An Analysis of the Genetic Relation between Photosynthesis and Yield-Related Traits in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. Chl and CF Measurements
2.3. The Gas Exchange Measurement
2.4. The LAI and GY-Related Trait Measurements
2.5. The Statistical Analysis and QTL Identification
3. Results
3.1. The Phenotypic Variation of Photosynthesis and Grain-Yield Traits
3.2. The Identification of the QTL
3.3. The QTL Clusters Detected for the Investigated Traits
3.4. Selection Effects of Two SSR Markers for the QCL10 on 4B
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aiad, M.A.; Amer, M.M.; Khalifa, T.H.H.; Shabana, M.M.A.; Zoghdan, M.G.; Shaker, E.M.; Eid, M.S.M.; Ammar, K.A.; Al-Dhumri, S.A.; Kheir, A.M.S. Combined application of compost, zeolite and a raised bed planting method alleviate salinity stress and improve cereal crop productivity in arid regions. Agronomy 2021, 11, 2495. [Google Scholar] [CrossRef]
- Asseng, S.; Guarin, J.R.; Raman, M.; Monje, O.; Kiss, G.; Despommier, D.D.; Meggers, F.M.; Gauthier, P.P.G. Wheat yield potential in controlled-environment vertical farms. Proc. Natl. Acad. Sci. USA 2020, 117, 19131–19135. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Kheir, A.M.S.; Kassie, B.T.; Hoogenboom, G.; Andelaal, A.I.N.; Haman, D.Z.; Ruane, A.C. Can Egypt become self-sufficient in wheat? Environ. Res. Lett. 2018, 13, 094012. [Google Scholar] [CrossRef] [Green Version]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in africa and asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Horton, P. Prospects for crop improvement through the genetic manipulation of photosynthesis: Morphological and biochemical aspects of light capture. J. Exp. Bot. 2000, 51, 475–485. [Google Scholar] [CrossRef]
- Richards, R.A. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Parry, M.A.J.; Reynolds, M.; Salvucci, M.E.; Raines, C.; Andralojc, P.J.; Zhu, X.G.; Price, G.D.; Condon, A.G.; Furbank, R.T. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 2011, 62, 453–467. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, J.; Furbank, R.; Griffiths, S.; King, J.; Murchie, E.; Parry, M.; Slafer, G. Achieving yield gains in wheat. Plant Cell Environ. 2012, 35, 1799–1823. [Google Scholar] [CrossRef]
- Furbank, R.T.; Sharwood, R.; Estavillo, G.M.; Silva-Perez, V.; Condon, A.G. Photons to food: Genetic improvement of cereal crop photosynthesis. J. Exp. Bot. 2020, 71, 2226–2238. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Hou, R.X.; Tao, F.L. Wheat morpho-physiological traits and radiation use efficiency under interactive effects of warming and tillage management. Plant Cell Environ. 2021, 44, 2386–2401. [Google Scholar] [CrossRef] [PubMed]
- Zelitch, I. The close relationship between net photosynthesis and crop yield. Bioscience 1982, 32, 796–802. [Google Scholar] [CrossRef]
- Fischer, R.A.; Rees, D.; Sayre, K.D.; Lu, Z.M.; Condon, A.G.; Saavedra, A.L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci. 1998, 38, 1467–1475. [Google Scholar] [CrossRef]
- Nelson, C.J. Genetic associations between photosynthetic characteristics and yield—Review of the evidence. Plant Physiol. Bioch. 1988, 26, 543–554. [Google Scholar]
- Jiang, G.M.; Sun, J.Z.; Liu, H.Q.; Qu, C.M.; Wang, K.J.; Guo, R.J.; Bai, K.Z.; Gao, L.M.; Kuang, T.Y. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. J. Plant Res. 2003, 116, 347–354. [Google Scholar] [CrossRef]
- Hubbart, S.; Peng, S.; Horton, P.; Chen, Y.; Murchie, E.H. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J. Exp. Bot. 2007, 58, 3429–3438. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.W.; Sanz-Saez, A.; Elazab, A.; Shen, T.M.; Sanchez-Bragado, R.; Bort, J.; Serret, M.D.; Araus, J.L. Physiological traits contributed to the recent increase in yield potential of winter wheat from Henan Province, China. J. Integr. Plant Biol. 2014, 56, 492–504. [Google Scholar] [CrossRef]
- Bender, J.; Hertstein, U.; Black, C.R. Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: A statistical analysis ‘ESPACE-wheat’ results. Eur. J. Agron. 1999, 10, 185–195. [Google Scholar] [CrossRef]
- Mitchell, R.A.C.; Black, C.R.; Burkart, S.; Burke, J.I.; Donnelly, A.; de Temmmerman, L.; Fangmeier, A.; Mulholland, B.J.; Theobald, J.C.; van Oijen, M. Photosynthetic responses in spring wheat grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACEwheat’. Eur. J. Agron. 1999, 10, 205–214. [Google Scholar] [CrossRef]
- Wu, D.X.; Wang, G.X.; Bai, Y.F.; Liao, J.X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agr. Ecosyst. Environ. 2004, 104, 493–507. [Google Scholar] [CrossRef]
- Högy, P.; Wieser, H.; Köhler, P.; Schwadorf, K.; Breuer, J.; Franzaring, J.; Muntifering, R.; Fangmeier, A. Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 2009, 11, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Kheir, A.M.S.; El Baroudy, A.; Aiad, M.A.; Zoghdan, M.G.; Abd El-Aziz, M.A.; Ali, M.G.M.; Fullen, M.A. Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Sci. Total. Environ. 2019, 651, 3161–3173. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.G.; Long, S.P.; Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotech. 2008, 19, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Peng, S. Single-leaf and canopy photosynthesis of rice. In Redesigning Rice Photosynthesis to Increase Yield; International Rice Research Institute: Los Baños, Philippines, 2000; pp. 213–228. [Google Scholar]
- Loomis, R.S.; Connor, D.J. Crop Ecology: Productivity and Management in Agricultural Systems; Cambridge University Press: Cambridge, UK, 1992; p. 556. [Google Scholar]
- Strasser, R.J.; Srivastava, A.; Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Quarrie, S.A.; Quarrie, S.P.; Radosevic, R.; Rancic, D.; Kaminska, A.; Barnes, J.D.; Leverington, M.; Ceoloni, C.; Dodig, D. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot. 2006, 57, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Su, J.Y.; Tong, Y.P.; Liu, Q.Y.; Li, B.; Jing, R.L.; Li, J.Y.; Li, Z.S. Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat. J. Integr. Plant Biol. 2006, 48, 938–944. [Google Scholar] [CrossRef]
- Yang, D.L.; Jing, R.L.; Chang, X.P.; Li, W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J. Integr. Plant Biol. 2007, 49, 646–654. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Chen, G.; Tian, J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res. Commun. 2009, 37, 499–511. [Google Scholar] [CrossRef]
- Zhang, K.P.; Fang, Z.J.; Liang, Y.; Tian, J.C. Genetic dissection of chlorophyll content at different growth stages in common wheat. J. Genet. 2009, 88, 183–189. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, K.P.; Zhao, L.; Liu, B.; Meng, Q.W.; Tian, J.C.; Zhao, S.J. Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). Euphytica 2010, 171, 145–156. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Fritz, A.K.; Paulsen, G.M.; Bai, G.H.; Pandravada, S.; Gill, B.S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol. Breed. 2010, 26, 163–175. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Xu, P.; Jia, J.Z.; Zhou, R.H. Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Aust. J. Crop Sci. 2010, 4, 571–579. [Google Scholar]
- Czyczylo-Mysza, I.; Marcinska, I.; Skrzypek, E.; Chrupek, M.; Grzesiak, S.; Hura, T.; Stojalowski, S.; Myskow, B.; Milczarski, P.; Quarrie, S. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet. Resour.-C 2011, 9, 291–295. [Google Scholar] [CrossRef]
- Czyczylo-Mysza, I.; Tyrka, M.; Marcinska, I.; Skrzypek, E.; Karbarz, M.; Dziurka, M.; Hura, T.; Dziurka, K.; Quarrie, S.A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 2013, 32, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Li, H.W.; Lin, F.Y.; Wang, G.; Jing, R.F.; Zheng, Q.; Li, B.; Li, Z.S. Quantitative trait loci mapping of dark-induced senescence in winter wheat (Triticum aestivum). J. Integr. Plant Biol. 2012, 54, 33–44. [Google Scholar] [CrossRef]
- Li, H.W.; Tong, Y.P.; Li, B.; Jing, R.L.; Lu, C.M.; Li, Z.S. Genetic analysis of tolerance to photo-oxidative stress induced by high light in winter wheat (Triticum aestivum L.). J. Genet. Genom. 2010, 37, 399–412. [Google Scholar] [CrossRef]
- Li, H.W.; Wang, G.; Zheng, Q.; Li, B.; Jing, R.L.; Li, Z.S. Genetic analysis of biomass and photosynthetic parameters in wheat grown in different light intensities. J. Integr. Plant Biol. 2014, 56, 594–604. [Google Scholar] [CrossRef]
- Malik, S.; Mehboob-ur-Rahman; Malik, T.A. Genetic mapping of potential QTLs associated with drought tolerance in wheat. J. Anim. Plant Sci. 2015, 25, 1032–1040. [Google Scholar]
- Wang, S.G.; Jia, S.S.; Sun, D.Z.; Wang, H.Y.; Dong, F.F.; Ma, H.X.; Jing, R.L.; Ma, G. Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Photosynthetica 2015, 53, 299–305. [Google Scholar] [CrossRef]
- Barbour, M.M.; Bachmann, S.; Bansal, U.; Bariana, H.; Sharp, P. Genetic control of mesophyll conductance in common wheat. N. Phytol. 2016, 209, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Osipova, S.; Permyakov, A.; Permyakova, M.; Pshenichnikova, T.; Verkhoturov, V.; Rudikovsky, A.; Rudikovskaya, E.; Shishparenok, A.; Doroshkov, A.; Borner, A. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions. J. Appl. Genet. 2016, 57, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.F.; Li, S.S.; Li, L.H.; Ma, F.F.; Fu, X.Y.; Shi, Z.L.; Xu, H.X.; Ma, P.T.; An, D.G. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol. Breed. 2017, 37, 34. [Google Scholar] [CrossRef]
- Bhusal, N.; Sharma, P.; Sareen, S.; Sarial, A.K. Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biol. Plantarum. 2018, 62, 721–731. [Google Scholar] [CrossRef]
- McCartney, C.A.; Somers, D.J.; Humphreys, D.G.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; McCallum, B.D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 x ‘AC Domain’. Genome 2005, 48, 870–883. [Google Scholar] [CrossRef]
- Kumar, N.; Kulwal, P.L.; Balyan, H.S.; Gupta, P.K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 2007, 19, 163–177. [Google Scholar] [CrossRef]
- Kuchel, H.; Williams, K.J.; Langridge, P.; Eagles, H.A.; Jefferies, S.P. Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor. Appl. Genet. 2007, 115, 1029–1041. [Google Scholar] [CrossRef]
- Cuthbert, J.L.; Somers, D.J.; Brule-Babel, A.L.; Brown, P.D.; Crow, G.H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor. Appl. Genet. 2008, 117, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Su, J.Y.; Zheng, Q.; Li, H.W.; Li, B.; Jing, R.L.; Tong, Y.P.; Li, Z.S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci. 2009, 176, 824–836. [Google Scholar] [CrossRef]
- Wang, R.X.; Hai, L.; Zhang, X.Y.; You, G.X.; Yan, C.S.; Xiao, S.H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai X Yu8679. Theor. Appl. Genet. 2009, 118, 313–325. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Liu, D.C.; Guo, X.L.; Yang, W.L.; Sun, J.Z.; Wang, D.W.; Zhang, A.M. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J. Integr. Plant Biol. 2010, 52, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.Y.; Wan, H.S.; Yang, S.H.; Zhang, Z.Z.; Kong, Z.X.; Xue, S.L.; Zhang, L.X.; Ma, Z.Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor. Appl. Genet. 2013, 126, 2123–2139. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zhao, C.H.; Ding, A.M.; Li, J.; Wang, L.; Li, X.F.; Bao, Y.G.; Li, J.M.; Wang, H.G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 2014, 127, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.F.; Wang, R.F.; Tong, Y.P.; Zhao, H.T.; Xie, Q.G.; Liu, D.C.; Zhang, A.M.; Li, B.; Xu, H.X.; An, D.G. Mapping QTLs for yield and nitrogen-related traits in wheat: Influence of nitrogen and phosphorus fertilization on QTL expression. Theor. Appl. Genet. 2014, 127, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.M.; Wen, W.E.; Liu, J.D.; Rasheed, A.; Yin, G.H.; Xia, X.C.; Wu, X.X.; He, Z.H. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 2015, 6, 1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driever, S.M.; Simkin, A.J.; Alotaibi, S.; Fisk, S.J.; Madgwick, P.J.; Sparks, C.A.; Jones, H.D.; Lawson, T.; Parry, M.A.J.; Raines, C.A. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160384. [Google Scholar] [CrossRef] [Green Version]
- Saeed, I.; Bachir, D.G.; Chen, L.; Hu, Y.G. The Expression of TaRca2-α Gene Associated with net photosynthesis rate, biomass and grain yield in bread wheat (Triticum aestivum L.) under field conditions. PLoS ONE 2016, 11, e0161308. [Google Scholar] [CrossRef]
- Fang, J.J.; Zhu, W.Q.; Tong, Y.P. Knock-down the expression of brassinosteroid receptor TaBRI1 reduces photosynthesis, tolerance to high light and high temperature stresses and grain yield in wheat. Plants 2020, 9, 840. [Google Scholar] [CrossRef]
- Ying, Y.; Liu, F.F.; Li, G.P.; Zheng, Q.; Li, B.; Li, Z.S.; Cheng, J.F.; Li, H.W. Silencing of the receptor-like cytoplasmic kinase gene TaRKL1 reduces photosynthetic capacity in wheat. Photosynthetica 2020, 58, 1188–1199. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Paul, M.J. Source/sink interactions underpin crop yield: The case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Front. Plant Sci. 2014, 5, 418. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.W.; Xu, C.C.; Bai, K.Z.; Zhang, Q.D.; Li, L.B.; Kuang, T.Y.; Li, J.Y.; Li, Z.S. Comparative study on photoinhibition between two wheat genotypes. Acta Bot. Sin. 2000, 42, 1300–1303. [Google Scholar]
- Yang, X.H.; Chen, X.Y.; Ge, Q.Y.; Li, B.; Tong, Y.P.; Li, Z.S.; Kuang, T.Y.; Lu, C.M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. J. Plant Physiol. 2007, 164, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.H.; Chen, X.Y.; Ge, Q.Y.; Li, B.; Tong, Y.P.; Zhang, A.M.; Li, Z.S.; Kuang, T.Y.; Lu, C.M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparison between a hybridization line and its parents grown under field conditions. Plant Sci. 2006, 171, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Li, W.; Lu, Q.T.; Wen, X.G.; Li, H.W.; Kuang, T.Y.; Li, Z.S.; Lu, C.M. The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress. J. Plant Physiol. 2011, 168, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Herbert, D.A.; Holshouser, D.L. Evaluation of the LAI-2000 plant canopy analyzer to estimate leaf area in manually defoliated soybean. Agron. J. 2002, 94, 1012–1019. [Google Scholar] [CrossRef]
- Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [Google Scholar] [CrossRef]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef]
- Doerge, R.W.; Churchill, G.A. Permutation tests for multiple loci affecting a quantitative character. Genetics 1996, 142, 285–294. [Google Scholar] [CrossRef]
- Somers, D.J.; Isaac, P.; Edwards, K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004, 109, 1105–1114. [Google Scholar] [CrossRef]
- Ellis, M.H.; Spielmeyer, W.; Gale, K.R.; Rebetzke, G.J.; Richards, R.A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 2002, 105, 1038–1042. [Google Scholar] [CrossRef]
- Habash, D.Z.; Bernard, S.; Schondelmaier, J.; Weyen, J.; Quarrie, S.A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor. Appl. Genet. 2007, 114, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Miralles, D.J.; Slafer, G.A. Radiation interception and radiation use efficiency of near-isogenic wheat lines with different height. Euphytica 1997, 97, 201–208. [Google Scholar] [CrossRef]
- Nenova, V.R.; Kocheva, K.V.; Petrov, P.I.; Georgiev, G.I.; Karceva, T.V.; Borner, A.; Landjeva, S.P. Wheat Rht-B1 dwarfs exhibit better photosynthetic response to water deficit at seedling stage compared to the wild Type. J. Agron. Crop Sci. 2014, 200, 434–443. [Google Scholar] [CrossRef]
Traits | Xiaoyan 54 | Jing 411 | RIL Population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | CV (%) | F-Value | Skewness | Kurtosis | |||
Chl | 46.3 ± 3.7 | 51.1 ± 4.1 ** | 49.3 | 41.7 | 55.4 | 2.3 | 4.7 | 5.64 *** | 0.009 | 0.914 |
Fo | 400.1 ± 25.3 | 412.3 ± 27.7 | 422.3 | 379.0 | 466.4 | 15.4 | 3.6 | 2.69 *** | −0.185 | 0.310 |
Fm | 2351.3 ± 259.7 | 2426.6 ± 248.4 | 2427.8 | 2154.7 | 2797.6 | 118.9 | 4.9 | 3.73 *** | 0.471 | 1.019 |
Fv/Fm | 0.828 ± 0.015 | 0.829 ± 0.014 | 0.825 | 0.810 | 0.840 | 0.006 | 0.7 | 2.10 *** | 0.404 | 0.623 |
PI | 5.09 ± 1.38 | 5.43 ± 1.15 | 4.91 | 3.64 | 6.18 | 0.48 | 9.8 | 2.07 *** | 0.294 | 0.399 |
TRo/CS | 331.5 ± 22.3 | 341.8 ± 23.4 | 348.3 | 311.3 | 382.4 | 12.9 | 3.7 | 3.16 *** | −0.153 | 0.380 |
ETo/CS | 208.0 ± 19.1 | 218.6 ± 21.6 | 220.0 | 196.5 | 242.7 | 9.0 | 4.1 | 2.59 *** | −0.083 | 0.147 |
DIo/CS | 68.6 ± 7.2 | 70.5 ± 7.8 | 74.1 | 64.0 | 84.0 | 3.7 | 5.0 | 1.74 *** | 0.167 | 0.019 |
RC/CSm | 1422.2 ± 199.3 | 1487.2 ± 144.1 | 1412.9 | 1236.8 | 1653.7 | 77.8 | 5.5 | 2.94 *** | 0.279 | 0.383 |
A (μmol m−2 s−1) | 18.64 ± 2.91 | 21.31 ± 3.12 ** | 20.79 | 17.17 | 23.91 | 1.67 | 8.0 | 7.46 *** | 0.125 | −0.827 |
LAI | 3.77 ± 0.78 | 4.56 ± 0.78 * | 3.21 | 1.51 | 4.77 | 0.72 | 22.4 | 3.84 *** | −0.335 | −0.589 |
PH (cm) | 70.4 ± 15.5 | 81.4 ± 10.5 | 74.7 | 46.0 | 101.0 | 12.0 | 16.1 | 5.70 *** | 0.227 | −0.235 |
SN | 90.5 ± 15.8 | 86.3 ± 9.1 | 87.1 | 54.7 | 122.3 | 14.3 | 16.4 | 2.47 *** | 0.007 | −0.503 |
BM (g) | 222.7 ± 89.7 | 220.3 ± 59.5 | 220.0 | 117.2 | 356.5 | 46.6 | 21.2 | 1.58 *** | 0.018 | 0.372 |
GY (g) | 94.8 ± 28.9 | 104.3 ± 19.2 | 97.9 | 58.6 | 161.1 | 19.2 | 19.6 | 1.63 *** | 0.168 | 0.448 |
HI | 0.444 ± 0.059 | 0.484 ± 0.059 | 0.450 | 0.330 | 0.630 | 0.040 | 8.9 | 3.53 *** | 0.397 | 2.877 |
Traits | QTL | Marker Interval | Year 2009 | Year 2010 | ||||
---|---|---|---|---|---|---|---|---|
LOD | Add | R2 (%) | LOD | Add | R2 (%) | |||
Chl | QChl-1A.1 | Xbarc119.1-WCI5 | 3.25 | −1.0 | 10.8 | 4.34 | −0.4 | 14.1 |
QChl-1A.2 | Xcfd59.2-Xgwm558.2 | 3.83 | −1.0 | 10.6 | ||||
QChl-2D | Xgwm132.1-Xcfd53 | 4.43 | 1.0 | 11.2 | ||||
QChl-6A | Xgwm617-Xcfa2114 | 3.86 | −0.4 | 12.8 | ||||
QChl-6B | NP323103-Xcfd13 | 3.64 | −1.1 | 10.3 | ||||
Fo | QFo-3B | Xbarc147-Xgwm493 | 5.21 | −6.5 | 17.5 | |||
QFo-4B | Xgwm192.1-Xbarc20 | 4.91 | 8.3 | 15.2 | 5.31 | 7.2 | 17.5 | |
QFo-5A | Xgwm335.2-Xgwm186 | 3.81 | 5.5 | 11.6 | ||||
Fm | QFm-1B | Glu57.2-Glu_3D | 6.57 | −110.1 | 30.5 | |||
QFm-4B | Xgwm192.1-Xbarc20 | 7.79 | 64.0 | 23.7 | ||||
QFm-5A | Xgwm156.1-Xgwm328 | 3.76 | 59.7 | 15.1 | ||||
Fv/Fm | QFv/Fm-2D | Xcfd43-Xgwm102 | 3.76 | −0.003 | 12.8 | |||
QFv/Fm-3D | Xcfd70-Xbarc125 | 3.75 | −0.003 | 11.5 | ||||
QFv/Fm-4A | Xlhq153-Xgwm160 | 3.31 | −0.003 | 9.3 | ||||
QFv/Fm-5B | Xgwm499-Xcfd2 | 4.75 | 0.003 | 15.6 | ||||
PI | QPI-2A | Xgwm501-Xgwm156.2 | 6.07 | −0.48 | 22.8 | |||
QPI-4B | Xgwm368-Xbarc90 | 3.37 | −0.18 | 9.8 | ||||
TRo/CS | QTRo/CS-3B | Xbarc147-Xgwm493 | 3.54 | −4.7 | 12.9 | |||
QTR/CS-4B | Xgwm192.1-Xbarc20 | 4.29 | 6.1 | 12.8 | 8.84 | 7.3 | 27.6 | |
ETo/CS | QETo/CS-1B.1 | Glu57.2-Glu_3D | 6.20 | −7.8 | 27.1 | |||
QETo/CS-1B.2 | Glu_3D-Xswes215 | 3.81 | 3.3 | 9.9 | ||||
QETo/CS-3A | Xcfa2262-Xcfd152.1 | 3.42 | −3.7 | 12.1 | ||||
QETo/CS-3B | Xgwm376.1-Xbarc203 | 3.79 | −3.3 | 10.2 | ||||
QETo/CS-5A.1 | Xgwm335.2-Xgwm186 | 3.37 | 3.3 | 10.0 | ||||
QETo/CS-5A.2 | Xgwm156.1-Xgwm328 | 3.32 | 4.6 | 15.5 | 3.23 | 3.9 | 14.6 | |
DIo/CS | QDIo/CS-2A | Xgwm501-Xgwm156.2 | 6.74 | 2.4 | 23.1 | |||
QDIo/CS-2D | Xcfd43-Xgwm102 | 4.63 | 2.1 | 15.0 | ||||
QDIo/CS-3D | Xgdm136.1-Xbarc226 | 4.10 | 1.9 | 12.4 | ||||
RC/CSm | QRC/CSm-1A | Xcfd61.2-Xwmc329.1 | 5.13 | −53.1 | 16.8 | |||
QRC/CSm-1B.1 | Glu57.2-Glu_3D | 4.28 | −63.8 | 14.5 | ||||
QRC/CSm-1B.2 | Glu_3D-Xswes215 | 3.30 | 34.3 | 10.2 | ||||
QRC/CSm-2B | Xag24.2-Xgwm191.1 | 3.60 | −35.7 | 11.6 | ||||
QRC/CSm-3A | P90-Xbarc1060 | 3.63 | −41.3 | 13.6 | ||||
A | QA-1D | Xbarc152.1-Xcfd61.1 | 4.34 | 0.86 | 17.0 | |||
QA-2D | Xgwm614.1-Xcfd51 | 3.30 | −0.90 | 11.0 |
Traits | QTL | Marker Interval | Year 2009 | Year 2010 | ||||
---|---|---|---|---|---|---|---|---|
LOD | Add | R2 (%) | LOD | Add | R2 (%) | |||
LAI | QLAI-1B | Xlhq11-Xwmc402 | 3.45 | −0.21 | 10.9 | |||
QLAI-2D | Xwmc112-Xbarc168 | 3.71 | −0.23 | 23.3 | ||||
QLAI-3B | Xbarc75-Xbarc238 | 3.55 | 0.23 | 16.6 | ||||
QLAI-4B.1 | Xbarc193-TC246843 | 3.49 | 0.24 | 21.4 | ||||
QLAI-4B.2 | Xdupw270-Xgwm192.1 | 6.91 | 0.26 | 25.9 | ||||
QLAI-5B | Xwmc388.4-NP66 | 3.80 | −0.19 | 11.9 | ||||
PH | QPH-2D | Xwmc112-Xbarc168 | 9.31 | −4.5 | 39.9 | 9.30 | −4.9 | 27.6 |
QPH-4B | Xbarc90-Xgwm107.1 | 11.48 | −4.9 | 29.7 | ||||
SN | QSN-2A | Xgwm448-Xcfa2043 | 3.41 | −4.1 | 11.4 | |||
QSN-2D | Xgwm296.3-Xgwm261 | 5.00 | −6.4 | 16.3 | ||||
QSN-3A | Xbarc67-Xwmc50 | 3.52 | 4.7 | 10.4 | ||||
QSN-4B | Xgwm368-Xbarc90 | 4.52 | 5.0 | 16.9 | ||||
QSN-4D | Xgdm14.5-Xgwm55.4 | 4.33 | −5.4 | 17.8 | ||||
QSN-7B | Xgwm577-Xwmc273 | 5.44 | 6.4 | 17.8 | ||||
BM | QBM-2B | Xbarc160-Xgwm55.1 | 4.08 | −8.7 | 15.6 | |||
QBM-2D | Xgwm296.3-Xgwm261 | 4.11 | −13.8 | 12.0 | ||||
QBM-3A | Xwmc50-P90 | 4.23 | 14.0 | 12.6 | ||||
GY | QGY-2B | TC288392-Xbarc91 | 3.78 | −4.1 | 14.1 | |||
QGY-2D | Xcfd53-Xwmc112 | 3.65 | −6.0 | 10.0 | ||||
HI | QHI-1A | Xcfd61.2-Xwmc329.1 | 3.23 | −0.014 | 13.5 | |||
QHI-4B | Xbarc90-Xgwm107.1 | 3.65 | 0.010 | 9.5 | ||||
QHI-6B | Xgwm132.3-Xgwm132.2 | 6.72 | −0.012 | 18.6 |
Cluster | Chr | Marker Intervals | Position (cM) | Traits |
---|---|---|---|---|
1 | 1A | Xcfd61.2-Xwmc329.1 | 34.0–36.0 | RC/CSm (09-14), HI (09) |
2 | 1B | Glu57.2-Glu_3D | 0.0–3.0 | Fm (10-14), RC/CSm (10-14), ETo/CS (10-14) |
3 | 1B | Glu_3D-D57R | 29.6–30.3 | ETo/CS (09-14), RC/CSm (09-14) |
4 | 2A | Xgwm501-Xgwm156.2 | 71.6 | DIo/CS (10-14), PI (10-14) |
5 | 2B | TC288392-Xbarc91-Xbarc160-Xgwm55.1 | 71.3–74.3 | BM (09), GY (09) |
6 | 2D | Xgwm296.3-Xgwm261-Xgwm132.1-Xcfd53-Xwmc112-Xbarc168 | 94.5–111.9 | Chl (09-14), LAI (10-34), PH (09), PH (10), SN (10), BM (10), GY (10) |
7 | 2D | Xcfd43-Xgwm102 | 142.4–144.4 | Fv/Fm (09-14), DIo/CS (09-14) |
8 | 3A | Xbarc67-Xwmc50-P90-Xbarc1060 | 66.1–87.0 | RC/CSm (10-14), SN (10), BM (10) |
9 | 3B | Xbarc75-Xbarc238-Xbarc147-Xgwm493 | 0.0–21.9 | Fo (10-14), TRo/CS (10-14), LAI (09-7) |
10 | 4B | Xdupw270-Xgwm192.1-Xbarc20-Xgwm368-Xbarc90-Xgwm107.1 | 38.6–45.8 | Fo (09-7), Fo (09-14), Fm (09-14), TRo/CS (09-7), TRo/CS (09-14), SN (09), HI (10), LAI (09-17), PI (09-7), PH (10) |
11 | 5A | Xgwm335.2-Xgwm186 | 45.6 | Fo (10-14), ETo/CS (10-14) |
12 | 5A | Xgwm156.1-Xgwm328 | 78.2 | Fm (09-7), ETo/CS (09-7), ETo/CS (09-14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Q.; Li, C.; Li, H.; Zheng, Q.; Li, B.; Li, Z. An Analysis of the Genetic Relation between Photosynthesis and Yield-Related Traits in Wheat. Agriculture 2022, 12, 560. https://doi.org/10.3390/agriculture12040560
An Q, Li C, Li H, Zheng Q, Li B, Li Z. An Analysis of the Genetic Relation between Photosynthesis and Yield-Related Traits in Wheat. Agriculture. 2022; 12(4):560. https://doi.org/10.3390/agriculture12040560
Chicago/Turabian StyleAn, Qiang, Chunlian Li, Hongwei Li, Qi Zheng, Bin Li, and Zhensheng Li. 2022. "An Analysis of the Genetic Relation between Photosynthesis and Yield-Related Traits in Wheat" Agriculture 12, no. 4: 560. https://doi.org/10.3390/agriculture12040560
APA StyleAn, Q., Li, C., Li, H., Zheng, Q., Li, B., & Li, Z. (2022). An Analysis of the Genetic Relation between Photosynthesis and Yield-Related Traits in Wheat. Agriculture, 12(4), 560. https://doi.org/10.3390/agriculture12040560