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Abstract: In order to solve the problems of blocking the drainage ditch and reducing the soil flatness
caused by soil accumulation when using compound planter with plowshare to ditch, a spiral soil
separation mechanism (SSSM) is designed. The SSSM is analyzed. In order to obtain the optimal
parameters of the SSSM, based on the discrete element method, the multifactor test is carried out
with the embedded depth, pitch, and rotation speed of the spiral blade as the test factors and the
soil separation distance and uniformity as the evaluation index. The optimal parameters are the
embedded depth 49 mm, pitch 331 mm, and rotation speed of the spiral blade 318 r min−1. The field
experiment is carried out with these parameters, with soil separation distance 900 mm and standard
deviation of soil height 7.8 mm, which is consistent with the simulation results. No blockage of
drainage ditch was found, which shows that this device can effectively solve the problem. This study
can provide a reference for the design of soil separation equipment using spiral soil separation device.

Keywords: compound planter; ditching; soil separation spiral; discrete element method; parameter
optimization

1. Introduction

Wheat is one of the main food crops in the world. Nearly one-third of the world’s
population takes wheat as the main food [1,2]. China is the largest wheat producer in
the world. The sowing of wheat generally goes through the processes of tillage and land
preparation, fertilization, sowing, soil covering and pressing, and digging drainage ditches.
There are many processes, and the operation of a single machine and tool affects the
production efficiency. Therefore, it has become a trend to use the compound planter that
can complete multiple processes at one time [3–7]. Soil moisture content has a great impact
on the yield of wheat. Too high soil moisture content is not suitable for the growth of wheat.
Therefore, it is necessary to dig a drainage ditch in the field to drain the accumulated water
in the field in time [8–11]. At present, there are plowshare type, rotary disc type, chain knife
type, and other ditching machines. The rotary disc ditching machine can dig the drainage
ditch through the milling principle, and can evenly scatter the milled soil to avoid soil
accumulation. However, the structure of the machine is complex, which is difficult to apply
in the compound planter. The plowshare ditching machine has simple structure and is easy
to be integrated with the compound planter. However, there are some problems such as
soil accumulation after ditching, resulting in soil falling back, blocking drainage ditches
and reducing soil flatness [12–14]. Qin et al. [15] designed double disk opener mechanism
for harvesting, ditching, and burying grass, which can complete the ditching operation in
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the process of rice and wheat harvest. Bao et al. [16] designed a plow-rotary style ditching
and ridging device. The device adopts a plowshare ditcher, and uses a bulldozing plate
and a soil dividing plate to lift and push the soil in the ditch to the ridge area, but this
structure is not suitable for the compound planter of wheat.

Discrete element method is a computer numerical simulation method based on the
assumption of discontinuity. The use of discrete element method can improve the design
efficiency and reduce the design cost. Therefore, more and more researchers use discrete
element method to design agricultural equipment [17–20]. Zhou et al. [21] used EDEM
software to study the optimal clearance of optimum gap of the screw extraction device,
and the soil covering effect of 3~4 mm clearance is better. Owen et al. [22] used the discrete
element method to numerically simulate the periodic boundary conditions of single pitch
conveyor, and predicted the performance of screw conveyor according to the changes of
particle speed, mass flow, and energy consumption. Pezo et al. [23] studied the effects of
screw structure, particle size, and conveyor length on the mixing performance of mixed
materials transported by screw conveyor through discrete element simulation. However,
the above are the research of closed screw conveyor, while the research on open screw
conveyor with soil as the transportation material is rare.

Overall, aiming to solve problems of soil accumulation leading to soil falling down,
blocking the drainage ditch and reducing soil flatness in the drainage ditch of compound
planter, the spiral soil separation mechanism (SSSM) is designed, the working mechanism is
analyzed, and discrete element simulation model is established. Single factor and response
surface tests are designed, the optimized parameters of the device are obtained, and field
tests are carried out. The simulation results are compared with the field test results to verify
the reliability of the model. This study is expected to provide a guide line for the design of
soil separation equipment using spiral soil separation device.

2. Materials and Methods
2.1. General Structure

As shown in Figure 1, the general structure of the compound planter is composed of
biaxial rotary tillage mechanism, press grooving roller, seeder, ditcher, spiral soil separation
mechanism (SSSM), and other components. The compound planter relates to the tractor
through the three-point linkage, which can complete the processes of tillage and land
preparation, sowing, soil covering and pressing, and ditching at one time.
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ical analysis and kinematic analysis. The analysis results are shown in Figure 3. 

  

Figure 1. General structure of compound planter. 1. Biaxial rotary tillage mechanism. 2. Connecting
rod. 3. press grooving roller. 4. Seeder. 5. Seed box. 6. Spiral soil separating mechanism. 7. Repress
roller. 8. Ditcher. 9. Steering box. 10. Transmission shaft. 11. Intermediate transmission box.

The SSSM is composed of two spiral shafts symmetrically installed on the bearing seat
of the frame, and the spiral blades on the two spiral shafts rotate in the opposite direction.
The SSSM is an active moving part, its power comes from the intermediate transmission box
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of biaxial rotary tillage mechanism, and the power transmitted through universal joint and
commutator. The ditcher is installed in the middle of the spiral shafts and firmly connected
to the frame.

The working process of the SSSM is shown in Figure 2. As the ditcher moves forward,
the soil in the middle is forced to move to both sides of the ditcher, and banded soil
accumulate on both sides of the drainage ditch under shear and lifting action of the
ditcher. When the SSSM passes through the banded soil, the soil is pushed to both sides
by the conveying action of rotating spiral blades. This function can solve the problem of
drainage ditch blockage by preventing the soil from falling back into the drainage ditch,
and obtaining higher soil flatness.
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Figure 2. Working process of SSSM. 1. Left spiral blades. 2. Ditching. 3. Right spiral blades.

In order to analyze the soil separating mechanization of spiral blade, two soil particles
are taken below and in front of the spiral blades respectively (q1 and q2) for mechanical
analysis and kinematic analysis. The analysis results are shown in Figure 3.
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Figure 3. Mechanical and kinematic analysis of soil particles. where, v is the forward speed of the
compound planter, m s−1; ω is the rotation speed of spiral blade, r min−1; α is the spiral angle, rad; ϕ

is the friction angle between soil particles and blades, rad; P is the tangent plane of the contact point
between the spiral blade and soil particles; FS is the friction force of soil particles by helical blades, N;
FN is the supporting force of soil particles by spiral blades, N; FC is the resultant force of leaves on
soil particles, N; F is the resultant force on soil particles, N; FX, FY and FZ are the component force of
soil particles in the transverse, forward and vertical directions, N; G is the gravity of soil particles, N;
SN is the support of soil particles by the underlying soil, N; Ve is the implicated movement of soil
particles, m s−1; Vr is the implicated movement of soil particles, m s−1; V is the absolute movement
of soil particles, m s−1; VX, VY and VZ are the component velocity of soil particles in transverse,
forward and vertical directions, m s−1.
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The soil particle q1 is affected by four forces from different directions, including the
support force of the soil particle below (SN1), the support force and friction force of the
blade (FN1, FS1) and its gravity (G). Under the action of the resultant force of above four
forces (F1), q1 moves centrifugally at a speed of V1, and gradually moves away from the
central axis of the helical blade.

When q1 is separated from the spiral blade, due to loss of resultant force of the blade
to the soil particle (Fc1) and SN1, q1 finally falls to the ground under the action of G.

With the rotation and forward movement of the spiral blades, the soil particle q2 is
affected by three forces from different directions, including the support force and friction
force of the blade (FN2, FS2), and its gravity (G). Under the action of the resultant force
of the above three forces (F2), q2 moves centrifugally at a speed of V2. VZ2 is the partial
velocity of VZ in the vertical direction, and its velocity direction is downward. When q2 is
separated from the spiral blade, it falls to the ground under the action of G.

In order to meet the requirements of continuous transportation of soil, the component
speed direction of the soil in the y direction and the component force (FY) direction of the
resultant force must be the same as the forward speed direction, as shown in Formula (1).
This condition limits the relationship between the soil separation direction, the forward
direction of the machine, the rotation direction of the spiral blade, and the helical direction
of the spiral blade. As shown in Formula (1).

→
v∣∣∣→v ∣∣∣ =

→
FY∣∣∣∣→FY

∣∣∣∣ =
→
VY∣∣∣∣→VY

∣∣∣∣ (1)

The soil separation effect of spiral blade is affected by many factors, including pitch,
rotation speed, forward speed, radius, and the embedded depth. While the working speed
of the compound planter is relatively constant, which is 3 km h−1, and the radius of the
spiral blade is not easy to change due to the influence of the structure of the machine.
Therefore, this paper only studied the influence of the three factors of the embedded depth,
pitch, and rotation speed of the spiral blade on the soil separation effect.

2.2. Discrete Element Simulation

In this paper, the operation process of SSSM were simulated by EDEM 2020 (DEM
Solutions Ltd., Edinburgh, Scotland, UK) to analyze its soil-separating effect. Due to its
symmetrical structure, the discrete element simulation can be carried out only on one side
of the SSSM. The simulation model is shown in Figure 4. Similar to many researchers,
spherical particles with a radius of 5 mm were used as soil particles in this study [17,19,20].
The soil model was divided into two layers (a, b), where layer a indicated the surface
soil with size of 2500 mm × 1600 mm × 40 mm, and layer b indicated the banded soil
accumulate on both sides of the drainage ditch with size of 2500 mm × 200 mm × 60 mm.
The Hertz–Mindlin with JKR model was selected as the bonding model for the soil particles,
and Hertz–Mindlin (no slip) was selected as the contact model between soil and spiral
blade. The SSSM model was imported from SolidWorks, the length was 1200 mm, and
the diameter of spiral blade was 240 mm. The soil was analyzed in the field test area
(33◦22′21.5′′ N, 118◦15′59.6′′ E; clay) for the angle of the repose experiment (Figure 5) to
determine the relevant parameters of the soil model [24–32], as shown in Table 1.
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Table 1. Soil parameters for simulation.

Parameters Values

Soil Poisson’s ratio 0.38
Soil density (kg m−3) 2680
Soil shear modulus 1.2 × 106

Recovery coefficient between soil particles 0.31
Static friction factor between soil particles 0.77

Dynamic friction coefficient between soil particles 0.08
Steel Poisson’s ratio 0.3

Steel density (kg m−3) 7850
Shear modulus of steel 7 × 1010

Recovery coefficient between soil particles and steel 0.3
Static friction factor between soil particles and steel 0.36

Dynamic friction coefficient between soil particles and steel 0.08
Surface energy (J m−3) 6.1

In order to analyze the influence of the embedded depth, pitch, and rotation speed
of the spiral blade on the soil separation quality, three groups of single factor tests were
designed to analyze the influence of each parameter on the soil separation distance and
uniformity. The test parameters are shown in Table 2.

Table 2. Single factor experimental design.

Group
Test Factor

Embedded Depth
(mm) Pitch (mm) Spiral Rotation Speed

(r min−1)

1 42 300 130, 200, 270, 340, 410
2 42 150, 200, 250, 300, 350 270
3 26, 34, 42, 50, 58 300 270

In the single factor test, the influence trend of three parameters on soil separation
distance and uniformity can be obtained. In order to obtain the optimal parameters of target
soil separation distance and uniformity, a central composite design was carried out for
embedded depth, pitch, and rotation speed by using Design-Expert software (version 12).
The level of test factors is shown in Table 3.

Table 3. Experimental factors codes.

Test Factor Symbol
Test Level

−1 0 1

Embedded depth/(mm) A 26 42 58
Pitch/(mm) B 150 250 350

Spiral rotation speed/(r min−1) C 130 270 410
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2.3. Soil Separation Quality Evaluation Index
2.3.1. Soil Separation Distance

The soil separation distance DW is used to describe the maximum soil separation
distance of the SSSM. As shown in Figure 6, the edge of the strip-shaped soil is the starting
point, the outer edge of the soil after the operation of the soil divider is the end point, and
the distance between the two edges is DW. Mark the surface soil particles and measure
the distance.
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2.3.2. Soil Uniformity

Soil uniformity E is used to describe the uniformity of soil distribution within the
width of machines. The larger the value of E, the higher the uniformity of soil distribution.
As shown in Figure 7, 10 grids were established in the stable soil division section with size
of 1000 mm × 120 mm × 300 mm. The calculation formula of E is as follows:

n =

10
∑

i=1
ni

10

U =

√
10
∑

i=1
(ni−n)2

10

E = 2000−U

(2)

where ni (I = 1,2,···,10) is the number of soil particles in each grid derived from EDEM, U is
the overall calculation standard deviation of ni, n is the average value of the number of soil
particles in ten grids.
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2.4. Field Experiment

On 19 November 2021, field experiment was carried out in Sihong County, Suqian
City, Jiangsu Province (33◦22′21.5′ ′ N, 118◦15′59.6′ ′ E). The soil type in the experimental
area was clay with a moisture content of 21.38%. The test equipment is shown in Figure 8a.
The embedded depth, pitch, and rotation speed of spiral blade were 49 mm, 331 mm, and
318 r min−1 respectively (the optimal parameters obtained by the regression model).
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In practical operation, the soil uniformity was reflected in the difference of field soil
accumulation per unit distance in the direction of operation width. Due to the existence
of repress roller, it was difficult to measure the soil accumulation after the operation of
compound planter, and there were large errors. Considering that the soil type in the test area
was clay and its compressibility was low, this characteristic will cause the area with large
soil accumulation to be unable to maintain the same height as other areas after compaction,
so the height difference of the soil after compaction was used to reflect the uniformity of soil
division. The horizontal line was determined by a laser level (accuracy ± 1.5◦), as shown
in Figure 8b. The distance between the horizontal line and the surface soil was measured
by a steel ruler, and the result was converted into the soil height value H. The starting point
of the measurement is the edge of the drainage ditch, the measurement range is 1.5 m, the
measurement interval is 10 cm, and the distance between the measurement point and the
edge of the drainage ditch is DC. The average value was calculated after ten groups of data
were randomly measured in the forward direction of the compound planter.

3. Results and Analysis

As shown in Figure 9, the soil particles move outward under the action of spiral blades,
and the soil particles at area “a” and “b” were dispersed within the operation width by
pushing and scattering of the blades respectively.
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3.1. Single Factor Experiment

(1) Effects of rotation speed on soil separation distance and uniformity
Figure 10 shows the relationship curves between rotation speed and DW, E when the

embedded depth was 42 mm and the pitch was 300 mm. When the rotation speed increased
from 130 r min−1 to 410 r min−1, the soil separation distance increased from 254 mm to
956 mm, which increased by 702 mm. When the rotation speed was about 380 r min−1, the
optimal soil separation distance was 900 mm, and the rotation speed was approximately
linear with the separation distance. The soil uniformity increased by 765 from 710 to 1475.
When the rotation speed increased from 130 r min−1 to 270 r min−1, the soil uniformity
increased by 590. When the rotation speed increased from 270 r min−1 to 410 r min−1, the
soil uniformity increased by 170, indicating that with the increase of rotation speed, the
improvement of rotation speed on soil uniformity gradually weakened.
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Figure 10. Relationship curves between rotation speed and DW, E.

(2) Effects of pitch on soil separation distance and uniformity
Figure 11 shows the relationship curves between pitch and DW, E when the soil depth

was 42 mm and the rotation speed was 270 r min−1. When the pitch increased from 150 mm
to 350 mm, the soil separation distance increased from 204 mm to 542 mm, which increased
by 338 mm. With the increased of pitch, the effect of pitch on the improvement of soil
separation distance gradually weakened. This was because the helix angle of the spiral
blade increased with the increase of the pitch, which made FX1 and FX2 decrease, thus
reducing the push ability of the spiral blade to the x direction of the soil particles. The
uniformity of soil separation increased from 815 to 1323, which increased by 508, similar to
the effect of rotation speed on soil uniformity. With the increased of pitch, the improvement
of pitch on soil uniformity gradually weakened. The above results showed that increasing
the pitch can increase the soil separation distance and soil uniformity, but with the increased
of pitch, the increase rate of soil separation distance and soil uniformity became slow.
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(3) Effects of soil depth on soil separation distance and uniformity
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Figure 12 shows the relationship curve of the embedded depth of the blade with
the soil separation distance and the soil uniformity when the pitch was 300 mm and the
rotation speed was 270 r min−1. When the embedded depth increased from 26 mm to
58 mm, the soil separation distance increased from 346 mm to 1350 mm, which increased
by 1004 mm. When the embedded depth was about 48 mm, the optimal soil separation
distance was 900 mm. With the increased of soil depth, the increase rate of soil separation
distance gradually increased. This was because with the increase of the embedded depth,
the volume of soil transported by spiral blades increased, and the contact time between
soil particles and spiral blades increased, which increased the action time of FX1 and FX2.
More contact time improved the pushing ability of the spiral blade to the soil particles in
the x direction, and some soil particles were scattered outside the working width. The soil
uniformity increased from 599 to 1915, which increased by 1316, and the embedded depth
was approximately linear with the soil uniformity. The above results showed that increasing
the embedded depth can effectively improve soil separation distance and uniformity.
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Figure 12. Relationship curves between embedded depth and DW, E.

3.2. Multifactor Experiment

The experimental design and results of response surface analysis method are shown
in Table 4. The quadratic polynomial regression model of soil separation distance and soil
separation uniformity was obtained by Design-Expert software.

Dw = 513.8 + 333A + 165.88B + 229.38C + 83.5AB + 90AC + 21.25BC + 172.72A2 − 60.03B2 − 22.02C2

E = 1237.4 + 464.5A + 212.63B + 342.13C + 204.25AB + 94.75AC− 20.5BC− 113.7A2 − 111.45B2 − 145.45C2 (3)

Table 4. Response surface analysis test design and results.

Test Number
Factor Response Value

Embedded
Depth Pitch Spiral Rotary

Speed
Soil Separation
Distance (mm)

Soil
Uniformity

1 −1 −1 0 170 494
2 0 −1 −1 132 442
3 −1 1 0 428 597
4 0 0 0 520 1243
5 1 −1 0 658 1019
6 0 0 0 443 1324
7 0 0 0 468 1152
8 0 −1 1 493 1180
9 0 1 1 774 1478
10 −1 0 1 493 757
11 0 0 0 562 1294
12 −1 0 −1 159 275
13 1 0 −1 656 1010
14 0 0 0 576 1174
15 0 1 −1 328 822
16 1 0 1 1350 1871
17 1 1 0 1250 1939
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The variance analysis of the response values DW and E is shown in Tables 5 and 6.
The p-values of the two models are less than 0.01, indicating that the selected factors
in the equation are extremely significant. The misfits are greater than 0.05, which are
not significant.

Table 5. Variance analysis of quadratic term model of soil separation distance.

Error Source
Sum of

Squares
(×105)

Freedom
Mean

Square
(×105)

F
Value

p
Value

Model 17.28 9 1.92 36.24 <0.0001 ***

A 8.87 1 8.87 167.47 <0.0001 ***

B 2.20 1 2.20 41.55 0.0004 ***

C 4.21 1 4.21 79.46 <0.0001 ***

AB 0.28 1 0.28 5.27 0.0554

C 0.32 1 0.32 6.12 0.0426 *

BC 0.02 1 0.02 0.34 0.5776

A2 1.26 1 1.26 23.71 0.0018 **

B2 0.15 1 0.15 2.86 0.1344

C2 0.02 1 0.02 0.39 0.5543

Residual 0.37 7 0.05

Lack of Fit 0.24 3 0.08 2.37 0.2113

Pure Error 0.13 4 0.03

Total 17.65 16

R2 = 0.979, Adjusted R2 = 0.9520, Predicted R2 = 0.7730, Adeq Precision = 22.5568
Note: *, ** and *** indicate significant difference at p < 0.05, p < 0.01 and p < 0.001 levels, respectively.

Table 6. Variance analysis of quadratic term model of soil uniformity.

Error Source
Sum of
Squares
(×105)

Freedom
Mean

Square
(×105)

F
Value

p
Value

Model 34.47 9 3.83 71.89 <0.0001 ***

A 17.26 1 17.26 324.01 <0.0001 ***

B 3.62 1 3.62 67.89 <0.0001 ***

C 9.36 1 9.36 175.77 <0.0001 ***

AB 1.67 1 1.67 31.32 0.0008 ***

C 0.36 1 0.36 6.74 0.0356

BC 0.02 1 0.02 0.32 0.5918

A2 0.54 1 0.54 10.22 0.0151 *

B2 0.52 1 0.52 9.82 0.0165 *

C2 0.89 1 0.89 16.72 0.0046 **

Residual 0.37 7 0.05

Lack of Fit 0.15 3 0.05 0.92 0.5069

Pure Error 0.22 4 0.06

Total 34.84 16

R2 = 0.9893, Adjusted R2 = 0.9755, Predicted R2 = 0.9201, Adeq Precision = 29.0687
Note: *, ** and *** indicate significant difference at p < 0.05, p < 0.01 and p < 0.001 levels, respectively.
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Figure 13 shows the response surface analysis of the relationship between test factors
and separation distance. The influence of the embedded depth and rotation speed on soil
separation distance was greater than that of pitch, which was consistent with the p-values of
the embedded depth (p < 0.0001), the rotation speed (p < 0.0001), and the pitch (p = 0.0004)
in Table 5. With the increase of the embedded depth, rotation speed, and pitch, the soil
separation distance increased. The greater the embedded depth and rotation speed, the
greater the soil separation distance.
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Figure 13. Response surface analysis of the relationship between test factors and separation distance.

Figure 14 shows the response surface analysis of the relationship between test factors
and soil uniformity. The embedded depth, pitch, and rotation speed had significant
indigenous effects on soil uniformity. With the increase of the embedded depth, rotation
speed, and pitch, soil uniformity increased significantly. The greater the embedded depth,
the greater the increase of soil uniformity.
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Figure 14. Response surface analysis of the relationship between test factors and soil uniformity.

When the soil separation distance of the spiral blade is 900 mm, the soil accumulated
on both sides of the drainage ditch covers the operation width of the SSSM, and this
distance is the best soil separation distance. The response surface analysis shows that the
requirement of soil separation distance could not be the condition of the best soil separation
uniformity. With the increase of various test factors, the soil increases, but the excessive soil
separation uniformity makes the soil separation distance much larger than the target soil
separation distance. Therefore, it was necessary to improve the soil separation uniformity
as far as possible under the condition of soil separation distance 900 mm.

The optimization equation was obtained by the Design-Expert software multiobjective
optimization method with DW and E as the optimization objective function 4. The optimal
parameters were obtained. Embedded depth was 49 mm, pitch was 331 mm, and rotation
speed was 318 r min−1. The discrete element simulation model was established with the
optimal parameters, the soil separation distance was 917 mm, the soil separation uniformity
was 1728. Figure 15 shows the simulation results.
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
26 < A < 58
150 < B < 350
130 < C < 410
Dw = 900
maxE

(4)
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3.3. Field Experimental Results

The average value of ten groups of data in the field experiment is shown in Figure 16.
The position where DC was equal to 0 mm was the edge of the drainage ditch, and the
position where DC was equal to 200 mm was the edge line of the origin of soil separation
distance measurement in the simulation test. Since H was higher in the range of DC from 0
to 1100 mm than that in the range of DC from 1200 to 1500 mm, the range of 200 to 1100 mm
was the soil separation interval. The soil separation distance in the field test was about
900 mm, which was consistent with 917 mm in the simulation test. In the range of DC from
0 to 1100 mm, when DC = 200, the maximum H = 68 mm, when DC = 1100, the minimum
H = 44 mm, and the height difference of H was 24 mm. Within this range, the standard
deviation of H was 7.8 mm, the level of soil flatness was high, and there was no blockage of
drainage ditch, as the Figure 17 shown.
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4. Discussion

It is reported that the simplified or compound planting technological process has a
positive impact on farming efficiency. Drainage ditches can drain surface waterlogging
during wheat growing, especially in areas with excessive rainfall. However, considering
the structure and operation characteristics of various ditching machines, the device for
digging drainage ditch is not integrated in the general compound planter. Therefore, this
study differed from previous ones dramatically. First, SSSM which can be integrated with
compound planter was proposed. This device can complete the operation of opening
drainage ditch and evenly disperse the accumulated soil. Second, the influence of the
structural parameters of the SSSM on optimizing soil particle distribution was studied
by discrete element method. The structural parameters have been optimized to achieve a
better soil separating effect.

In this paper, Formula (1) was obtained through kinematic and dynamic analysis,
which established the relationship between the soil separation direction, the forward direc-
tion of the machine, the rotation direction of the spiral blade, and the helical direction of
the spiral blade. Yang et al. [33] designed a track filling assembly mounted on wheeled-
tractor for paddy fields. The relationship between the soil separation direction, the forward
direction of the machine, the rotation direction of the spiral blade, and the helical direc-
tion of the spiral blade of the device met Formula (1) was consistent with the research
results of this paper. The best spiral blade parameters obtained in this paper were em-
bedded depth = 49 mm, pitch = 331 mm, rotation speed = 318 r min−1. This result was
not consistent with the study of Yang et al. (depth = 45 mm, pitch = 200 mm, rotation
speed = 200 r min−1). This was due to the different characteristics of transported materials,
transportation volume, forward speed of machines, and the helical direction of the spiral
blade, etc. This study can provide a reference for the design of soil separation equipment
using spiral soil separation device, and for the design of devices for conveying and leveling
materials with spiral blades.

However, there are several limitations in this research. First, it lacks the support of
wheat planting experiment. In fact, the effects of ditching and soil separation will affect the
growth status and final yield of wheat. Second, there is a lack of research on soil structure
parameters after soil separation, such as soil particle distribution, soil porosity, and water
stable aggregates, etc. Further study is needed to judge the impact of ditching and soil
separation on soil structure. In the future, we will focus on the effects of SSSM on wheat
yield and soil structure parameters.

5. Conclusions

(1) The design of the SSSM solves the problems encountered in the compound planter
ditching process, such as uneven soil, drainage ditch blockage. At the same time, the soil
separation mechanism of spiral blades in the soil separation device was analyzed, and the
stress analysis and kinematic analysis of the soil separation process were carried out.
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(2) The discrete element simulation model of SSSM was established, and the evaluation
indexes of soil separation distance and soil uniformity was established to evaluate the
operation quality of SSSM, which laid the foundation for the parameter setting of SSSM.

(3) The single factor simulation test showed that there was an approximate linear
relationship between the rotation speed and soil separation distance, but the increase of soil
separation uniformity decreases with the increase of rotation speed. Increasing pitch can
increase soil separation distance and soil separation uniformity. However, with the increase
of pitch, the increase of soil separation distance and soil uniformity decreased. Increasing
embedded depth can effectively improve soil separation distance and uniformity.

(4) The results of response surface analysis showed that with the increase of embed-
ded depth, rotation speed, and pitch, soil separation distance and soil uniformity also
increased. When the embedded depth and rotation speed increase, the soil separation
distance also increases. Similarly, the greater the embedded depth, the greater the increase
in soil uniformity.

(5) The quadratic regression model of soil separation quality was established, and the
following optimization parameters were obtained: the embedded depth was 49 mm, the
pitch was 331 mm, and the rotation speed was 318 r min−1. The optimized parameters
were obtained in the field experiment. The soil separation distance was 900 mm, and the
standard deviation of soil flatness was 7.8 mm, which was consistent with the simulation
results, and there was no drainage ditch blockage.
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