Development of Centrifugal Disc Spreader on Tracked Combine Harvester for Rape Undersowing Rice Based on DEM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Design and Working Principle of the Spreader
2.2. Spreader Parameters Design
2.2.1. Fertilizer Box
2.2.2. Fertilizer Flow-Regulating Device
2.2.3. Centrifugal Disc
2.3. Kinematic Analysis of Fertilizer Particle
2.4. Analysis of Fertilizer Spreading Process Based on DEM
2.4.1. DEM Model for Simulation of the Centrifugal Disc Spreader
2.4.2. Simulation Design
2.5. Bench Test Method
3. Results and Discussion
3.1. Single-Factor Simulation
3.1.1. Effects of the Feed Gate Hold Position Angle
3.1.2. Effects of the Shield Angle
3.1.3. Effects of the Vane Pitch Angle
3.1.4. Effects of the Disc Rotational Angular Velocity
3.2. Cross-Factor Simulation
3.3. Optimization Design
3.4. Bench Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Feng, Z.C.; Xiao, T.H.; Ma, X.M.; Zhou, G.S.; Huang, F.H.; Li, J.N.; Wang, H.Z. Development, potential and adaptation of Chinese rapeseed industry. Chin. J. Oil Crop Sci. 2019, 41, 485–489. [Google Scholar]
- Fang, Y.T.; Ren, T.; Zhang, S.T.; Liu, Y. Rotation with oilseed rape as the winter crop enhances rice yield and improves soil indigenous nutrient supply. Soil Tillage Res. 2021, 212, 105065. [Google Scholar] [CrossRef]
- Wang, H.N.; Yang, G.T.; Wang, K.C.; Zhao, C.K. Oilseed rape straw returning changes soil reducibility and affects the root and yield of rice in the rape-rice rotation field at Sichuan Basin area of China. Agron. J. 2020, 112, 4681–4692. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, B.; Zhou, G.S.; Liu, F.; Huang, J.S.; Kuai, J. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed. Sci. Agric. Sin. 2021, 54, 1613–1626. [Google Scholar]
- Lei, H.X.; Chen, A.W.; Zhang, C.S.; Luo, K.S.; Chen, X.G. Effect of Symbiosis Period and Seeding Amount on Growth and Yield of Rapeseed Undersowing Rice. Acta Agron. Sin. 2011, 37, 1449–1456. [Google Scholar] [CrossRef]
- Kuai, J.; Du, X.Z.; Hu, M.; Zeng, J.X.; Zuo, Q.S.; Wu, J.S.; Zhou, G.S. Effect of Symbiosis Period and Seeding Amount on Growth and Yield of Rapeseed Undersowing Rice. Sci. Agric. Sin. 2016, 42, 591–599. [Google Scholar]
- Zheng, W.; Xiao, G.B.; Lv, W.S.; Li, Y.Z.; Chen, M.; Huang, T.B.; Xiao, X.J.; Wu, Y.; Ye, C. Effect of sowing rate on population growth of interplanting rapeseed in double—Cropping rice. Chin. J. Oil Crop Sci. 2018, 40, 227–232. [Google Scholar]
- Fulton, J.P.; Shearer, S.A.; Higgins, S.F.; Mcdonald, T.P. A method to generate and use as-applied surfaces to evaluate variable-rate fertilizer applications. Precis. Agric. 2013, 14, 184–200. [Google Scholar] [CrossRef]
- Villette, S.; Cointault, F.; Piron, E.; Chopinet, B. Centrifugal spreading: An analytical model for the motion of fertilizer particles on a spinning disk. Biosyst. Eng. 2005, 92, 157–164. [Google Scholar] [CrossRef]
- Cool, S.; Pieters, J.G.; Mertens, K.C.; Nuyttens, D.; Hijazi, B.; Dubois, J.; Cointault, F.; Vangeyte, J. Image Based Techniques for Determining Spread Patterns of Centrifugal Fertilizer Spreaders. Agric. Agric. Sci. Proc. 2015, 7, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Cool, S.R.; Vangeyte, J.; Mertens, K.C.; Nuyttens, D.R.; Sonck, B.R.; Gucht, T.C.; Pieters, J.G. Comparing different methods of using collecting trays to determine the spatial distribution of fertiliser particles. Biosyst. Eng. 2016, 150, 142–150. [Google Scholar] [CrossRef]
- Han, C.W.; Lee, S.Y.; Hong, Y.K.; Kweon, G.Y. Development of a variable rate applicator for uniform fertilizer spreading. Int. J. Agric. Biol. Eng. 2019, 12, 82–89. [Google Scholar] [CrossRef]
- Liu, X.D.; Ding, Y.C.; Shu, C.X.; Wang, K.Y.; Liu, W.P.; Wang, X.P. Mechanism Analysis and Test of Disturbance and Blockage Prevention of Spiral Cone Centrifugal Fertilizer Apparatus. Trans. Chin. Soc. Agric. Mach. 2020, 51, 44–54. [Google Scholar]
- Liedekerke, P.V.; Tijskens, E.; Dintwa, E.; Rioual, F.; Vangeyte, J.; Ramona, H. DEM simulations of the particle flow on a centrifugal fertilizer spreader. Powder Technol. 2009, 190, 348–360. [Google Scholar] [CrossRef]
- Cool, S.; Pieters, J.; Mertens, K.C.; Hijazi, B.; Vangeyte, J. A simulation of the influence of spinning on the ballistic flight of spherical fertiliser grains. Comput. Electron. Agric. 2014, 105, 121–131. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Chen, M.; Wang, X.C.; Odhiambo, M.O.; Ding, W.M. Numerical simulation of spreading performance and distribution pattern of centrifugal variable-rate fertilizer applicator based on DEM software. Comput. Electron. Agric. 2018, 144, 249–259. [Google Scholar]
- Zinkevičienė, R.; Jotautiene, E.; Juostas, A.; Comparetti, A.; Vaiciukevičius, E. Simulation of Granular Organic Fertilizer Application by Centrifugal Spreader. Agronomy 2021, 11, 247. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, Y.N.; Song, J.N.; Ma, T.; Wang, M.M.; Zhang, C. Performance analysis and experiment on fertilizer spreader with centrifugal swing disk based on EDEM. Trans. Chin. Soc. Agric. Eng. 2017, 33, 32–39. [Google Scholar]
- Hu, Y.G.; Yang, Y.C.; Xiao, H.R.; Li, P.P. Simulation and Parameter Optimization of Centrifugal Fertilizer Spreader for Tea Plants. Trans. Chin. Soc. Agric. Mach. 2016, 47, 77–82. [Google Scholar]
- Ren, W.J.; Wu, Z.Y.; Li, M.L.; Lei, X.L.; Zhu, S.L. Desing an Experiment of UAV Fertilization Spreader System for Rice. Trans. Chin. Soc. Agric. Mach. 2021, 52, 88–98. [Google Scholar]
- Yang, W.W.; Fang, L.Y.; Luo, X.W.; Li, H.; Ye, Y.Q.; Liang, Z.H. Experimental study of the effects of discharge port parameters on the fertilizing performance for fertilizer distribution apparatus with screw. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–8. [Google Scholar]
- Yatskul, A.; Lemière, J.P.; Cointault, F. Comparative energy study of the air-stream loading systems of air-seeders. Eng. Agric. Environ. Food 2017, 11, 30–37. [Google Scholar] [CrossRef]
- Dun, G.Q.; Gao, Z.Y.; Liu, Y.X.; Ji, W.Y.; Liu, W.H. Optimization design of fertilizer apparatus owned arc gears based on discrete element method. Int. J. Agric. Biol. Eng. 2021, 14, 97–105. [Google Scholar] [CrossRef]
- Wang, L.; Xi, R.J.; Liao, Y.T.; Zhang, Q.S.; Xiao, W.L.; Liao, Q.X. Effects of land slope on seeding performance of a broad width precision no-tillage planter for rapeseed. Trans. Chin. Soc. Agric. Eng. 2020, 36, 11–21. [Google Scholar]
- Wen, X.Y.; Yuan, H.F.; Wang, G.; Jia, H.L. Calibration method of friction coefficient of granular fertilizer by discrete element simulation. Trans. Chin. Soc. Agric. Mach. 2020, 51, 115–122. [Google Scholar]
- Guan, Z.H.; Jiang, T.; Li, H.T.; Wu, C.Y.; Zhang, M.; Wang, G.; Mu, S.L. Analysis and test of the laying quality of inclined transportation rape windrower. Trans. Chin. Soc. Agric. Eng. 2021, 37, 59–68. [Google Scholar]
- American Society of Agricultural and Biological Engineers. Procedure for Measuring Distribution Uniform and Calibrating Granular Broadcast Spreaders; American Society of Agricultural and Biological Engineers: St. Joseph, MO, USA, 2006. [Google Scholar]
- ISO 5690-2-1984; Equipment for Distributing Fertilizers-Test Methods—Part 2: Fertilizer Distributors in Lines. International Organization for Standardization: Geneve, Switzerland, 1984.
Items | Parameters | Values |
---|---|---|
Particle | Density/(kg·m−3) | 1325 |
Poisson’s ratio | 0.25 | |
Shear modulus/Pa | 2.86 × 107 | |
Steel | Density/(kg·m−3) | 7850 |
Poisson’s ratio | 0.33 | |
Shear modulus/Pa | 7.1 × 1010 | |
Particle to particle | Elastic recovery coefficient | 0.28 |
Friction coefficient | 0.34 | |
Friction coefficient | 0.21 | |
Particle to steel | Elastic recovery coefficient | 0.41 |
Friction coefficient | 0.22 | |
Friction coefficient | 0.33 |
Factor | Factor Level | Fixed Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Feed gate hold position angle α/° | −15 | 5 | 25 | 45 | 65 | β = 10°, θ = 10°, ω = 180 rpm |
Shield angle β/° | 0 | 5 | 10 | 15 | 20 | α = 25°, θ = 10°, ω = 180 rpm |
Vane pitch angle θ/° | −30 | −15 | 0 | 15 | 30 | α = 25°, β = 10°, ω = 180 rpm |
Disc rotational angular velocity ω/rpm | 120 | 150 | 180 | 210 | 240 | α = 25°, β = 10°, θ = 10° |
Level | Feed Gate Hold Position Angle α/° | Disc Rotational Angular Velocity ω/rpm | Vane Pitch Angle θ/° | Shield Angle β/° |
---|---|---|---|---|
−1 | −15 | 120 | −30 | 0 |
0 | 25 | 180 | 0° | 10 |
1 | 65 | 240 | 30 | 20 |
Test No. | α/° | ω/rpm | θ/° | β/° | y1/% | y2/m |
---|---|---|---|---|---|---|
1 | −15 | 120 | 0 | 10 | 42.4 | 1.8 |
2 | 65 | 120 | 0 | 10 | 19.2 | 1.5 |
3 | −15 | 240 | 0 | 10 | 37.6 | 3.7 |
4 | 65 | 240 | 0 | 10 | 23.9 | 3.2 |
5 | 25 | 180 | −30 | 0 | 37.6 | 2.7 |
6 | 25 | 180 | 30 | 0 | 29.4 | 2.6 |
7 | 25 | 180 | −30 | 20 | 24.6 | 2.8 |
8 | 25 | 180 | 30 | 20 | 25.0 | 2.8 |
9 | −15 | 180 | 0 | 0 | 42.2 | 2.3 |
10 | 65 | 180 | 0 | 0 | 46.9 | 2.7 |
11 | −15 | 180 | 0 | 20 | 23.0 | 2.6 |
12 | 65 | 180 | 0 | 20 | 25.1 | 2.1 |
13 | 25 | 120 | −30 | 10 | 49.3 | 2.6 |
14 | 25 | 240 | −30 | 10 | 16.5 | 3.7 |
15 | 25 | 120 | 30 | 10 | 20.5 | 1.9 |
16 | 25 | 240 | 30 | 10 | 28.4 | 3.6 |
17 | −15 | 180 | −30 | 10 | 45.5 | 2.5 |
18 | 65 | 180 | −30 | 10 | 37.4 | 2.6 |
19 | −15 | 180 | 30 | 10 | 48.6 | 2.6 |
20 | 65 | 180 | 30 | 10 | 33.6 | 2.5 |
21 | 25 | 120 | 0 | 0 | 43.0 | 1.7 |
22 | 25 | 240 | 0 | 0 | 19.8 | 3.3 |
23 | 25 | 120 | 0 | 20 | 14.8 | 1.8 |
24 | 25 | 240 | 0 | 20 | 21.7 | 3.5 |
25 | 25 | 180 | 0 | 10 | 14.0 | 2.7 |
26 | 25 | 180 | 0 | 10 | 24.6 | 2.5 |
27 | 25 | 180 | 0 | 10 | 15.8 | 2.5 |
28 | 25 | 180 | 0 | 10 | 16.3 | 2.5 |
29 | 25 | 180 | 0 | 10 | 21.3 | 2.6 |
Source | y1 | y2 | ||||||
---|---|---|---|---|---|---|---|---|
Quadratic Sum | Df | F-Value | p-Value | Quadratic Sum | Df | F-Value | p-Value | |
Model | 0.3041 | 14 | 5.5579 | 0.0014 ** | 8.9344 | 14 | 20.9236 | <0.0001 ** |
A | 0.0237 | 1 | 6.0596 | 0.0274 * | 0.0675 | 1 | 2.2131 | 0.1590 |
B | 0.0142 | 1 | 3.6227 | 0.0778 | 7.8408 | 1 | 257.0765 | <0.0001 ** |
C | 0.0054 | 1 | 1.3929 | 0.2576 | 0.0675 | 1 | 2.2131 | 0.1590 |
D | 0.0596 | 1 | 15.2413 | 0.0016 * | 0.0075 | 1 | 0.2459 | 0.6277 |
AB | 0.0022 | 1 | 0.5709 | 0.4624 | 0.0100 | 1 | 0.3279 | 0.5760 |
AC | 0.0012 | 1 | 0.3041 | 0.5900 | 0.0100 | 1 | 0.3279 | 0.5760 |
AD | 0.0002 | 1 | 0.0417 | 0.8411 | 0.2025 | 1 | 6.6393 | 0.0220 * |
BC | 0.0415 | 1 | 10.6256 | 0.0057 ** | 0.0900 | 1 | 2.9508 | 0.1079 |
BD | 0.0225 | 1 | 5.7676 | 0.0308 * | 0.0025 | 1 | 0.0820 | 0.7788 |
CD | 0.0018 | 1 | 0.4652 | 0.5063 | 0.0025 | 1 | 0.0820 | 0.7788 |
A2 | 0.1008 | 1 | 25.8021 | 0.0002 ** | 0.1395 | 1 | 4.5748 | 0.0506 |
B2 | 0.0013 | 1 | 0.3406 | 0.5688 | 0.1068 | 1 | 3.5026 | 0.0823 |
C2 | 0.0506 | 1 | 12.9593 | 0.0029 ** | 0.2682 | 1 | 8.7928 | 0.0102 * |
D2 | 0.0077 | 1 | 1.9634 | 0.1829 | 0.0141 | 1 | 0.4632 | 0.5073 |
Residual | 0.0547 | 14 | 0.4270 | 14 | ||||
Lack of Fit | 0.0470 | 10 | 2.4321 | 0.2031 | 0.3950 | 10 | 4.9375 | 0.0688 |
Pure Error | 0.0077 | 4 | 0.0320 | 4 | ||||
Cor Total | 0.3588 | 28 | 9.3614 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Z.; Mu, S.; Jiang, T.; Li, H.; Zhang, M.; Wu, C.; Jin, M. Development of Centrifugal Disc Spreader on Tracked Combine Harvester for Rape Undersowing Rice Based on DEM. Agriculture 2022, 12, 562. https://doi.org/10.3390/agriculture12040562
Guan Z, Mu S, Jiang T, Li H, Zhang M, Wu C, Jin M. Development of Centrifugal Disc Spreader on Tracked Combine Harvester for Rape Undersowing Rice Based on DEM. Agriculture. 2022; 12(4):562. https://doi.org/10.3390/agriculture12040562
Chicago/Turabian StyleGuan, Zhuohuai, Senlin Mu, Tao Jiang, Haitong Li, Min Zhang, Chongyou Wu, and Mei Jin. 2022. "Development of Centrifugal Disc Spreader on Tracked Combine Harvester for Rape Undersowing Rice Based on DEM" Agriculture 12, no. 4: 562. https://doi.org/10.3390/agriculture12040562
APA StyleGuan, Z., Mu, S., Jiang, T., Li, H., Zhang, M., Wu, C., & Jin, M. (2022). Development of Centrifugal Disc Spreader on Tracked Combine Harvester for Rape Undersowing Rice Based on DEM. Agriculture, 12(4), 562. https://doi.org/10.3390/agriculture12040562