A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition
Abstract
:1. Introduction
2. Related Work
2.1. Pest and Disease Diagnosis Methods and Datasets
2.2. Visual Attention Mechanism
2.3. Fine-Grained Visual Recognition Modeling
3. Methods and Materials
3.1. CropDP-181 Dataset
3.2. Improved CSP-Stage-Based Backbone
3.3. Spatial Feature-Enhanced Attention Module
3.4. Iterative Computation of Matrix Square Root for Fast Training of Global Covariance Pooling
Algorithm 1. The overall calculating steps of the high-order pooling module. |
Calculating processes in high-order pooling module |
Input:F is a feature of the input, k is the number of iterations |
Output:Out is the higher-order feature of the output |
where |
where |
, and set , |
Return Out |
3.5. Data Processing and Parameter Settings
3.5.1. Data Preprocessing
3.5.2. Parameter Settings
4. Experimental Results
4.1. Contrastive Results
4.2. Ablation Analyses
4.3. Module Effect Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Annotation Names | Image Sample Numbers | Associated Crops or Plants | Actual Collection | IP102 Dataset | Inaturalist Dataset | AIChallenger Dataset | Additional Info |
---|---|---|---|---|---|---|---|---|
1 | Spodoptera exigua | 214 | Rice, sugar cane, corn, Compositae, cruciferous, etc. | 38 | 65 | 111 | 0 | Pests |
2 | Migratory locust | 122 | Red grass, barnyard grass, climbing grass, sorghum, wheat, etc. | 40 | 25 | 57 | 0 | Pests |
3 | Meadow webworm | 230 | Beet, soybean, sunflower, potato, medicinal materials, etc. | 43 | 73 | 114 | 0 | Pests |
4 | Mythimna separata | 134 | Wheat, rice, millet, corn, cotton, beans, etc. | 44 | 59 | 31 | 0 | Pests |
5 | Nilaparvata lugens | 155 | Rice, etc. | 47 | 88 | 20 | 0 | Pests |
6 | Sogatella furcifera | 152 | Rice, wheat, corn, sorghum, etc. | 50 | 32 | 70 | 0 | Pests |
7 | Cnaphalocrocis medinalis | 154 | Rice, barley, wheat, sugar cane, millet, etc. | 51 | 80 | 23 | 0 | Pests |
8 | Chilo suppressalis | 156 | Rice, etc. | 52 | 45 | 59 | 0 | Pests |
9 | Sitobion miscanthi | 164 | Wheat, barley, oats, naked oats, sugar cane, etc. | 54 | 31 | 79 | 0 | Pests |
10 | Rhopalosiphum padi | 174 | Wheat, barley, oats, etc. | 58 | 91 | 25 | 0 | Pests |
11 | Schizaphis graminum | 280 | Wheat, barley, oats, sorghum, rice, etc. | 93 | 33 | 154 | 0 | Pests |
12 | Leptinotarsadecemlineata | 314 | Potato, tomato, eggplant, chili, tobacco, etc. | 104 | 43 | 167 | 0 | Pests |
13 | Cydiapomonella | 436 | Apples, pears, apricots, etc. | 145 | 112 | 179 | 0 | Pests |
14 | Locusta migratoria manilensis | 867 | Wheat, rice, tobacco, fruit trees, etc. | 189 | 395 | 283 | 0 | Pests |
15 | Grassland caterpillar | 370 | Cyperaceae, Gramineae, Leguminosae, etc. | 123 | 48 | 199 | 0 | Pests |
16 | Sitodiplosis mosellana Géhin | 470 | Wheat, etc. | 156 | 164 | 150 | 0 | Pests |
17 | Plutella xylostella_Linnaeus | 371 | Cabbage, purple cabbage, broccoli, etc. | 123 | 229 | 19 | 0 | Pests |
18 | Trialeurodes vaporariorum | 402 | Cucumber, kidney bean, eggplant, tomato, green pepper, etc. | 134 | 18 | 250 | 0 | Pests |
19 | Bemisia tabaci_Gennadius | 403 | Tomato, cucumber, zucchini, cruciferous vegetables, fruit trees, etc. | 134 | 67 | 202 | 0 | Pests |
20 | Aphis gossypii Glover | 417 | Pomegranate, pepper, hibiscus, cotton, melon, etc. | 139 | 265 | 13 | 0 | Pests |
21 | Myzus persicae | 460 | Vegetables, potatoes, tobacco, stone fruit trees, etc. | 153 | 287 | 20 | 0 | Pests |
22 | Penthaleus major | 492 | Wheat, etc. | 164 | 65 | 263 | 0 | Pests |
23 | Petrobia latens | 493 | Wheat, etc. | 164 | 43 | 286 | 0 | Pests |
24 | Helicoverpa armigera | 513 | Corn, zucchini, pea, wheat, tomato, sunflower, etc. | 171 | 271 | 71 | 0 | Pests |
25 | Spodoptera exigua | 546 | Corn, cotton, sugar beet, sesame, peanut, etc. | 0 | 187 | 359 | 0 | Pests |
26 | Apolygus lucorum | 546 | Cotton, mulberry, jujube, grape, cruciferous vegetables, etc. | 0 | 376 | 170 | 0 | Pests |
27 | Bemisia tabaci | 1255 | Cucumber, tomato, eggplant, zucchini, cotton, watermelon, etc. | 0 | 611 | 644 | 0 | Pests |
28 | Ostrinia furnacalis | 662 | Corn, wheat, etc. | 0 | 347 | 315 | 0 | Pests |
29 | Ostrinia nubilalis | 1316 | Corn, sorghum, hemp, rice, sugar beet, sweet potato, etc. | 0 | 693 | 623 | 0 | Pests |
30 | Tetranychus turkestani | 1234 | Cotton, sorghum, strawberry, beans, corn, potato, etc. | 0 | 710 | 524 | 0 | Pests |
31 | Tetranychus truncates Ehrar | 1477 | Cotton, corn, polygonum, paper mulberry, etc. | 0 | 841 | 636 | 0 | Pests |
32 | Tetranychus dunhuangensis Wang | 1288 | Cotton, corn, vegetables, fruit trees, etc. | 0 | 770 | 518 | 0 | Pests |
33 | Yellow cutworm | 1331 | Wheat, vegetable, grass, etc. | 0 | 793 | 538 | 0 | Pests |
34 | Police-striped ground tiger | 834 | Rape, radish, potato, green Chinese onion, alfalfa, flax, etc. | 0 | 241 | 593 | 0 | Pests |
35 | Eight-character ground tiger | 1237 | Daisies, zinnia, chrysanthemum, etc. | 0 | 686 | 551 | 0 | Pests |
36 | Cotton thrips | 1286 | Zucchini, wax gourd, balsam pear, watermelon, tomato, etc. | 0 | 856 | 430 | 0 | Pests |
37 | Grass blind stinkbug | 824 | Cotton, alfalfa, vegetables, fruit trees, hemp, etc. | 0 | 289 | 535 | 0 | Pests |
38 | Alfalfa blind stinkbug | 866 | Cotton, mulberry, jujube, grape, alfalfa, medicinal plants, etc. | 0 | 428 | 438 | 0 | Pests |
39 | Green stinkbug | 948 | Flowers, artemisia, cruciferous vegetables, etc. | 0 | 348 | 600 | 0 | Pests |
40 | Tomato leaf miner | 965 | Tomato, potato, sweet pepper, ginseng fruit, etc. | 0 | 496 | 469 | 0 | Pests |
41 | Dendrolimus punctatus | 1103 | Masson pine, black pine, slash pine, loblolly pine, etc. | 0 | 371 | 732 | 0 | Pests |
42 | Japanese pine scale | 1176 | Pinus densiflora, pinus tabulaeformis, pinus massoniana, etc. | 0 | 241 | 935 | 0 | Pests |
43 | Anoplophora glabripennis | 1335 | Poplar, willow, wing willow, elm, sugar maple, etc. | 0 | 497 | 838 | 0 | Pests |
44 | American white moth | 2236 | Oak, phoenix tree, poplar, willow, elm, mulberry, pear, etc. | 0 | 1620 | 616 | 0 | Pests |
45 | Hemiberlesia matsumura | 2024 | Masson pine, black pine, slash pine, loblolly pine, etc. | 0 | 1709 | 315 | 0 | Pests |
46 | Red tip borer | 1833 | Masson pine, black pine, slash pine, loblolly pine, etc. | 0 | 1497 | 336 | 0 | Pests |
47 | Dendroctonus armandi | 1824 | Huashan pine, etc. | 0 | 1275 | 549 | 0 | Pests |
48 | Yellow bamboo locust | 1527 | Rigid bamboo, water bamboo, etc. | 1527 | 0 | 0 | 0 | Pests |
49 | Monochamus fortunei | 1197 | Fir, willow, etc. | 1197 | 0 | 0 | 0 | Pests |
50 | Sophora japonica | 1498 | Yang, Huai, Liu, Amorpha fruticosa, elm, maple, etc. | 1498 | 0 | 0 | 0 | Pests |
51 | Ulmus pumila | 2228 | Elm, etc. | 2228 | 0 | 0 | 0 | Pests |
52 | Pine geometrid | 1272 | Pine needles, etc. | 1272 | 0 | 0 | 0 | Pests |
53 | Jujube scale | 1087 | Acer is acacia, jujube, walnut, acacia, plum, pear, apple, etc. | 1087 | 0 | 0 | 0 | Pests |
54 | Coconut beetle | 1109 | Coconut trees, etc. | 1109 | 0 | 0 | 0 | Pests |
55 | Anoplophora longissima | 1149 | Yang, willow, birch, oak, beech, linden, elm, etc. | 1149 | 0 | 0 | 0 | Pests |
56 | Geometrid moth | 1115 | Fruit trees, tea trees, mulberry trees, cotton and pine trees, etc. | 1115 | 0 | 0 | 0 | Pests |
57 | Red brown weevil | 405 | Coconut, oil palm, brown, betel nut, mallow, date, etc. | 405 | 0 | 0 | 0 | Pests |
58 | Dendroctonus valens | 1100 | Larch, fir, pine, white pine, pine, etc. | 1100 | 0 | 0 | 0 | Pests |
59 | Euplophora salicina | 1173 | Oak, Cyclobalanopsis glauca, birch, elm, alder, park and maple, etc. | 1173 | 0 | 0 | 0 | Pests |
60 | Ailanthus altissima | 1227 | Ailanthus altissima, toona ciliata, etc. | 1227 | 0 | 0 | 0 | Pests |
61 | Termite | 1164 | Within each plant | 1164 | 0 | 0 | 0 | Pests |
62 | Pine wood nematode | 390 | Masson pine forest, etc. | 390 | 0 | 0 | 0 | Pests |
63 | Yellow moth | 402 | Jujube, walnut, persimmon, maple, apple, Yang, etc. | 402 | 0 | 0 | 0 | Pests |
64 | Icerya purchasi maskell | 1020 | Boxwood, citrus, tung, holly, pomegranate, papaya, etc. | 1020 | 0 | 0 | 0 | Pests |
65 | Adelphocoris lineolatus | 1107 | Masson pine, fir, spruce, corns, cedar, larch, etc. | 1107 | 0 | 0 | 0 | Pests |
66 | Tomicus piniperda | 200 | Huashan pine, alpine pine, Yunnan pine, etc. | 200 | 0 | 0 | 0 | Pests |
67 | Rice leaf caterpillar | 201 | Rice, sorghum, corn, sugar cane, etc. | 0 | 91 | 110 | 0 | Pests |
68 | Paddy stem maggot | 128 | Rice, etc. | 0 | 72 | 56 | 0 | Pests |
69 | Asiatic rice borer | 814 | Rice, etc. | 0 | 560 | 254 | 0 | Pests |
70 | Yellow rice borer | 1138 | Rice, etc. | 0 | 636 | 502 | 0 | Pests |
71 | Rice gall midge | 1003 | Rice, lishihe, etc. | 0 | 813 | 190 | 0 | Pests |
72 | Rice stemfly | 124 | Rice, oil grass, etc. | 0 | 80 | 44 | 0 | Pests |
73 | Ampelophaga | 110 | Grapes | 0 | 105 | 5 | 0 | Pests |
74 | Earwig Furficulidae | 158 | Rice, grasses, alismataceae, commelina, etc. | 0 | 74 | 84 | 0 | Pests |
75 | Rice leafhopper | 223 | Rice, etc. | 0 | 64 | 159 | 0 | Pests |
76 | Rice shell pest | 763 | Rice, sesame, pumpkin, cotton, etc. | 0 | 530 | 233 | 0 | Pests |
77 | Black cutworm | 282 | Corn, cotton, tobacco, etc. | 0 | 239 | 43 | 0 | Pests |
78 | Tipulidae | 328 | Cotton, corn, sorghum, tobacco, etc. | 0 | 146 | 182 | 0 | Pests |
79 | Yellow cutworm | 150 | Crops, grasses and turfgrasses | 0 | 106 | 44 | 0 | Pests |
80 | Red spider | 282 | Solanaceae, Cucurbitaceae, Leguminosae, Liliaceae, etc. | 0 | 121 | 161 | 0 | Pests |
81 | Peach borer | 1003 | Chestnut, corn, sunflower, peach, plum, hawthorn, etc. | 0 | 401 | 602 | 0 | Pests |
82 | Curculionidae | 144 | Wheat, barley, oats, rice, corn, sugar cane, grass, etc. | 0 | 119 | 25 | 0 | Pests |
83 | Rhopalosiphum padi | 394 | Plum, peach, plum, etc. | 0 | 243 | 151 | 0 | Pests |
84 | Wheat blossom midge | 986 | Wheat | 0 | 424 | 562 | 0 | Pests |
85 | Pentfaleusmajor | 576 | Wheat, barley, peas, broad beans, rape, Chinese milk vetch, etc. | 0 | 308 | 268 | 0 | Pests |
86 | Aphidoidea | 142 | Wheat, barley, peas, alfalfa, weeds, etc. | 0 | 109 | 33 | 0 | Pests |
87 | Spodoptera frugiperda | 282 | Wheat, barley, rye, oat, sunflower, dandelion, green bristlegrass, etc. | 0 | 142 | 140 | 0 | Pests |
88 | Spodoptera litura Fabricius | 227 | Wheat | 0 | 139 | 88 | 0 | Pests |
89 | Mamestra brassicae Linnaeus | 169 | Wheat, oats, barley, etc. | 0 | 23 | 146 | 0 | Pests |
90 | Herminiinae | 2730 | Wheat, rice, etc. | 0 | 20 | 2710 | 0 | Pests |
91 | Cabbage army worm | 237 | Cabbage, cabbage, radish, spinach, carrot, etc. | 0 | 78 | 159 | 0 | Pests |
92 | Beet spot flies | 116 | Beet, cabbage, rape, cabbage, etc. | 0 | 64 | 52 | 0 | Pests |
93 | Psyllidae | 925 | Pear, peach, etc. | 0 | 552 | 373 | 0 | Pests |
94 | Alfalfa weevil | 172 | Clover, etc. | 0 | 37 | 135 | 0 | Pests |
95 | Acrida cinerea | 273 | Pea, soybean, sunflower, hemp, beet, cotton, tobacco, potato | 0 | 252 | 21 | 0 | Pests |
96 | Legume blister beetle | 130 | Legume | 0 | 21 | 109 | 0 | Pests |
97 | Therioaphis maculata buckton | 244 | Leguminosae forage | 0 | 81 | 163 | 0 | Pests |
98 | Odontothrips loti | 153 | Alfalfa | 0 | 100 | 53 | 0 | Pests |
99 | Thrips | 320 | Eggplant, cucumber, kidney bean, pepper, watermelon, etc. | 0 | 195 | 125 | 0 | Pests |
100 | Alfalfa seed chalcid | 491 | Leguminosae forage seed | 0 | 208 | 283 | 0 | Pests |
101 | Pieris canidia | 1003 | Cauliflower | 0 | 839 | 164 | 0 | Pests |
102 | Slug caterpillar moth | 190 | Bamboo and rice | 0 | 99 | 91 | 0 | Pests |
103 | Grape phylloxera | 284 | Grape | 0 | 165 | 119 | 0 | Pests |
104 | Colomerus vitis | 176 | Grape | 0 | 16 | 160 | 0 | Pests |
105 | Oides decempunctata | 1003 | Grapes, wild grapes, blackberries, etc. | 0 | 938 | 65 | 0 | Pests |
106 | paranthrene regalis butler | 260 | Grape | 0 | 190 | 70 | 0 | Pests |
107 | Eumenid poher wasp | 330 | Rice, corn, sorghum and wheat, etc. | 0 | 16 | 314 | 0 | Pests |
108 | Coccinellidae | 444 | Wheat, citrus, zanthoxylum bungeanum, citrus, etc. | 0 | 23 | 421 | 0 | Pests |
109 | Phyllocoptes oleiverus ashmead | 177 | Citrus | 0 | 109 | 68 | 0 | Pests |
110 | Crioceridae | 177 | Rice, centurion, euonymus japonicus, etc. | 0 | 70 | 107 | 0 | Pests |
111 | Ceroplastes rubens | 450 | Laurel, gardenia, osmanthus, rose, etc. | 0 | 450 | 0 | 0 | Pests |
112 | Parlatoria zizyphus lucus | 117 | Citrus plants, dates, coconuts, oil palm, laurel. | 0 | 97 | 20 | 0 | Pests |
113 | Aleurocanthus spiniferus | 192 | Citrus, oil tea, pear, persimmon, grape, etc. | 0 | 33 | 159 | 0 | Pests |
114 | Tetradacus c bactrocera minax | 194 | Mandarin orange and pomelo | 0 | 116 | 78 | 0 | Pests |
115 | Bactrocera tsuneonis | 635 | Citrus | 0 | 257 | 378 | 0 | Pests |
116 | Phyllocnistis citrella stainton | 219 | Citrus, willow, kumquat, etc. | 0 | 85 | 134 | 0 | Pests |
117 | Aphis citricola vander goot | 311 | Apple, amomum villosum, begonia, etc. | 0 | 253 | 58 | 0 | Pests |
118 | Atractomorpha sinensis Bolivar | 259 | Canna, celosia, chrysanthemum, hibiscus, poaceae, etc. | 0 | 236 | 23 | 0 | Pests |
119 | Sternochetus frigidus Fabricius | 154 | Mango | 0 | 107 | 47 | 0 | Pests |
120 | Mango flat beak leafhopper | 1003 | Mango | 0 | 244 | 759 | 0 | Pests |
121 | Flea beetle | 618 | Glycyrrhrizae radix, willow seedlings, etc. | 0 | 64 | 554 | 0 | Pests |
122 | Brevipoalpus lewisi mcgregor | 556 | Parthenocissus tricuspidata, magnolia officinalis, lilac, etc. | 0 | 390 | 166 | 0 | Pests |
123 | Polyphagotars onemus latus | 4385 | Melon, eggplant, pepper, etc. | 0 | 1118 | 3267 | 0 | Pests |
124 | Cicadella viridis | 120 | Poplar, willow, ash, apple, peach, pear, etc. | 0 | 82 | 38 | 0 | Pests |
125 | Rhytidodera bowrinii white | 210 | Mango, cashew nuts, face, etc. | 0 | 53 | 157 | 0 | Pests |
126 | Aphis citricola Vander Goot | 110 | Apple, sand fruit, begonia, etc. | 0 | 84 | 26 | 0 | Pests |
127 | Deporaus marginatus Pascoe | 296 | Mango, cashew nut and almond | 0 | 149 | 147 | 0 | Pests |
128 | Adristyrannus | 267 | Citrus, apple, grape, loquat, mango, pear, peach, etc. | 0 | 230 | 37 | 0 | Pests |
129 | Salurnis marginella Guerr | 285 | Coffee, tea, camellia oleifera, citrus, etc. | 0 | 272 | 13 | 0 | Pests |
130 | Dacus dorsalis | 201 | oranges, tangerines, etc. | 0 | 174 | 27 | 0 | Pests |
131 | Dasineura sp | 1247 | lychee, etc. | 0 | 555 | 692 | 0 | Pests |
132 | Trialeurodes vaporariorum | 1045 | Cucumber, kidney bean, eggplant, tomato, green pepper, etc. | 0 | 623 | 422 | 0 | Pests |
133 | Eriophyoidea | 361 | Citrus, apple, grape, loquat, mango, pear, peach, etc. | 0 | 0 | 361 | 0 | Pests |
134 | Mane gall mite | 854 | Chinese wolfberry | 0 | 0 | 854 | 0 | Pests |
135 | Mulberry powdery mildew | 260 | White mulberry | 0 | 0 | 0 | 260 | Diseases |
136 | Tobacco anthracnose | 229 | tobacco | 0 | 0 | 0 | 229 | Diseases |
137 | Apple_Scab general | 321 | Apple | 80 | 0 | 0 | 241 | Diseases |
138 | Apple_Scab serious | 232 | Apple | 58 | 0 | 0 | 174 | Diseases |
139 | Apple Frogeye Spot | 650 | Apple | 162 | 0 | 0 | 488 | Diseases |
140 | Cedar Apple Rust general | 277 | Apple | 69 | 0 | 0 | 208 | Diseases |
141 | Medlar powdery mildew | 170 | Medlar | 42 | 0 | 0 | 128 | Diseases |
142 | Medlar anthracnose | 170 | Medlar | 42 | 0 | 0 | 128 | Diseases |
143 | Grape powdery mildew | 290 | Grape | 72 | 0 | 0 | 218 | Diseases |
144 | Tehon and Daniels serious | 254 | Corn | 63 | 0 | 0 | 191 | Diseases |
145 | Rice bakanae | 736 | Corn | 184 | 0 | 0 | 552 | Diseases |
146 | Puccinia polysora serious | 541 | Corn | 135 | 0 | 0 | 406 | Diseases |
147 | Puccinia polysra | 316 | Corn | 79 | 0 | 0 | 237 | Diseases |
148 | Curvularia leaf spot fungus serious | 758 | Corn | 189 | 0 | 0 | 569 | Diseases |
149 | Maize dwarf mosaic virus | 1241 | Corn | 310 | 0 | 0 | 931 | Diseases |
150 | Grape Black Rot Fungus general | 580 | Grape | 145 | 0 | 0 | 435 | Diseases |
151 | Grape Black Rot Fungus serious | 704 | Grape | 176 | 0 | 0 | 528 | Diseases |
152 | Grape Black Measles Fungus general | 769 | Grape | 192 | 0 | 0 | 577 | Diseases |
153 | Grape Black Measles Fungus serious | 637 | Grape | 159 | 0 | 0 | 478 | Diseases |
154 | Grape Leaf Blight Fungus serious | 960 | Grape | 240 | 0 | 0 | 720 | Diseases |
155 | Liberobacter asiaticum | 1796 | Orange | 699 | 0 | 0 | 1097 | Diseases |
156 | Citrus Greening June serious | 1748 | Orange | 687 | 0 | 0 | 1061 | Diseases |
157 | Grape brown spot | 1305 | Grape | 326 | 0 | 0 | 979 | Diseases |
158 | Peach_Bacterial Spot serious | 1173 | Peach | 293 | 0 | 0 | 880 | Diseases |
159 | Peach scab | 695 | Peach | 327 | 0 | 0 | 368 | Diseases |
160 | Pepper scab | 512 | Pepper | 81 | 0 | 0 | 431 | Diseases |
161 | Pear scab | 519 | Pear | 232 | 0 | 0 | 287 | Diseases |
162 | Potato_Early Blight Fungus serious | 692 | Potato | 109 | 0 | 0 | 583 | Diseases |
163 | Phyllostcca pirina Sacc | 452 | Potato | 240 | 0 | 0 | 212 | Diseases |
164 | Potato_Late Blight Fungus serious | 623 | Potato | 113 | 0 | 0 | 510 | Diseases |
165 | Strawberry_Scorch general | 601 | Strawberry | 219 | 0 | 0 | 382 | Diseases |
166 | Strawberry_Scorch serious | 673 | Strawberry | 97 | 0 | 0 | 576 | Diseases |
167 | Tomato powdery mildew general | 630 | Tomato | 365 | 0 | 0 | 265 | Diseases |
168 | Tomato powdery mildew serious | 487 | Tomato | 83 | 0 | 0 | 404 | Diseases |
169 | Strawberry leaf blight | 939 | Strawberry | 287 | 0 | 0 | 652 | Diseases |
170 | Tomato_Early Blight Fungus serious | 617 | Tomato | 112 | 0 | 0 | 505 | Diseases |
171 | Tomato_Late Blight Water Mold general | 611 | Tomato | 302 | 0 | 0 | 309 | Diseases |
172 | Tomato_Late Blight Water Mold serious | 830 | Tomato | 163 | 0 | 0 | 667 | Diseases |
173 | Tomato_Leaf Mold Fungus general | 807 | Tomato | 371 | 0 | 0 | 436 | Diseases |
174 | Tomato_Leaf Mold Fungus serious | 471 | Tomato | 87 | 0 | 0 | 384 | Diseases |
175 | Tomato_Septoria Leaf Spot Fungus general | 549 | Tomato | 281 | 0 | 0 | 268 | Diseases |
176 | Tomato_Septoria Leaf Spot Fungus serious | 1132 | Tomato | 210 | 0 | 0 | 922 | Diseases |
177 | Tomato Mite Damage general | 930 | Tomato | 319 | 0 | 0 | 611 | Diseases |
178 | Tomato Mite Damage serious | 929 | Tomato | 480 | 0 | 0 | 449 | Diseases |
179 | Tomato YLCV Virus general | 1212 | Tomato | 616 | 0 | 0 | 596 | Diseases |
180 | Tomato YLCV Virus serious | 2350 | Tomato | 524 | 0 | 0 | 1826 | Diseases |
181 | Tomato Tomv | 599 | Tomato | 301 | 0 | 0 | 298 | Diseases |
TOTAL | 123,987 | 33,160 | 33,801 | 33,370 | 23,656 |
References
- Manavalan, R. Automatic identification of diseases in grains crops through computational approaches: A review. Comput. Electron. Agric. 2020, 178, 105802. [Google Scholar] [CrossRef]
- Kong, J.; Wang, H.; Wang, X.; Jin, X.; Fang, X.; Lin, S. Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture. Comput. Electron. Agric. 2021, 185, 106134. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. Crop Deep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [Green Version]
- Marcu, I.M.; Suciu, G.; Balaceanu, C.M.; Banaru, A. IOT based system for smart agriculture. In Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence, Pitesti, Romania, 27–29 June 2019; pp. 1–4. [Google Scholar]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Ding, F.; Chen, T. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 2004, 40, 1739–1748. [Google Scholar] [CrossRef]
- Ding, F.; Chen, T. Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom. Control 2005, 50, 1436–1441. [Google Scholar] [CrossRef]
- Ding, F.; Shi, Y.; Chen, T. Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 2007, 56, 373–380. [Google Scholar] [CrossRef]
- Xu, L. Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window. Circuits Syst. Signal Process. 2022, 41, 805–830. [Google Scholar] [CrossRef]
- Xu, L. Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length. Int. J. Control Autom. Syst. 2022, 20, 432–443. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Ding, F. Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process. Lett. 2020, 27, 1600–1604. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, X. Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 2022, 414, 126663. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, X. Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3597–3601. [Google Scholar] [CrossRef]
- Zhang, X. Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 2022, 29, 399–403. [Google Scholar] [CrossRef]
- Ding, J.; Liu, X.P.; Liu, G. Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 2011, 56, 2677–2683. [Google Scholar] [CrossRef]
- Ding, F.; Liu, Y.J.; Bao, B. Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2012, 226, 43–55. [Google Scholar] [CrossRef]
- Xu, L.; Chen, F.Y.; Hayat, T. Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 2021, 35, 676–693. [Google Scholar] [CrossRef]
- Kumar, S.A.; Ilango, P. The impact of wireless sensor network in the field of precision agriculture: A review. Wirel. Pers. Commun. 2018, 98, 685–698. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.; Wang, Y.L.; Yu, Q. Learning Attentive pairwise interaction for fine-grained classification. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Association for the Advancement of Artificial Intelligence: Menlo Park, CA, USA, 2020; Volume 34, pp. 13130–13137. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Jie, H.; Li, S.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Gao, H.; Zhuang, L.; Laurens, V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tan, M.X.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Wang, D.; Deng, L.M.; Ni, J.G.; Zhu, H.; Han, Z. Recognition Pest by Image-Based Transfer Learning. J. Sci. Food Agric. 2019, 99, 4524–4531. [Google Scholar]
- Rupali, S.K.; Vibha, V.; Alwin, A. Component-based face recognition under transfer learning for forensic Applications. Inf. Sci. 2019, 476, 176–191. [Google Scholar]
- Liao, W.X.; He, P.; Hao, J.; Wang, X.-Y.; Yang, R.-L.; An, D.; Cui, L.-G. Automatic identification of breast ultrasound image based on supervised block-based region segmentation algorithm and features combination migration deep learning model. IEEE J. Biomed. Health Inform. 2020, 24, 984–993. [Google Scholar] [CrossRef]
- Anagnostis, A.; Asiminari, G.; Papageorgiou, E.; Bochtis, D. A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Appl. Sci. 2020, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Anagnostis, A.; Tagarakis, A.C.; Asiminari, G.; Papageorgiou, E.; Kateris, D.; Moshou, D.; Bochtis, D. A deep learning approach for anthracnose infected trees classification in walnut. Comput. Electron. Agric. 2021, 182, 105998. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ge, W.F.; Lin, X.G.; Yu, Y.Z. Weakly supervised complementary parts models for fine-grained image classification from the bottom up. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3034–3043. [Google Scholar]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Wang, J.-L. Probability fusion decision framework of multiple deep neural networks for fine-grained visual classification. IEEE Access 2019, 7, 122740–122757. [Google Scholar] [CrossRef]
- Zhen, T.; Kong, J.L.; Yan, L. Hybrid deep-learning framework based on gaussian fusion of multiple spatiotemporal networks for walking gait phase recognition. Complexity 2020, 2020, 8672431. [Google Scholar] [CrossRef]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Zuo, M.; Zhang, Q.-C.; Lin, S. Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse. Agriculture 2021, 11, 802. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Mohanty, S.P.; David, P.H.; Marcel, S. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419–1426. [Google Scholar] [CrossRef] [Green Version]
- Alex, K.; Ilya, S.; Geoffrey, E.H. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Processing Syst. 2012, 25, 1097–1105. [Google Scholar]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Wu, X.; Zhan, C.; Lai, Y.-K.; Cheng, M.-M.; Yang, J. Ip102: A large-scale benchmark dataset for insect pest recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8787–8796. [Google Scholar]
- Ding, F. Two-stage least squares based iterative estimation algorithm for CARARMA system modelling. Appl. Math. Model. 2013, 37, 4798–4808. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 Computer Vision and Pattern Recognition IEEE, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Liu, Y.; Ding, F.; Shi, Y. An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 2014, 50, 962–970. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J. Centermask: Real-time anchor-free instance segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13906–13915. [Google Scholar]
- Qin, Z.Q.; Zhang, P.Y.; Wu, F.; Li, X. Fcanet: Frequency channel attention networks. In Proceedings of the 2020 IEEE/CVF International Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2020; pp. 783–792. [Google Scholar]
- Zhang, T.; Chang, D.; Ma, Z.; Guo, J. Progressive co-attention network for fine-grained visual classification. In Proceedings of the 2021 International Conference on Visual Communications and Image Processing, Munich, Germany, 5–8 December 2021; pp. 1–5. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. Supplementary material for “ECA-Net: Efficient channel attention for deep convolutional neural networks”. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Kong, S.; Fowlkes, C. Low-rank bilinear pooling for fine-grained classification. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition IEEE Computer Society, Honolulu, HI, USA, 21–26 July 2017; pp. 365–374. [Google Scholar]
- Li, P.H.; Xie, J.T.; Wang, Q.L.; Zuo, W. Is Second-order information helpful for large-scale visual recognition? In Proceedings of the 2017 IEEE International Conference on Computer Vision, IEEE, Venice, Italy, 22–29 October 2017; pp. 2070–2078. [Google Scholar]
- Du, R.; Chang, D.; Bhunia, A.K.; Xie, J.; Ma, Z.; Song, Y.-Z.; Guo, J. Fine-grained visual classification via progressive multi-granularity training of jigsaw Patches. In Proceedings of the 2020 European Conference on Computer Vision, online, 23–28 August 2020; pp. 153–168. [Google Scholar]
- Ji, R.; Wen, L.; Zhang, L.; Du, D.; Wu, Y.; Zhao, C.; Liu, X.; Huang, F. Attention convolutional binary neural tree for fine-grained visual categorization. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10468–10477. [Google Scholar]
- Lin, T.Y.; Aruni, R.; Subhransu, M. Bilinear Cnn models for fine-grained visual recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar]
- Zhang, Q.L.; Yang, Y.B. Sa-Net: Shuffle attention for deep convolutional neural networks. In Proceedings of the ICASSP 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON, Canada, 6–11 June 2021; pp. 2235–2239. [Google Scholar]
- Han, K.; Wang, Y.H.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More Features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Zhang, X.Y.; Zhou, X.Y.; Lin, M.X.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Filip, R.; Giorgos, T.; Ondrej, C. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 1655–1668. [Google Scholar]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Ding, Y.; Ma, Z.; Wen, S.; Xie, J.; Chang, D.; Si, Z.; Wu, M.; Ling, H. AP-CNN: Weakly supervised attention pyramid convolutional neural network for fi-ne-grained visual classification. IEEE Trans. Image Process. 2021, 30, 2826–2836. [Google Scholar] [CrossRef]
- Woo, S.Y.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, Y. Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 2016, 71, 308–313. [Google Scholar] [CrossRef]
- Li, P.; Xie, J.; Wang, Q.; Gao, Z. Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 947–955. [Google Scholar]
- Kong, J.L.; Yang, C.C.; Wang, J.L.; Wang, X.; Zuo, M.; Jin, X.; Lin, S. Deep-stacking network approach by multisource data mining for hazardous risk identification in IoT-based intelligent food management systems. Comput. Intell. Neurosci. 2021, 2021, 1194565. [Google Scholar] [CrossRef]
- Cai, W.; Wei, Z. PiiGAN: Generative adversarial networks for pluralistic image inpainting. IEEE Access 2020, 8, 48451–48463. [Google Scholar] [CrossRef]
- Cai, W.W.; Wei, Z.G. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Guo, N.; Gu, K.; Qiao, J.F. Active vision for deep visual learning: A unified pooling framework. IEEE Trans. Ind. Inform. 2021, 10, 1109. [Google Scholar] [CrossRef]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. PFVAE: A planar flow-based variational auto-encoder prediction model for time series data. Mathematics 2022, 10, 610. [Google Scholar] [CrossRef]
- Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. A variational Bayesian deep network with data self-screening layer for massive time-series data forecasting. Entropy 2022, 24, 355. [Google Scholar] [CrossRef]
- Jin, X.B.; Zhang, J.S.; Kong, J.L.; Su, T.L.; Bai, Y.T. A reversible automatic selection normalization (RASN) deep network for predicting in the smart agriculture system. Agronomy 2022, 12, 591. [Google Scholar] [CrossRef]
- Shi, Z.; Bai, Y.; Jin, X.; Wang, X.; Su, T.; Kong, J. Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series. Entropy 2022, 24, 360. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Q.M. Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses. Int. J. Syst. Sci. 2021, 52, 1806–1821. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Hayat, T. Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Frankl. Inst. 2018, 355, 3079–3103. [Google Scholar] [CrossRef]
- Pan, J.; Jiang, X.; Ding, W. A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 2017, 15, 1189–1197. [Google Scholar] [CrossRef]
- Pan, J.; Ma, H.; Liu, Q.Y. Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises. IET Signal Process. 2020, 14, 455–466. [Google Scholar] [CrossRef]
- Ding, F.; Liu, G.; Liu, X.P. Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Autom. Control 2010, 55, 1976–1981. [Google Scholar] [CrossRef]
- Ding, F.; Shi, Y.; Chen, T. Performance analysis of estimation algorithms of non-stationary ARMA processes. IEEE Trans. Signal Process. 2006, 54, 1041–1053. [Google Scholar] [CrossRef]
- Zhang, X. Adaptive parameter estimation for a general dynamical system with unknown states. Int. J. Robust Nonlinear Control 2020, 30, 1351–1372. [Google Scholar] [CrossRef]
- Pan, J.; Li, W.; Zhang, H.P. Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int. J. Control Autom. Syst. 2018, 16, 2878–2887. [Google Scholar] [CrossRef]
- Ma, H.; Pan, J.; Ding, W. Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems. IET Control Theory Appl. 2019, 13, 3040–3051. [Google Scholar] [CrossRef]
- Ding, F.; Liu, X.P.; Yang, H.Z. Parameter identification and intersample output estimation for dual-rate systems. IEEE Trans. Syst. Man. Cybern. Part A Syst. Hum. 2008, 38, 966–975. [Google Scholar] [CrossRef]
- Xu, L.; Yang, E.F. Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonlinear Control 2021, 31, 148–165. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhou, Y.Q.; Wang, X.Y.; Wang, Z.; Bai, Y. Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems. Expert Syst. Appl. 2022, 193, 116404. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.; Wang, X.; Xiong, K.; Shi, C. Microbiological predictive modeling and risk analysis based on the one-step kinetic integrated Wiener process. Innovat. Food Sci. Emerg. Technol. 2022, 75, 102912. [Google Scholar] [CrossRef]
- Ding, F.; Liu, X.P.; Liu, G. Multiinnovation least squares identification for linear and pseudo-linear regression models. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2010, 40, 767–778. [Google Scholar] [CrossRef]
- Yao, P.; Wei, Y.; Zhao, Z. Null-space-based modulated reference trajectory generator for multi-robots formation in obstacle environment. ISA Trans. 2022, 7, 1–18. [Google Scholar] [CrossRef]
- Zhang, X. Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 2020, 51, 275–290. [Google Scholar] [CrossRef]
- Wang, H.; Fan, H.; Pan, J. Complex dynamics of a four-dimensional circuit system. Int. J. Bifurc. Chaos 2021, 31, 2150208. [Google Scholar] [CrossRef]
Method | Backbone | Top-1 Acc (%) | Top-5 Acc (%) | F1 | ART (ms) |
---|---|---|---|---|---|
VGG-16 [19] | 74.62 | 88.87 | 0.794 | 39 | |
ResNet-50 [30] | 76.91 | 90.04 | 0.808 | 34 | |
ResNeXt-50 [57] | 77.47 | 90.11 | 0.810 | 33 | |
CSPResNeXt-50 [35] | 77.86 | 90.18 | 0.816 | 31 | |
DenseNet-121 [23] | 76.84 | 90.02 | 0.808 | 36 | |
CSPNet-v2-50 [35] | 80.44 | 91.47 | 0.841 | 39 | |
VGG-19 [19] | 76.16 | 89.65 | 0.801 | 59 | |
ResNet-101 [30] | 79.19 | 90.53 | 0.834 | 48 | |
ResNeXt-101 [57] | 79.81 | 90.76 | 0.838 | 46 | |
CSPResNeXt-101 [35] | 80.12 | 91.17 | 0.841 | 43 | |
DenseNet-201 [23] | 78.57 | 90.51 | 0.831 | 54 | |
CSPNet-v2-101 [35] | 82.05 | 92.77 | 0.857 | 55 | |
B-CNN [40] | VGG-19 [19] | 80.38 | 91.57 | 0.844 | 69 |
iSQ-RTCOV(32k) [58] | ResNet-101 [30] | 83.11 | 93.95 | 0.871 | 61 |
PMG [50] | ResNet-50 | 82.84 | 93.64 | 0.859 | 72 |
API-Net [20] | ResNet-50 | 82.67 | 93.87 | 0.861 | 84 |
Proposed Fe-Net | CSPNet-v2(50) | 84.59 | 94.41 | 0.877 | 57 |
Proposed Fe-Net | CSPNet-v2(101) | 85.29 | 95.07 | 0.887 | 61 |
Method | Top-1 Acc (%) |
---|---|
CSPResNeXt-50 | 77.86 |
CSPResNeXt-50 + channel shuffle | 78.39 (+0.53) |
CSPResNeXt-50 + FEA | 79.81 (+1.95) |
CSPResNeXt-50 + ISQRT-COV | 82.11 (+4.25) |
CSPResNeXt-50 + channel shuffle + FEA + ISQRT-COV (Fe-Net) | 84.59 (+6.73) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.; Wang, H.; Yang, C.; Jin, X.; Zuo, M.; Zhang, X. A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition. Agriculture 2022, 12, 500. https://doi.org/10.3390/agriculture12040500
Kong J, Wang H, Yang C, Jin X, Zuo M, Zhang X. A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition. Agriculture. 2022; 12(4):500. https://doi.org/10.3390/agriculture12040500
Chicago/Turabian StyleKong, Jianlei, Hongxing Wang, Chengcai Yang, Xuebo Jin, Min Zuo, and Xin Zhang. 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition" Agriculture 12, no. 4: 500. https://doi.org/10.3390/agriculture12040500
APA StyleKong, J., Wang, H., Yang, C., Jin, X., Zuo, M., & Zhang, X. (2022). A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition. Agriculture, 12(4), 500. https://doi.org/10.3390/agriculture12040500