Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Soil Moisture and Salinity
3.2. Leaf Gas Exchange
3.3. Indicators of Salt and Water Stress
3.4. Water Use Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frizzone, J.A.; Lima, S.C.R.V.; Lacerda, C.F.; Mateos, L. Socio-economic indexes for water use in irrigation in a representative basin of the tropical semiarid region. Water 2021, 13, 2643. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in northeast Brazil: Past, present and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Ali, A.B.M.; Shuang-En, Y.U.; Panda, S.; Guang-Cheng, S. Water harvesting techniques and supplemental irrigation impact on sorghum production. J. Sci. Food Agric. 2015, 95, 3107–3116. [Google Scholar] [CrossRef] [PubMed]
- Nangia, V.; Oweis, T.; Kemeze, F.H.; Schnetzer, J. Supplemental irrigation: A promising climate-smart practice for dryland agriculture. Wagening. CGIAR/CCAFS 2018. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/92142/GACSA%20Practice%20Brief%20Supplemental%20Irrigation.pdf (accessed on 20 November 2020).
- Hamdy, A.; Sardob, V.; Ghanem, K.A.F. Saline water in supplemental irrigation of wheat and barley under rainfed agriculture. Agric. Water Manag. 2005, 78, 122–127. [Google Scholar] [CrossRef]
- Chauhan, C.P.S.; Singh, R.B.; Gupta, S.K. Supplemental irrigation of wheat with saline water. Agric. Water Manag. 2008, 95, 253–258. [Google Scholar] [CrossRef]
- Cavalcante, E.S.; Lacerda, C.F.; Costa, R.N.T.; Gheyi, H.R.; Pinho, L.L.; Bezerra, F.M.S.; Oliveira, A.C.; Canjá, J.F. Supplemental irrigation using brackish water on maize in tropical semi-arid regions of Brazil: Yield and economic analysis. Sci. Agric. 2021, 78, 1–9. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). 1.5 Billion People, Living with Soil too Salty to be Fertile. 2021. Available online: https://news.un.org/en/story/2021/10/1103532 (accessed on 15 November 2021).
- Masters, D.G.; Benes, S.E.; Norman, H.C. Biosaline agriculture for forage and livestock production. Agric. Ecosyst. Environ. 2007, 119, 234–248. [Google Scholar] [CrossRef]
- Silva, J.E.S.B.; Matias, J.R.; Guirra, K.S.; Aragão, C.A.; Araujo, G.G.L.; Dantas, B.F. Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water. Rev. Bras. De Eng. Agrícola E Ambient. 2015, 19, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Hassanli, M.; Ebrahimian, H. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize. Span. J. Agric. Res. 2016, 14, e1204. [Google Scholar] [CrossRef]
- Kiani, A.R.; Mosavata, A. Effect of different alternate irrigation strategies using saline and non-saline water on corn yield, salinity and moisture distribution in soil profile. J. Water Soil 2016, 30, 1595–1606. [Google Scholar]
- Silva, F.J.A.; Araújo, A.L.; Souza, R.O. Águas subterrâneas no Ceará—Poços instalados e salinidade. Rev. Tecnol. 2007, 28, 136–159. [Google Scholar]
- Fernandes, F.B.P.; Lacerda, C.F.; Andrade, E.M.; Neves, A.L.R.; Sousa, C.H.C. Efeito de manejos do solo no déficit hídrico, trocas gasosas e rendimento do feijão-de-corda no semiárido. Rev. Ciência Agronômica 2015, 46, 506–515. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, T.M.B.S. Tempo de Chuva: Estudos Climáticos e de Previsão para o Ceará e Nordeste Setentrional; Editora ABC: Ceará, Brazil, 2001; 478p. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. In Rome, FAO—Irrigation and Drainage; FAO: Rome, Italy, 1998; Volume 300, p. 56. [Google Scholar]
- Medeiros, J.F. Qualidade da água de irrigação e evolução da salinidade nas propriedades assistidas pelo “GAT” nos Estados do RN, PB e CE. 1992. 173 f. Dissertação (Mestrado em Engenharia Agrícola)—Universidade Federal da Paraíba. Available online: http://dspace.sti.ufcg.edu.br:8080/jspui/bitstream/riufcg/2896/3/JOS%c3%89%20FRANCISMAR%20DE%20MEDEIROS%20-%20DISSERTA%c3%87%c3%83O%20PPGEA%201992.pdf (accessed on 15 January 2020).
- Fernandes, F.H.F.; Aquino, A.B.; Aquino, B.F.; Holanda, F.J.M.; Freire, J.M.; Crisostomo, L.A.; Costa, R.I.; Uchoa, S.C.P.; Fernandes, V.L.B. Recomendações De Adubação E Calagem Para O Estado Do Ceara; Editora ABC: Fortaleza, Brazil, 1993; 247p. [Google Scholar]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 1997, 212p. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/173611/1/Pt-2-Cap-20-Sais-soluveis.pdf (accessed on 8 November 2020).
- Cataldo, J.M.; Haroom, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, J.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: Um sistema computacional de análise estatística. Ciência E Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Hillel, D. Fundamentals of Soil Physics; Academic Press: London, UK, 1980; 413p. [Google Scholar]
- Guerra, H.C. Física Dos Solos; UFPB: Campina Grande, Brazil, 2000; 173p. [Google Scholar]
- Ngolo, A.O.; Oliveira, M.F.; Assis, I.R.; Rocha, G.C.; Fernandes, R.B.A. Soil physical quality after 21 years of cultivation in a Brazilian Cerrado Latosol. J. Agric. Sci. 2019, 11, 124–136. [Google Scholar] [CrossRef]
- Assis Junior, J.O.; Lacerda, C.F.; Silva, F.B.; Silva, F.L.B.; Bezerra, M.A.; Gheyi, H.R. Produtividade do feijão-de-corda e acúmulo de sais no solo em função da fração de lixiviação e da salinidade da água de irrigação. Eng. Agrícola 2007, 27, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, A.K.P.; Lacerda, C.F.; Hernandez, F.F.F.; Silva, F.B.; Gheyi, H.R. Rotação cultural feijão caupi/milho utilizando-se águas de salinidades diferentes. Ciência Rural 2010, 40, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, C.F.; Sousa, G.G.; Silva, F.L.B.; Guimarães, F.V.A.; Silva, G.L.; Cavalcante, L.F. Soil salinization and maize and cowpea yield in the crop rotation system using saline waters. Eng. Agrícola 2011, 31, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Neves, A.L.R.; Lacerda, C.F.; Sousa, C.H.C.; Silva, F.L.B.; Gheyi, H.R.; Ferreira, F.J.; Andrade Filho, F.L. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water. Ciência Rural 2015, 45, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, J.D.; Loveday, J. Salinity in irrigated agriculture. In Irrigation of Agricultural Cropsstewart; Stewart, D.R., Nielsen, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 1089–1142. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. A Qualidade De Água Na Agricultura. Estudos FAO: Irrigação E Drenagem, 29, 2nd ed.; UFPB: Campina Grande, Brazil, 1999; p. 153. [Google Scholar]
- Cavalcante, L.F.; Santos, R.V.; Hernandez, F.F.F.; Gheyi, H.R.; Dias, T.J.; Nunes, J.C.; Lima, G.S. Recuperação de solos afetados por sais. In Manejo Da Salinidade Na Agricultura: Estudos Básicos E Aplicados; Gheyi, H.R., Dias, N.S., Lacerda, C.F., Gomes Filho, E., Eds.; INCTSal: Fortaleza, Brazil, 2016; Volume 28, pp. 461–477. [Google Scholar]
- Larcher, W. Ecofisiologia Vegetal. São Carlos, Rima, Artes E Textos; Tradução do orignal: Okoplysiologe der, Brazil, 2000; 531 p, ISBN 8586552038. [Google Scholar]
- Osborne, C.P.; Sack, L. Evolution of C4 plants: A new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philos. Trans. R. Soc. 2012, 367, 583–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, M.L.C.; Silva, A.Z. Starling, C.; Machuca, L.M.R.; Zuñiga, E.A.; Galvão, Í.; Jesus, G.J.; Broetto, F. Biochemical parameters and physiological changes in maize plants submitted to water deficiency. SN Appl. Sci. 2020, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 7, 255–269. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia E Desenvolvimento Vegetal; Editora Artmedl: Porto Alegre, Brazil, 2017; 888p. [Google Scholar]
- Lacerda, C.F.; Oliveira, E. Victor.; Neves, A.L.R.; Gheyi, H.R.; Bezerra, M.A.; Costa, C.A.G. Morphophysiological responses and mechanisms of salt tolerance in four ornamental perennial species under tropical climate. Rev. Bras. De Eng. Agrícola E Ambient. 2020, 24, 656–663. [Google Scholar] [CrossRef]
- Barbosa, F.S.A.; Lacerda, C.F.; Gheyi, H.R.; Farias, G.C.; Silva Junior, R.J.C.; Lage, Y.A.; Hernandez, F.F.F. Yield and ion content in maize irrigated with saline water in a continuous or alternating system. Ciência Rural 2012, 42, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Verslues, P.E.; Bray, E.A. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA—Insensitive loci in low water potential-induced ABA and proline accumulation. J. Exp. Bot. 2006, 57, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cuin, T.A.; Zhou, M.; Twomey, A.; Naidu, B.P.; Shabala, S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 2007, 58, 4245–4255. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 2018, 9, 2525. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ma, J.; Guo, H.; Zong, J.; Chen, J.; Wang, Y.; Li, D.; Li, L.; Wang, J.; Liu, J. Growth and physiological responses of two phenotypically distinct accessions of centipede grass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiol. Biochem. 2018, 126, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kishor, P.B.K.; Hima Kumari, P.; Sunita, M.S.L.; Sreenivasulu, N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front. Plant Sci. 2015, 6, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Tang, X.; Wang, H.; Shao, H.B. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front. Plant Sci. 2015, 6, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Becker, D.F. Connecting proline metabolism and signaling pathways in plant senescence. Front. Plant Sci. 2015, 6, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, A.; Nelsen, C.E.; Everson, E.H. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci. 1977, 17, 720–726. [Google Scholar] [CrossRef]
- Ferreira, L.G.R.; Souza, J.G.; Prisco, J.T. Effects of water deficit on proline accumulation and growth of two cotton genotypes of differing drought resistance. Z. Pflanzenphysiologie. 1979, 93, 189–199. [Google Scholar] [CrossRef]
- Melo, A.S.; Melo, Y.L.; Lacerda, C.F.; Viégas, P.R.A.; Ferraz, R.L.S.; Gheyi, H.R. Water restriction in cowpea plants [Vigna unguiculata (L.) Walp.]: Metabolic changes and tolerance induction. Rev. Bras. De Eng. Agrícola E Ambient. 2022, 26, 190–197. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza Sativa L.) cultivars differing in salinity resistance. Plant Growth Regul. 1996, 19, 207–218. [Google Scholar] [CrossRef]
- Lacerda, C.F.; Cambraia, J.; Cano, M.A.O.; Ruiz, H.A.; Prisco, J.T. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 2003, 49, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, C.F.; Cambraia, J.; Cano, M.A.O.; Prisco, J.T. Proline accumulation in sorghum leaves is enhanced by salt-induced tissue dehydration. Rev. Ciência Agronômica 2006, 37, 110–112. [Google Scholar]
- Embrapa—Empresa Brasileira de Pesquisa Agropecuária. A Cultura Do Milho-Verde. 2008. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/11921/2/00082390.pdf (accessed on 10 November 2020).
- Pereira Filho, I.A.; Silva, A.R.; Costa, R.V.; Cruz, I. Milho Verde. 2010. Available online: https://www.agencia.cnptia.embrapa.br/gestor/milho/arvore/CONT000fy779fnk02wx5ok0pvo4k3c1v9rbg.html (accessed on 10 November 2020).
Suppl. Irrigation | Simulated Water Scenarios | |||
---|---|---|---|---|
Rainy | Normal | Drought | Severe Drought | |
PWPear (kg m−3) | ||||
2018 | ||||
With | 1.56 ± 0.27 Aa 1 | 1.77 ± 0.39 Aa | 2.16 ± 0.58 Aa | 1.57 ± 0.22 Aa |
Without | 1.49 ± 0.21 Aa | 1.38 ± 0.26 Ba | 1.04 ± 0.39 Bab | 0.72 ± 0.21 Bb |
2019 | ||||
With | 1.14 ± 0.25 Ab | 1.57 ± 0.15 Aa | 1.43 ± 0.24 Aa | 1.53 ± 0.27 Aa |
Without | 0.98 ± 0.40 Aab | 1.13 ± 0.55 Ba | 0.73 ± 0.28 Bab | 0.23 ± 0.24 Bb |
PWPbiomass (kg m−3) | ||||
2018 | ||||
With | 2.78 ± 0.36 Ab | 3.96 ± 0.60 Aa | 3.99 ± 0.49 Aa | 2.87 ± 0.61 Ab |
Without | 2.84 ± 0.57 Aa | 2.70 ± 0.47 Ba | 2.19 ± 1.17 Bb | 1.10 ± 0.46 Bc |
2019 | ||||
With | 2.29 ± 0.20 Ab | 3.40 ± 0.16 Aa | 3.31 ± 0.22 Aa | 3.84 ± 0.15 Aa |
Without | 2.18 ± 0.32 Ab | 2.77 ± 0.18 Aa | 1.62 ± 0.35 Bb | 1.11 ± 0.33 Bc |
WUESI (kg m−3) # | ||||
Ear biomass | ||||
3.01 ± 0.37 | 3.53 ± 0.45 | 3.63 ± 0.11 | 2.53 ± 0.14 | |
Total Biomass | ||||
2.79 ± 0.30 | 7.99 ± 0.21 | 7.16 ± 0.19 | 5.44 ± 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcante, E.S.; Lacerda, C.F.; Mesquita, R.O.; de Melo, A.S.; da Silva Ferreira, J.F.; dos Santos Teixeira, A.; Lima, S.C.R.V.; da Silva Sales, J.R.; de Souza Silva, J.; Gheyi, H.R. Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions. Agriculture 2022, 12, 544. https://doi.org/10.3390/agriculture12040544
Cavalcante ES, Lacerda CF, Mesquita RO, de Melo AS, da Silva Ferreira JF, dos Santos Teixeira A, Lima SCRV, da Silva Sales JR, de Souza Silva J, Gheyi HR. Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions. Agriculture. 2022; 12(4):544. https://doi.org/10.3390/agriculture12040544
Chicago/Turabian StyleCavalcante, Eduardo Santos, Claudivan Feitosa Lacerda, Rosilene Oliveira Mesquita, Alberto Soares de Melo, Jorge Freire da Silva Ferreira, Adunias dos Santos Teixeira, Silvio Carlos Ribeiro Vieira Lima, Jonnathan Richeds da Silva Sales, Johny de Souza Silva, and Hans Raj Gheyi. 2022. "Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions" Agriculture 12, no. 4: 544. https://doi.org/10.3390/agriculture12040544
APA StyleCavalcante, E. S., Lacerda, C. F., Mesquita, R. O., de Melo, A. S., da Silva Ferreira, J. F., dos Santos Teixeira, A., Lima, S. C. R. V., da Silva Sales, J. R., de Souza Silva, J., & Gheyi, H. R. (2022). Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions. Agriculture, 12(4), 544. https://doi.org/10.3390/agriculture12040544