Flowering Behavior and Selection of Hybrid Potato Clones through LXT Breeding Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climatic Details
2.2. Plant Material and Generation of Hybrid Lines
2.3. Data Collection on Flowering Days and Plant Characteristics
2.4. Statistical Analysis
3. Results
3.1. Flower Initiation (Days) and the Choice of Male Parents’
3.2. Mean Performance
3.3. Combining Ability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Larkin, R.; Honeycutt, W. Sustainable Potato Production: Global Case Studies; Springer Science & Business Media: Heidelberg, Germany, 2012. [Google Scholar]
- FAOSTAT. Food and Agriculture Data; Food and Agricultural Organization of United Nations: Rome, Italy, 2020; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 January 2022).
- Galdón, B.R.; Rodríguez, L.H.; Mesa, D.R.; León, H.L.; Pérez, N.L.; Rodríguez Rodríguez, E.M.; Romero, C.D. Differentiation of Potato Cultivars Experimentally Cultivated Based on Their Chemical Composition and by Applying Linear Discriminant Analysis. Food Chem. 2012, 133, 1241–1248. [Google Scholar] [CrossRef]
- Gibson, S.; Kurilich, A.C. The Nutritional Value of Potatoes and Potato Products in the UK Diet. Nutr. Bull. 2013, 38, 389–399. [Google Scholar] [CrossRef]
- Navarre, D.A.; Pillai, S.S.; Shakya, R.; Holden, M.J. HPLC Profiling of Phenolics in Diverse Potato Genotypes. Food Chem. 2011, 127, 34–41. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugala, M. The effect of herbicides and soil tillage systems on the content of polyphenols in potato tubers. Pol. J. Environ. Stud. 2011, 20, 513–517. [Google Scholar]
- Moazzem, K.G.; Fujita, K. The Potato Marketing System and Its Changes In Bangladesh: From the Perspective of a Village Study in Comilla District. Dev. Econ. 2004, 42, 63–94. [Google Scholar] [CrossRef]
- Pęksa, A.; Kita, A.; Kułakowska, K.; Aniołowska, M.; Hamouz, K.; Nemś, A. The Quality of Protein of Coloured Fleshed Potatoes. Food Chem. 2013, 141, 2960–2966. [Google Scholar] [CrossRef]
- Mondal, M.; Hossain, M.; Rasul, M.; Uddin, M.S. Genetic Diversity in Potato (Solanum Tuberosum L.). Bangladesh. J. Bot. 2007, 36, 121–125. [Google Scholar] [CrossRef]
- Bonierbale, M.W.; Amoros, W.R.; Salas, E.; de Jong, W. Potato Breeding; Springer: Berlin/Heidelberg, Germany, 2020; pp. 163–217. [Google Scholar] [CrossRef]
- Franco, M.C.; Cassini, S.T.; Oliveira, V.R.; Vieira, C.; Tsai, S.M.; Cruz, C.D. Combining ability for nodulation in common bean (Phaseolus vulgaris L.) genotypes from Andean and Middle American gene pools. Euphytica 2001, 118, 265–270. [Google Scholar] [CrossRef]
- Sprague, G.F.; Tatum, L.A. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 1942, 34, 923–932. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khan, S.A. Line x Tester analysis in true seed of potato (Solanum tubersum spp tubersum). Online J. Bio. Sci. 2003, 3, 674–680. [Google Scholar]
- Simmonds, N.W. Family Selection in Plant Breeding. Euphytica 1996, 90, 201–208. [Google Scholar] [CrossRef]
- Muthoni, J.; Shimelis, H.; Melis, R.; Kabira, J. Reproductive biology and early generation’s selection in conventional potato breeding. Aust. J. Crop Sci. 2012, 6, 488–497. [Google Scholar]
- Kundu, B.C.; Islam, M.S.; Kawochar, M.A.; Rashid, M.H. Potato (Solanum Tuberosum L.) Variety Development through Hybridization: A New Era in Bangladesh. Bangladesh. J. Agric. Res. 2013, 38, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, F.; Wu, Y.; Hu, H.; Dai, X. Progress of Potato Staple Food Research and Industry Development in China. J. Integr. Agric. 2017, 16, 2924–2932. [Google Scholar] [CrossRef]
- Ure, G.B.; Loughton, A. Plug-mix planting of pregerminated seed in ontario. Acta Hortic. 1978, 72, 125–126. [Google Scholar] [CrossRef]
- Kempthorne, O. An Introduction to Genetic Statistics; John Wiley and Sons, Inc.: New York, NY, USA, 1957. [Google Scholar]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 20 December 2021).
- Bethke, P.C.; Jansky, S.H. Genetic and Environmental Factors Contributing to Reproductive Success and Failure in Potato. Am. J. Potato Res. 2021, 98, 24–41. [Google Scholar] [CrossRef]
- Gopal, J.; Rana, M.S. Induction of flowering in potato in north-western plains of India. J. Indian. Potato Assoc. 1988, 15, 91–93. [Google Scholar]
- Gopal, J. Flowering Behaviour, Male Sterility and Berry Setting in Tetraploid Solanum Tuberosum Germplasm. Euphytica 1993, 72, 133–142. [Google Scholar] [CrossRef]
- Lv, A.; Zhang, H.; Zhang, Z.; Tao, Y.; Yue, B.; Zheng, Y. Conversion of the Statistical Combining Ability into a Genetic Concept. J. Integr. Agric. 2012, 11, 43–52. [Google Scholar] [CrossRef]
- Christie, B.R.; Shattuck, V.I. The diallel cross: Design, analysis, and use for plant breeders. Plant Breed. Rev. 2010, 74, 9–36. [Google Scholar] [CrossRef]
- Terres, L.R.; Lenz, E.A.; Rocha, D.; Cerioli, M.; da Silva Pereira, A. Combining Ability of Potato Parents for Tuber Appearance and Tuber Yield Component Traits. Crop. Breed. Appl. Biotechnol. 2017, 17, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Killick, R.J. Genetic analysis of several traits in potatoes by means of a diallel cross. Ann. Appl. Biol. 1977, 86, 279–289. [Google Scholar] [CrossRef]
- Gopal, J. General Combining Ability and Its Repeatability in Early Generations of Potato Breeding Programmes. Potato Res. 1998, 41, 21–28. [Google Scholar] [CrossRef]
Clone/Variety | Source | Origin | Skin Colour | Tuber Shape | Flesh Colour |
---|---|---|---|---|---|
BARI Alu-25 (Line 1) | Exotic | Netherlands | Red | long oval | Light yellow |
BARI Alu-37 (Line 2) | Clone-4.4 | Bangladesh | Yellow | oval | Light yellow |
BARI Alu-41 (Line 3) | Clone-5.183 | Bangladesh | Red | Short-oval | Light yellow |
BARI Alu-53 (Line 4) | LB-6 | CIP | Red | Round | Light yellow |
BARI Alu-77 (Line 5) | Exotic | Denmark | Red | Round | Light yellow |
BARI Alu-79 (Line 6) | CIP-126 | CIP | Purplish Red | Long oval | Light yellow |
BARI Alu-56 (Line 7) | Clone-8.46 | Bangladesh | Red | Short-oval | Light yellow |
BARI Alu-86 (Tester 1) | Clone-12.13 | Bangladesh | Red | Long oval | Light yellow |
BARI Alu-72 (Tester 2) | CIP-139 | CIP | Red | Short-oval | Light yellow |
Accessions | 2019–2020 | Accessions | 2020–2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | SE | Mean | Max | Min | SE | ||
BARI Alu-25 | 71.5 | 76 | 67 | 4.5 | BARI Alu-25 | 122 | 128 | 116 | 6 |
BARI Alu-31 | 52 | 54 | 50 | 2.3 | BARI Alu-31 | 75 | 86 | 64 | 11 |
BARI Alu-32 | 66 | 79 | 53 | 13 | BARI Alu-32 | 67.5 | 82 | 53 | 14.5 |
BARI Alu-34 | 65.5 | 69 | 62 | 3.5 | BARI Alu-34 | 69.5 | 79 | 60 | 9.5 |
BARI Alu-36 | 73.5 | 77 | 70 | 3.5 | BARI Alu-36 | 67 | 78 | 56 | 11 |
BARI Alu-37 | 61 | 69 | 53 | 8 | BARI Alu-37 | 70 | 80 | 60 | 10 |
BARI Alu-38 | 63 | 67 | 59 | 4 | BARI Alu-38 | 71 | 74 | 68 | 3 |
BARI Alu-41 | 86.5 | 94 | 79 | 7.5 | BARI Alu-41 | 76 | 87 | 65 | 11 |
BARI Alu-47 | 50.5 | 57 | 44 | 6.5 | BARI Alu-47 | 58 | 73 | 43 | 15 |
BARI Alu-48 | 54.5 | 58 | 51 | 3.5 | BARI Alu-48 | 85.5 | 110 | 61 | 24.5 |
BARI Alu-49 | 76.5 | 87 | 66 | 10.5 | BARI Alu-49 | 80 | 100 | 60 | 20 |
BARI Alu-53 | 63 | 67 | 58 | 2.65 | BARI Alu-53 | 82 | 99 | 65 | 17 |
BARI Alu-7 | 69.75 | 72 | 67 | 1.11 | BARI Alu-7 | 75.50 | 83 | 68 | 7.5 |
BARI Alu-71 | 75 | 83 | 67 | 8 | BARI Alu-71 | 71.5 | 86 | 57 | 14.5 |
BARI Alu-72 | 60.5 | 63 | 58 | 2.5 | BARI Alu-72 | 70 | 78 | 62 | 8 |
BARI Alu-73 | 58 | 63 | 53 | 5 | BARI Alu-73 | 70 | 79 | 61 | 9 |
BARI Alu-75 | 72 | 76 | 68 | 4 | BARI Alu-75 | 73.5 | 82 | 65 | 8.50 |
BARI Alu-79 | 83.5 | 90 | 77 | 6.5 | BARI Alu-79 | 83.5 | 101 | 66 | 17.5 |
BARI Alu-8 | 80.33 | 93 | 69 | 6.96 | BARI Alu-8 | 100.5 | 122 | 79 | 21.5 |
BARI Alu-82 | 78 | 83 | 73 | 5 | BARI Alu-82 | 98 | 103 | 93 | 5 |
BARI Alu-83 | 54 | 52 | 56 | 2.3 | BARI Alu-83 | 83 | 86 | 80 | 6 |
BARI Alu-86 | 63 | 69 | 57 | 6 | BARI Alu-86 | 71.5 | 74 | 69 | 2.50 |
BARI Alu-88 | 77 | 81 | 73 | 4 | BARI Alu-88 | 92.5 | 118 | 67 | 25.5 |
Cross Families | Plant Height (cm) | Stem/Hill | No of Tuber/pl | Yield Per Plant (gm) | Shape | Skin Color |
---|---|---|---|---|---|---|
BA 37 × BA-86 | 113 ± 3.28 | 1.6 ± 0.15 | 20 ± 2.33 | 982 ± 7.84 | Oval | Red |
BA 37 × BA-72 | 95 ± 3.61 | 1.6 ± 0.06 | 23 ± 2.65 | 742 ± 2.57 | Round | Red |
BA 25 × BA-86 | 87 ± 4.36 | 1.2 ± 0.15 | 5 ± 2.85 | 302 ± 13.53 | Oval | Red |
BA 25 × BA-72 | 115 ± 3.48 | 1.4 ± 0.1 | 13 ± 2.4 | 346 ± 7.72 | Oval | Red |
BA 41 × BA-86 | 94 ± 3.84 | 1.4 ± 0.06 | 19 ± 3.06 | 542 ± 4.91 | oval | red |
BA 41 × BA-72 | 104 ± 2.03 | 1.3 ± 0.15 | 14 ± 1.76 | 495 ± 7.51 | oval | red |
BA 53 × BA 86 | 132 ± 2.03 | 2.4 ± 0.015 | 10 ± 2.73 | 724 ± 15.86 | oblong | white |
BA 53 × BA 72 | 115 ± 2.08 | 1.5 ± 0.15 | 11 ± 2.73 | 610 ± 7.37 | oval | red |
BA 77 × BA 86 | 97.6 ± 2.08 | 1.4 ± 0.12 | 9 ± 4.1 | 513 ± 2.33 | oval | red |
BA 77 × BA 72 | 102.4 ± 2.96 | 1.2 ± 0.12 | 8 ± 1.0 | 713 ± 5.46 | oval | red |
BA 79 × BA 86 | 80.2 ± 2.96 | 1.2 ± 0.06 | 5 ± 1.45 | 318 ± 9.84 | long oval | red |
BA 79 × BA 72 | 99 ± 5.04 | 1.6 ± 0.1 | 7 ± 2.03 | 612 ± 7.31 | oval | red |
BA 56 × BA 86 | 83 ± 3.38 | 1.5 ± 0.1 | 16 ± 2.4 | 510 ± 7.09 | oval | red |
BA 56 × BA 72 | 84 ± 3.18 | 1.6 ± 0.21 | 13 ± 1.45 | 625 ± 5.86 | oval | red |
Min | 80.2 | 1.2 | 5 | 302 | ||
Max | 132 | 2.4 | 23 | 982 | ||
Mean | 100.09 | 1.49 | 12.36 | 573.86 |
Source of Variation | Df | Plant Height | Stem per Hill | Tuber Number per Plant | Yield per Plant (in Grams) |
---|---|---|---|---|---|
Replications | 2 | 34.48 | 70.870 | 0.0580 | 278740 *** |
Treatments (entries) | 22 | 470.02 *** | 47.062 | 103.518 *** | 23034 *** |
Parents | 8 | 767.70 *** | 17.315 | 116.667 *** | 13368 ** |
Parents vs crosses | 1 | 194.69 | 20.653 | 0.0010 | 54298 *** |
Crosses (hybrids) | 13 | 308.01 * | 67.399 | 103.388 *** | 26577 *** |
Lines (female) | 6 | 467.27 * | 97.143 | 159.841 * | 43176 |
Testers (male) | 1 | 557.36. | 115.238 | 173.571 | 8889 |
Lines x Testers | 6 | 107.19 | 29.683 | 35.238 | 12926 ** |
Error | 44 | 128.11 | 38.445 | 24.36 | 3851 |
σ2g (L) | 60.01 | 1.12 | 2.076 | 5041 | |
σ2g (T) | 21.44 | 0.407 | 0.658 | −192.23 | |
σ2gca | 6.54 | 0.122 | 0.222 | 444.77 | |
σ2sca | 76.51 | 1.285 | 3.061 | 5492.649 | |
σ2gca/σ2sca | 0.08 | 0.095 | 0.07 | 0.080 | |
Contribution of line (%) | 70.02 | 66.52 | 71.36 | 74.99 | |
Contribution of tester (%) | 13.92 | 13.15 | 12.91 | 2.57 | |
Contribution of line × tester (%) | 16.06 | 20.33 | 15.73 | 22.44 |
Source of Variation | Plant Height (Mean) (cm) | Stem per Hill (Mean) | No of Tuber per Plant (Mean) | Yield per Plant (in Grams) (Mean) |
---|---|---|---|---|
BARI Alu-25 (Line1) | −2.238 (84.50) | 0.238 (5.33) | −1.047 ** (8.50) | −66.261 *** (309.00) |
BARI Alu-37 (Line2) | 3.595 (90.33) | 0.738 (5.833) | 2.952 *** (12.50) | 117.404 *** (492.66) |
BARI Alu-41 (Line3) | 9.595 ** (96.33) | −0.428 (4.66) | 0.4523 (10.00) | 2.238 (377.50) |
BARI Alu-53 (Line4) | 11.595 *** (98.33) | −1.261 (3.833) | −0.8809 (8.66) | −90.928 *** (284.33) |
BARI Alu-77 (Line5) | −10.071 ** (76.66) | −1.095 (4.00) | −2.214 *** (7.33) | −87.428 *** (287.833) |
BARI Alu-79 (Line6) | −1.571 (85.166) | 2.404 *** (7.50) | 0.4523 (10.00) | 87.738 *** (463.00) |
BARI Alu-56 (Line7) | −10.904 ** (75.833) | −0.595 (4.50) | 0.285 (9.833) | 37.23 (412.50) |
SE | 4.62 | 0.80 | 0.64 | 25.33 |
BARI Alu-86 (Tester1) | 3.642 (90.38) | 0.523 (5.61) | 0.642 (10.19) | 14.547 (389.80) |
BARI Alu-72 (Tester2) | −3.642 (83.09) | −0.523 (4.571) | −0.642 (8.90) | −14.54 (360.714) |
SE | 2.46995 | 0.42787 | 0.90 | 35.83 |
Crosses | Plant Height (cm) | Stem Per Hill | Tuber Per Plant (No.) | Yield Per Plant (in Grams) |
---|---|---|---|---|
BA-25 × BA-86 | 1.19 (89.33ab) | −0.19 (5.67a) | −1.142 (8.00ab) | −55.88 (267.66cde) |
BA-25 × BA-72 | −1.19 (79.667b) | 0.19 (5.00a) | 1.1428 (9.00ab) | 55.88 (350.33abcde) |
BA-37 × BA-86 | 9.976 (96.67ab) | 1.69 (7.00a) | 0.809 (12.67a) | 63.88 ** (542.00a) |
BA-37 × BA-72 | −9.976 (84.00b) | −1.69 (4.67a) | −0.809 (12.33a) | −63.88 ** (443.33abcd) |
BA-41 × BA-86 | 3.357 (103.33ab) | 0.476 (5.67a) | 0.3571 (11.00ab) | 40.952 (433.00abcd) |
BA-41 × BA-72 | −3.357 89.33ab | −0.476 3.67a | −0.357 9.00ab | −40.952 322.00bcde |
BA-53 × BA-86 | −0.69 (94.00ab) | 1.0238 (4.33a) | 2.309 *** (10.33ab) | 42.21 (312.00bcde) |
BA-53 × BA-72 | 0.6904 (102.67ab) | −1.0238 (3.33a) | −2.3095 *** (7.00b) | −42.21 (256.66de) |
BA-77 × BA-86 | −3.309 (77.00b) | −0.19 (4.33a) | −0.642 (7.33b) | −69.71 ** (232.67e) |
BA-77 × BA-72 | 3.3095 76.33b | 0.19 3.67a | 0.6428 7.33b | 69.71 ** 343.00bcde |
BA-79 × BA-86 | 10.8095 ** 92.33ab | −0.309 6.67a | 1.64285 ** 11.00ab | 22.88 471.33ab |
BA-79 × BA-72 | −10.8095 ** 78.00b | 0.309 8.33a | −1.6428 ** 9.00ab | −22.88 454.67abc |
BA-56 × BA-86 | 0.5238 80.00b | 0.642 5.67a | 0.5238 11.00ab | 42.95 470.0ab |
BA-56 × BA-72 | −0.5238 71.67b | −0.642 3.34a | −0.5238 8.67ab | −42.95 355.0abcde |
SE | 6.534 | 1.13 | 0.9 | 35.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.N.; Rahman, M.M.; Rahman, M.; Al Mahmud, A.; Naznin, A.; Islam, M.M.; Kundu, B.C.; Alsuhaibani, A.M.; Gaber, A.; Ahmed, S. Flowering Behavior and Selection of Hybrid Potato Clones through LXT Breeding Approaches. Agriculture 2022, 12, 501. https://doi.org/10.3390/agriculture12040501
Amin MN, Rahman MM, Rahman M, Al Mahmud A, Naznin A, Islam MM, Kundu BC, Alsuhaibani AM, Gaber A, Ahmed S. Flowering Behavior and Selection of Hybrid Potato Clones through LXT Breeding Approaches. Agriculture. 2022; 12(4):501. https://doi.org/10.3390/agriculture12040501
Chicago/Turabian StyleAmin, Md. Nurul, Md. Mushfiqur Rahman, Mosaddiqur Rahman, Abdullah Al Mahmud, Afroz Naznin, Md. Mazadul Islam, Bimal Chandra Kundu, Amnah Mohammed Alsuhaibani, Ahmed Gaber, and Sharif Ahmed. 2022. "Flowering Behavior and Selection of Hybrid Potato Clones through LXT Breeding Approaches" Agriculture 12, no. 4: 501. https://doi.org/10.3390/agriculture12040501
APA StyleAmin, M. N., Rahman, M. M., Rahman, M., Al Mahmud, A., Naznin, A., Islam, M. M., Kundu, B. C., Alsuhaibani, A. M., Gaber, A., & Ahmed, S. (2022). Flowering Behavior and Selection of Hybrid Potato Clones through LXT Breeding Approaches. Agriculture, 12(4), 501. https://doi.org/10.3390/agriculture12040501