to over-depletion of soil moisture by wheat plants [5]. However,
the first irrigation can usually not be guaranteed immediately after maize sowing due to
increasing sizes of farmland, and rising costs of labor input [11]. With the development of
agricultural mechanization, it took a shorter time for wheat harvest and maize sowing than
before, saving more time for field preparation and early sowing of maize. However, the
deterioration of the water yield of wells prolonged the irrigation period, wasting valuable
time for rapid completion of the first irrigation [12]. Our previous surveys have shown
that, compared with traditional technologies, advances in agricultural mechanization
significantly improved the efficiency in crop harvest and seeds sowing, saving 10 more
days for the application of the first irrigation than before. However, it was the low irrigation
efficiency that made crops not irrigated in time. As a result, a longer irrigation duration
delayed the germination of seeds. That was also unfavorable to the formation of reasonable
plant groups [13]. Therefore, advancing the time of the first irrigation and shortening the
irrigation duration are extremely critical for maize production in the NCP.

However, farmland scale has been substantially expanding in recent years due to land
transfer policy in China, imposing a challenge on in-time application of the first irrigation
to crops [14,15]. In this study, we tried to find a solution to the immediate application of
the first irrigation and to figure out strategies that shortened the irrigation duration. A
social survey combined with an on-farm experiment was carried out to investigate impacts
of irrigation time and well depths on farmers’ costs and benefits in maize production in
the NCP. Besides, several meaningful suggestions were put forward for local farmers. The
scientific objectives of this study are (1) to quantify the effect of delaying the first irrigation
after sowing on maize yield components, and (2) to identify the critical well depth that
makes a trade-off between farmers’ costs and benefits in maize production. We hope that
the findings may provide scientific references for the efficient use of groundwater resources
in the NCP.

2. Materials and Methods
2.1. Experiment Site Description

A field experiment was carried out from June to September 2019, at the Qiliying
Experimental Station, Xinxiang, Henan Province, China (35◦08′ N, 113◦45′ E, a.s.l. 81 m) to
investigate the effects of the first irrigation time on yield components of maize (Figure 1).
The experimental plots were irrigated with groundwater from wells with a depth of 50 m.
The cropping system is a winter wheat-summer maize cropping rotation. The place has
a continent temperate monsoon climate. The mean annual precipitation (1951–2018) is
578 mm, of which 68% (393 mm) occurs during the summer maize growing season, and the
mean annual temperature is 14.1 ◦C. In 2019, precipitation was 224 mm during the growing
season of summer maize, which was 169 mm less than the average value, indicating a
normal-dry year for maize growing. The annual evaporation is 1909 mm, annual sunshine
hours are 2408 h, and the annual frost-free period is 201 days. The soil is a sandy loam
(4.52% clay, 40.3% silt, and 55.2% sand) with a bulk density of 1.42 g cm−3. The available
soil N, P, K, and soil organic matter content were 43.1 mg kg−1, 15.2 mg kg−1, 126 mg kg−1,
and 13.1 g kg−1, respectively.
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Figure 1. Location of surveyed sites and experimental site in the study.

2.2. Experiment Design and Measurements

A completely randomized design was adopted with three replicates. Six treatments
(time of the first irrigation) were set up, namely, the first was irrigation applied 1, 6, 11, 16,
21, and 26 days after sowing (corresponding to 5 June, 10 June, 15 June, 20 June, 25 June,
and 30 June, respectively) with a fixed amount of 30 mm for each plot (Figure 2). The
plot area was 10 m long and 5 m wide. A popular-used maize hybrid (cv. DH 605) was
selected. The seedbed was prepared by a tractor-drawn rotary cultivator up to a depth of
30 cm to form a smoothed seedbed. Maize seeds were sown on 4 June 2019 while harvest
dates varied from 15 September to 5 October 2019, according to different irrigation time.
The plant spacing of maize was 30 cm, and the row spacing was 50 cm, giving a planting
density of 6.75 × 104 plants ha−1. A drip fertigation system was adopted in the experiment
to complete the process of irrigation and fertilization simultaneously. The spacing between
drip lines was 60 cm so that one row of drip tape could irrigate two rows of maize plants.
Based on soil tests in the 0–100 cm soil profile, base fertilizers including ammonium nitrate
(120 kg ha−1 N), calcium super-phosphate (90 kg ha−1 P2O5), and potassium sulfate
(30 kg ha−1 K2O) were applied prior to sowing. To ensure a non-limited supply of water
and nutrients for crops, additional urea (300 kg ha−1 N) was applied as a top dressing at
the V8 and R1 stages for maize plants at a ratio of 6:4, along with supplementary irrigation
events of 30 mm. All treatment plots received the same amounts of total water and fertilizer,
whereas the only difference of irrigation treatments was the time of the first irrigation. A
precision flow meter (Shanghai Water Meter Manufacturing Co., Ltd., Shanghai, China)
was installed at the pump outlet to measure the irrigation volume. Weeds and pests were
managed according to the local governments’ recommendations.

Soil water content (SWC, % v/v) was measured at 10 cm increment to a depth of
100 cm using Insentek sensors (Zhejiang Oriental Insentek Technology Co., Ltd., Hangzhou,
China). Antecedent soil volumetric moisture prior to maize sowing in 2019 was measured
13.5%, 17.3%, and 18.4% in the 0–30 cm, 30–60 cm, and 60–100 cm soil layers, respectively.
Our previous study indicated that the Insentek sensor was a reliable tool to represent real
SWC values in the field with a root mean square error (RMSE) of 0.927% v/v between the
Insentek sensor and oven-dry method [5]. By checking the year-round data, the data of
Insentek sensors also had good continuity and stability. Crops around the sensors were not
missed and uniform, and were representative of the experimental conditions with similar
sizes and vigor.



Agriculture 2022, 12, 456 4 of 15

Figure 2. Maximum, mean, and minimum air temperature, irrigation time and amount, and precipi-
tation at the experimental site in 2019 growing season of maize.

A randomly selected 1 m2 of plants was sampled for all experimental plots before har-
vest for yield estimation. The grain was winnowed, solar-dried to a 14% moisture content,
and weighed using a precise digital balance (Ohaus, AX224 Adventurer, Parsippany, NJ,
USA). Weather data were collected from an automatic weather station installed near the
experimental field.

2.3. Surveyed Sites Description

A questionnaire survey was conducted in Henan, Hebei, and Shandong Provinces,
North China Plain (NCP) from April to September 2020. The surveyed areas contained
major parts of the NCP, representing the typical winter wheat-summer maize cropping
regions (112◦44′−118◦19′ E, 34◦03′−38◦89′ N; 36−158 m a.s.l.). The areas have a continent
temperate monsoon climate with the weather being cold and dry in winter, hot and rainy
in summer. The mean annual precipitation is 410−650 mm. The rainfall is distributed
unevenly seasonally, mainly falling in summer seasons. The three provinces are typical
water shortage areas of China. The regional water resources account for about 1.6% of
the total water resources in China, and water resources per capita are 335 m3 year−1, less
than 1/7 of the national average level [16]. Because there are few surface water resources
in the areas, groundwater has become the major water source for irrigation. Due to long-
term over-exploitation of groundwater, the areas have become the most serious zones of
groundwater depression on the planet [17].

2.4. Survey Data Collection

Primary survey data were collected from farmers at the surveyed sites through formal
surveys. In total, 15 counties in Henan, Hebei, and Shandong provinces were selected as
surveyed objects. The selection of the survey area mainly considered two factors. First, the
surveyed counties are important irrigated agricultural counties in the North China Plain
(NCP), and the scale and distribution of household farmlands are representative of the
NCP. Second, the surveyed counties are the major well-irrigated areas with well depths
ranging from 30 to 300 m in the provinces, and effects of irrigation costs on farmers’ total
benefit in agricultural production are evident. Based on the above-mentioned factors, five
counties were separately chosen from each province, and a representative township was
selected from each county. Stratified and random sampling methods were adopted in the
survey. According to the size of irrigated farmland (ha), which was previously collected by
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local village committees and cadres, three strati were finally defined, including small-scale
(1–40 ha), moderate-scale (40–170 ha), and large-scale (170–240) households. In each town,
20 households were randomly selected from the three strati of representative villages. In
total, 720 questionnaires were finally dealt out. Excluding unqualified samples, the number
of valid questionnaires was 641, with an effective rate of 89%, an average sampling error of
2.8%, and a confidence degree of 95%. The questionnaire mainly adopted a ‘one-to-one’
interview to investigate the family members who run their own farms.

The questionnaire included necessary information regarding the size of farmland, well
depths, the number of wells, water yield per well, irrigation coverage area per well, duration
of wheat harvest, maize sowing, and time of the first irrigation, costs in seeds, fertilizers,
pesticides, irrigation and mechanized operations (i.e., sowing, tillage, and harvest, etc.),
and benefits of the incorporation of advanced irrigation systems and strategies into winter
wheat-summer maize rotation (the questionnaire was attached as Supplementary Materials).
In those factors, well depths exerted major effects on the cost of irrigated maize production.
Farms with different well depths (10–300 m) were investigated. In the surveyed areas,
soil water content (SWC, % w/w) in the 0–30 cm soil depth before maize sowing (% w/w)
was obtained through oven-drying method during the survey period. Relative soil water
content (RSWC, %) was calculated by dividing the measured SWC by field capacity (FC).
The degree of drought stress was determined by a range of RSWC, namely, no drought
stress means RSWC > 85% FC; light drought stress refers to RSWC within 75–85% FC;
mild drought stress refers to RSWC within 65–75% FC; heavy drought stress refers to
RSWC within 55–65% FC; extreme drought stress refers to RSWC within 45–55% FC [18].
Precipitation between wheat harvest and maize sowing in the surveyed areas was obtained
from local meteorological stations. In all the surveyed areas, farmers take groundwater as
their major source for irrigation. In addition to the questionnaire survey, the research team
also interviewed the experts from the comprehensive experiment stations of the China
Agriculture Research System to collect relevant information.

2.5. Assessment of Costs and Benefits

In the calculation of irrigation costs, the power of pumps was estimated to meet
the lowest water yield of 40 m3 h−1. The annual fee in the use of wells was calculated
according to the service life for a 20-year lifetime. During the growth period of maize, the
total irrigation amount was 1200 to 1800 m3 ha−1. Irrigation cost (USD ha−1 year−1) was
calculated as follows:

Irrigation cos t =
Pump power × Irrigation duration × Electricity charge

Irrigation efficiency
(1)

where pump power varied from 11 to 55 kW with different well depths. Irrigation duration
varied from 1 to 20 days. In well-irrigated areas of the NCP, water price (≈0.01584 USD m−3)
was included in the electricity charge during the process of irrigation because water use
quantity was proportional to electricity use [19]. Electricity charge (≈0.1014 USD kW−1 h−1)
was a sum of costs that included the costs of electricity and water use. Irrigation efficiency
varied from 0.75 to 0.95 based on different irrigation methods. The efficiency values were
empirical values relative to the local farms in the NCP.

Total cost was defined as a series of costs in the process of seeds, fertilizers, irrigation,
labor input, and so on. All costs in the base year (base year = year 0) were regarded as
establishment costs. Thereafter, costs were taken as annual maintenance costs. Empirical
evidence revealed that most of the irrigation equipment had a lifetime of 10 years, whereas
PE pipes had a lifetime of 3 years, and drip tapes were used for only one year and were
replaced every year.

According to our survey, seed cost was 114 USD ha−1 year−1, fertilizer cost was
295 USD ha−1 year−1, irrigation cost varied from 17.8 to 976 USD ha−1 year−1 with dif-
ferent well depths, pesticide cost was 66.5 USD ha−1 year−1, mechanical operation cost
was 309 USD ha−1 year−1, labor cost was 440 USD ha−1 year−1 and land tenancy fee was
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589 USD ha−1 year−1 after land subsidy by governments. The costs only included the
inputs in the maize growing seasons.

A cost-benefit analysis was carried out to compare the irrigation project efficacy with
irrigation time and well depths at different farm scales. Using the method, a critical
well depth achieving a trade-off between irrigation costs and benefits was determined.
In this study, benefit in maize production included all gains caused by implementing
irrigation measures.

The major benefit considered was increased grain yield due to the adoption of the
different irrigation techniques. Benefits were converted into monetary values by multi-
plying by the market price and then summed to obtain the total benefit. Annual benefit
(USD ha−1 year−1) was the net benefit obtained in the maize growing season. It showed
the current year’s value of the net benefit generated by each irrigation equipment compared
over their lifetime period and was calculated as follows:

Annual bene f it =
n

∑
t=1

Bt − Ct

(1 + r)t (2)

where Bt was benefits at time t, Ct was investment cost at time t, t was time horizon, and r
was discount rate. A nominal discount rate of 6% was applied [20]. An investment was
economically feasible when the annual benefit was positive.

2.6. Relationships between Costs-Benefits and Well Depths

The relationship between annual cost (y) in maize production and well depth (x)
was fitted to a positive exponential function, whereas a negative exponential function
was adopted to describe the relationship between annual benefit (y) and well depth (x)
as follows:

y = a + bekx (3)

where y was annual cost or benefit (USD ha−1 year−1) generated during the process of
maize production; x was well depth; a, b, k were parameters to be fitted; a was a constant
representing an interception; b determined whether cost/benefit had a positive or negative
correlation with well depth.

2.7. Statistical Analysis

Analysis of variance (ANOVA) was performed to test the differences in yield com-
ponents and grain yields among treatments. Correlation analysis was conducted with
SPSS 18.0 software (SPSS 19.0, SPSS Institute Inc., Chicago, IL, USA) to determine the
relationships between the time of the first irrigation and yield components, as well as
the relationship between well depth and cost-benefit in maize production. Means were
compared using Fisher’s least significant difference tests at p < 0.05. Graphs presented were
plotted using Sigmaplot 12.0 (Systat Software, San Jose, CA, USA).

3. Results and Discussion
3.1. Basic Survey Information Related to Irrigation Practices

To make the results representative, the surveyed farm sizes covered a range from
smallholders to large scale households, with sizes > 80 ha accounting for 47% of total farm-
ers (Figure 3). Most of the rural households (79%) in charge of their farmland were male,
and the average age of the households was about 49 years old (Table 1). More than 50% of
the households held at least a middle school diploma. Their annual income per capita was
4670 USD year−1 person−1. Mild to heavy drought (mean soil water content of 11.8%) usu-
ally occurred during the interval between wheat harvest and maize sowing. Therefore, the
first irrigation was key to maize production, which was consistent with the previous results
in the NCP [21]. The surveyed well depths were from 10 to 300 m, while approximately half
(49%) of the well depths exceeded 120 m, imposing great pressure on farmers’ burden in
groundwater withdrawal. It should be noticed that the groundwater level was 120–300 m
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deep in most survey areas of Hebei Province, which was 2–3 times deeper than that in
Shandong and Henan Provinces, indicating the severest groundwater depression zone in
Hebei Province. This finding was in agreement with a number of previous studies [22–26].
Water yields with different well depths varied from 2.4 to 8 m3 kW−1 h−1. More than 1/3
(38%) wells had low water yield (<2.7 m3 kW−1 h−1) in the NCP due to over-exploitation.
Generally, the irrigation coverage area per well was associated with well depth and pump
power. On average, the coverage area was 6.2 ha well−1. Among them, 24% wells had
coverage areas of < 6.2 ha well−1, resulting in an increase in density of wells per farm,
undoubtedly increasing the farmers’ costs in well drilling. In the NCP, the occurrence prob-
ability of drought before sowing was nearly 100% without effective precipitation [27–29].
In this study, the probability of precipitation > 10 mm between wheat harvest and maize
sowing was only 27% averaged across 2017–2020, according to the weather data collected
from the local meteorological stations. Due to different farm sizes, the wheat harvest
period was about 1–7 days, the maize sowing period was 1–10 days, and the first irrigation
duration was 3–15 days. Basically, a larger farm scale was associated with longer duration
of harvest, sowing, and irrigation [30].

Figure 3. Proportional pie chart of surveyed indicators.
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Table 1. Summary statistics.

Items Min. Max. Mean Std. Dev.

Gender (female = 0; male = 1) 0 1 0.79 -
Age 27 63 49.4 3.65

Education (years) 6 16 8.9 0.58
Annual income per capita of the

family (103 USD year−1 person−1) * 1.91 10.1 4.67 0.55

Well depth (m) 10 300 117 42.5
Size of irrigated farmland (ha) 1.2 235 96.8 37.5

Number of wells per farm 1 30 12.6 11.6
Irrigation coverage area per well (ha) 3.5 9.8 6.2 1.25
Water yield per well (m3 kW−1 h−1) 2.4 8 3.3 3.0

Density of wells per 100 ha 8 33 19 2.5
Soil water content before maize sowing (% w/w) 5.3 19.4 10.8 2.6

Degree of drought stress at sowing (none = 1;
light = 2; mild = 3; heavy = 4; extreme = 5) 1 5 3.5 1.1

Precipitation during the interval between wheat
harvest and maize sowing (mm) 0 42 5.2 14.3

Period of wheat harvest (day) 0.5 8 3.1 3.8
Period of maize sowing (day) 0.5 15 4.3 7.5

Duration of the first irrigation (day) 0.5 15 6.3 7.3
Note: * Annual income per capita was expressed using USD as the currency unit. RMB was converted to USD
based on an exchange rate of 1 RMB ≈ 0.1584 USD released on 25 February 2022. The same below.

3.2. Time of the First Irrigation Affects Yield Components of Maize

The time of the first irrigation had significant effects on yield components of maize (cv.
DH 605), including available ear number per ha, kernel number per ear, and 100-kernel
weight (Figure 4). When the first irrigation was implemented from days after sowing (DAS)
1 to 16, both available ear number per ha and kernel number per ear reduced significantly,
at a decreasing rate of 581 ears ha−1 day−1 and 5 kernels ear−1 day−1, respectively. When
the first irrigation was applied after DAS 16, they dropped at a faster rate than previously.
This indicated that the reduction of yield components would accelerate if the first irrigation
time was delayed more than 16 days. A similar study conducted in the NCP also showed
that summer maize planted after June 23 had a grain yield around 30% less than those
planted on the normal sowing date (cv. XY 335) [31]. In this study, a maximum yield
reduction of 32% was observed after the first irrigation was delayed > 16 days. In other
words, the late irrigation time exerted equivalent yield reduction impacts as the late sowing
date did especially in normal and dry years [32]. Though 100-kernel weight showed non-
significant differences within DAS 1 to 6, it displayed a significant decreasing trend when
the irrigation was applied after DAS 6. Within DAS 1 to 16, maize yields declined at a
rate of 99 kg ha−1 day−1. When the first irrigation was postponed > 16 days, yields greatly
reduced at a rapid rate of 307 kg ha−1 day−1. Our study confirmed that compared to the
irrigation time on June 5, both the 100-kernel weight and grain yields showed a decreasing
trend when irrigation time was postponed for 6–26 days. A similar study also reported that,
when maize was sown in early July, maize plants would not be fully mature with a growth
period of <90 days, probably resulting in yield failure at maize maturity [33]. Although DH
605 was a medium late maturing hybrid sensitive to reduction of effective accumulated
temperature due to delayed emergence, similar results of yield reduction effect (by 21–29%)
was also observed on medium early maturing hybrids of DH 518, JNK 728 [34], and XD
29 [35] when the sowing date was delayed by 10–20 days, indicating that delay of the first
irrigation may exert similar yield reduction effects despite of maize varieties.
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Figure 4. Effects of time of the first irrigation (DAS: days after sowing) on yield components
((A): available ear number per ha; (B): kernel number per ha; (C): 100-kernel weight) and grain
yields (D) of summer maize under a plant density of 6.75 × 104 plants ha−1 in the North China Plain.
Different letters indicate significant differences at p < 0.05.

3.3. Cost-Benefit Analysis for Maize Production with Different Well Depths

Deep well depth significantly increased the power consumption of irrigation equip-
ment [36]. In this study, the cost of well construction, cost of depreciation and main-
tenance of wells, and irrigation cost increased with well depth in a positive exponen-
tial manner (Figure 5). In detail, irrigation cost increased from 38 (well depth 30 m) to
673 USD ha−1 year−1 (well depth 300 m). Similarly, total cost in maize production also
displayed a positive exponential relationship with well depth, generating a total cost vary-
ing from 1840 to 2795 USD ha−1 year−1. Irrigation cost accounted for 1.5% to 35.2% of
the total cost, indicating that labor cost and land transfer cost were still the major cost for
farmers, contributing at least 56.7% to the total cost. The result was similar to the findings
in a previous study [37]. In contrast, there existed a negative exponential function between
benefit in maize production and well depth. When the well depth exceeded 180 m, the pro-
portion of irrigation cost rose to 14%, making annual profit less than 266 USD ha−1 year−1.
When the well depth exceeded 230 m, the profit became negative. Due to the increase in
maize production cost and the decline in domestic maize sale price in recent years, the
profit of maize production has been declining since 2017 [38]. Some farmers adopting
traditional flood irrigation even had negative profits in 2018 and 2019 because of soaring
labor costs [39]. In 2020, affected by the COVID-19 epidemic, the import of maize markedly
decreased, the domestic sale price of maize gradually warmed up, and the average profit
in maize production increased to 473 USD ha−1 in 2020 in the NCP [40].
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Figure 5. Costs and benefits in maize production and their relationships with well depth according
to the survey data collected in the North China Plain. (A) cost of well construction; (B): cost of
depreciation and maintenance; (C): irrigation cost; (D): total cost of maize production; (E): net profits
of maize production; (F): percentage of irrigation cost to total cost. ** indicates extremely significant
correlation at p < 0.01.

3.4. Cost-Benefit Analysis for Different Irrigation Methods

In practice, sprinkler irrigation technology includes hose-reel sprinkler irrigation,
semi-fixed or fixed sprinkler irrigation, buried telescopic sprinkler irrigation, lateral mov-
able sprinkler irrigation, center pivot irrigation, etc. [41,42]. Among them, the hose-reel
irrigation machine, semi-fixed sprinkler, and movable sprinkler irrigation machine were
able to move their positions to different farmlands, while fixed sprinkler, telescopic sprin-
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kler irrigation, and drip irrigation system were fixed at a certain position [43,44]. In this
study, the cost of irrigation projects was calculated on a basis of 100 ha farmland, and
then the cost was divided by 100 to obtain a hectare basis cost (Table S1). On average,
the total investment into hose-reel sprinkler irrigation machines was the lowest, which is
1215 USD ha−1, followed by semi-fixed sprinkler irrigation (Table 2). The investment into
telescopic sprinkler irrigation system was the highest, which is 6355 USD ha−1. Since the
service life of the equipment was 10 years, the annual investment of hose-reel sprinkler
irrigation was only 121 USD ha−1. The investment of drip irrigation equipment per single
time was extremely low, but drip tapes needed replacing every year, making the annual
cost of drip tapes (285 USD ha−1) the largest proportion (68%) of the total cost. This was
consistent with previous findings that the annual replacement of drip tapes was a major
contributor to the total cost of drip irrigation [45,46]. The total investment into center pivot
irrigation machine and telescopic sprinkler irrigation system was high, which was 4954
and 6355 USD ha−1, respectively. However, those irrigation techniques were suitable for
the mechanized harvest and sowing of winter wheat and summer maize, and the labor
cost during the irrigation period was relatively low [5]. The drip irrigation system was
characterized by its lower single input but higher continuous inputs every year. In terms
of annual cost, we recommended using hose-reel sprinkler irrigation machines or the
semi-fixed sprinkler irrigation method. In terms of labor saving, the drip irrigation system
and telescopic sprinkler irrigation systems were recommended. A possible alternative that
could reduce the annual input of drip tapes would be the use of subsurface drip lines with
longer service lives. However, their installation cost was higher. In practice, local farmers
found that the use of subsurface drip lines did affect the application of rotary tillage during
the intervals between harvest and sowing. Generally, the buried depth of subsurface drip
lines was up to 30 cm, whereas the tillage depth was at least 30 cm in many places of the
NCP [19]. Consequently, the application of subsurface drip lines in the NCP is rare.

Table 2. Investment of irrigation equipment per ha for maize production in the North China Plain.

Irrigation Method Irrigation Coverage
Area

Total Investment (USD
ha−1) *

Annual Investment
(USD ha−1 year−1)

Hose-reel sprinkler irrigation 230 m × 300 m 1215 e 122 e
Semi-fixed sprinkler irrigation 340 m × 200 m 1431 d 143 d

Drip irrigation 340 m × 200 m 4196 c 420 c
Center pivot irrigation 260 m × 260 m 4954 b 495 b

Buried telescopic sprinkler irrigation 340 m × 200 m 6355 a 636 a

Note: * Service life was 10 years for pump, back-washing sand filter, sprinkler head, disc filter, fertilizer applicator,
center pivot irrigation machine, hose-reel sprinkler irrigation machine, head connector, solenoid valve, while
the lifetime was 3 years for PE pipes, and 1 year for drip-tapes. Investment cost was calculated as a 10-year
cumulative input for all equipment and materials. Annual investment was defined as total investment divided by
10 years. Different letters in each column stand for significant differences at p < 0.05.

3.5. General Discussion

We found that the duration of the first irrigation was generally longer than 8 days for
most large-scale households, with a farm size > 80 ha. Up to now, there have been still
more than 50% of households adopting surface flood irrigation, and the irrigation efficiency
was low. This traditional method usually needed a large number of laborers employed
for irrigation, resulting in a labor cost of 285 USD ha−1 person−1, 10 times the labor cost
for drip irrigating maize plants [47]. With the middle east of Hebei Province being the
groundwater over-exploitation area, the groundwater level was generally 100–300 m [39].
Pump power > 22 kW was essential to ensure water output (40 m3 h−1) in that case, which
increased farmers’ electricity charge [48]. Our results showed that when the well depth was
greater than 180 m, the irrigation cost accounted for about 14% of the total cost, making
profits greatly shrink to 249 USD ha−1 year−1. When the well depth reached 230 m, farmers’
benefits would become negative. We considered a critical well depth of 230 m as the upper
limit for farmers in the NCP. Since most irrigation and well equipment was powered by
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electricity other than fossil fuels in the well-irrigated areas of the NCP, the consumption
of electricity accounted for almost 100% of the energy costs [2]. The electricity price was
stable for the recent decade in the NCP. Therefore, the fluctuation of a variation of this price,
which would affect the determination of the critical depth in the areas of NCP, did not exist.

Although smallholders usually chose flood irrigation to water crops due to its low
investment in equipment, a few farmers preferred using sprinkler irrigation combined with
flood irrigation to lower labor cost according to our survey. During flood irrigation, the
irrigation water needed to infiltrate into the field capacity at first before soil saturation,
resulting in deep percolation loss in flood irrigation [49]. Furthermore, the irrigation
coverage area of flood irrigation was about 5 ha per well. While our study showed that
adopting high-efficient irrigation techniques significantly extended the coverage area up to
9.8 ha per well.

Generally, the amount for the first irrigation was 60 mm per time in the NCP [12,43].
Guaranteeing a water output of 40 m3 h−1 per well, it would take 22.5 h to irrigate a
hectare of farmland. Taking an irrigation coverage area of 7 ha per well and an irrigation
efficiency of 80% for example, flood irrigation would take 7.8 days to irrigate the entire
7 ha farmland, which meant a delay of 7.8 days for maize seeds emergence. To shorten the
irrigation duration, drip irrigation or sprinkler irrigation technology was recommended.
More importantly, the concept of ‘rotational irrigation strategy’ was put forward by the
study. That is, dividing the one irrigation time into twice with half irrigation amount.
Namely, an irrigation amount of 30 mm (half amount) is suggested to give first priority
to the emergence of maize seeds. The next 30 mm of water can be irrigated immediately
after the first round of irrigation. The irrigation strategy is expected to shorten irrigation
duration by 4 days, which would increase grain yield by 8% [34,35].

In this study, hose-reel sprinkler irrigation was also recommended to replace tradi-
tional flood irrigation due to its flexible mobility on farmland [50]. The hose-reel sprinkler
irrigation machine drives the water turbine through high-pressure water flow, making
the hose-reel move back automatically on the farm [51]. Generally, the water output of
hose-reel spray gun was 30–50 m3 h−1, the spraying radius was 30 m, and the moving
speed was 15 m h−1, giving rise to an irrigation efficacy around 1.6 ha day−1. In this way,
the irrigation duration for 10 ha of farmland can be shortened to 6 days, saving 6–8 days
compared with traditional flood irrigation.

It was essential to comprehensively calculate the cost and benefit of maize production.
When the benefit was greater than the total cost in maize production, we suggested adopting
the winter wheat-summer maize cropping system. When the yield increase benefit was
not able to cover the total cost, we suggested changing to plant high-value cash crops or
legumes with less water consumption.

4. Conclusions

The first irrigation is key to maize production. During the period from DAS 1 to
16, advancing the time of the first irrigation increased maize yields by 99 kg ha−1 day−1,
whereas the yield boosting effect was 307 kg ha−1 day−1 during DAS 16 to 26 days.
However, the irrigation duration was generally longer than 8 days for farm sizes larger
than 80 ha since more than 50% of households were still adopting surface flood irrigation.
The concept of a ‘rotational irrigation strategy’ was put forward to shorten the irrigation
duration, which was expected to shorten the duration by 50% while realizing an early and
uniform emergence of maize seedlings. Besides, drip irrigation, sprinkler irrigation, or
hose-reel sprinkler irrigation was recommended to optimize the current irrigation strategy,
which can save 6–8 days compared with traditional flood irrigation. Increment of well
depth increased total costs of maize production in a positive exponential manner and
decreased the farmers’ benefits exponentially. A critical well depth of 230 m was put
forward as the upper limit for local farmers in the NCP. We conclude that the results of
the study provide scientific reference for farmers to optimize their irrigation and planting
strategies in the NCP.
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