Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Fertilizer and Crop Management
2.4. Data Analysis
2.5. Weather Conditions
3. Results and Discussion
3.1. Dry Matter Yield of Tubers
3.2. The Impact of Farming System on the Share of Marketable Tubers
3.3. Average Weight of a Tuber
3.4. Average Number of Tubers per Plant
3.5. Average Yield of Starch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rose, D.; Heller, M.C.; Roberto, C.A. Position of the society nutrition education and behavior: The importance of including environmental sustainability in dietary guidance. J. Nutr. Educ. Behav. 2019, 51, 3–15.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Food and Agriculture Organization of the United Nation. Sustainable Food Systems. Concept and Framework. 2018. Available online: http://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed on 26 October 2020).
- Climate Change 2014. In Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Eurostat. Organic Farming Statistics. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Organic_farming_statistics#cite_note-3 (accessed on 10 March 2020).
- Ingallina, C.; Spano, M.; Sobolev, A.P.; Esposito, C.; Santarcangelo, C.; Baldi, A.; Daglia, M.; Mannina, L. Characterization of local products for their industrial use: The case of Italian potato cultivars analyzed by untargeted and targeted methodologies. Foods 2020, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Gustavsen, G.W. Sustainability and potato consumption. Potato Res. 2021, 64, 571–586. [Google Scholar] [CrossRef]
- Carter, M.R.; Peters, R.D.; Sanderson, J. Conservation tillage in potato rotations in Eastern Canada. In Land Degradation and Desertification: Assessment, Mitigation and Remediation; Zdruli, P., Pagliai, M., Kapur, S., Faz Cano, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 627–637. [Google Scholar]
- Stat 2022. Orgaaniliselt Kasvatatud Kartuli Osakaal. (Share of Organically Grown Potatoes). Available online: https://andmed.stat.ee/et/stat/majandus__pellumajandus__pellumajandussaaduste-tootmine__taimekasvatussaaduste-tootmine/PM0281 (accessed on 10 May 2021). (In Estonian).
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; Scialabba, N.E.H.; Brüggemann, J.; Isensee, A.; Erb, K.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 Per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Tal, A. Making conventional agriculture environmentally friendly: Moving beyond the glorification of organic agriculture and the demonization of conventional agriculture. Sustainability 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Iital, A.; Pachel, K.; Deelstra, J. Monitoring of diffuse pollution from agriculture to support implementation of the WFD and the Nitrate Directive in Estonia. Environ. Sci. Policy 2008, 11, 185–193. [Google Scholar] [CrossRef]
- Kücke, M.; Kleeberg, P. Nitrogen balance and soil nitrogen dynamics in two areas with different soil, climatic and cropping conditions. Eur. J. Agron. 1997, 6, 89–100. [Google Scholar] [CrossRef]
- Povilaitis, A.; Stålnacke, P.; Vassiljev, A. Nutrient retention and export to surface waters in Lithuanian and Estonian river basins. Hydrol. Res. 2012, 43, 359–373. [Google Scholar] [CrossRef]
- Fraser, P.M.; Curtin, D.; Harrison-Kirk, T.; Meenken, E.D.; Beare, M.H.; Tabley, F.; Gillespie, R.N.; Francis, G.S. Winter nitrate leaching under different tillage and winter cover crop management practices. Soil Sci. Soc. Am. J. 2013, 7, 1391–1401. [Google Scholar] [CrossRef]
- Raave, H. Lämmastiku leostumisest ja selle vähendamise võimalustest pärast vedelsõnniku sügisel põllule laotamist (N leaching and possibilities for its reduction after autumn application of liquid manure). In Agronomy 2021; Tupits, I., Tamm, Ü., Tamm, S., Toe, A., Vanamb, E., Eds.; Eesti Maaülikool: Tartu, Estonia, 2021; pp. 39–51. (In Estonian) [Google Scholar]
- Ewert, F.; Rounsevell, M.D.A.; Reginster, I.; Metzger, M.J.; Leemans, R. Future scenarios of European agricultural land use. I. Estimating changes in crop productivity. Agric. Ecosyst. Environ. 2005, 107, 101–116. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Roinila, P.; Väisänen, J.; Granstedt, A.; Kunttu, S. Effects of different organic fertilization practices and mineral fertilization on potato quality. Biol. Agric. Hortic. 2003, 21, 165–194. [Google Scholar] [CrossRef]
- Shah, A.; Margrethe, A.; Rasmussen, I.A.; Jimenez, E.M.C.; Olesen, J.E. Productivity of organic and conventional arable cropping systems in long-term experiments in Denmark. Eur. J. Agron. 2017, 90, 12–22. [Google Scholar] [CrossRef]
- Antosovsky, J.; Ryant, P.; Prudil, M.; Gruber, M.; Komprsová, I. Effect of localities and organic fertilizers on yield in conditions of organic farming. Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Tein, B.; Kauer, K.; Eremeev, V.; Luik, A.; Selge, A.; Loit, E. Farming systems affect potato (Solanum tuberosum L.) tuber and soil quality. Field Crops Res. 2014, 156, 1–11. [Google Scholar] [CrossRef]
- Warman, P.R.; Havard, K.A. Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet com. Agric. Ecosyst. Environ. 1998, 68, 207–216. [Google Scholar] [CrossRef]
- Simson, R.; Tartlan, L.; Nugis, E.; Eremeev, V. The effect of fertilizer and growing season on tuber dry matter and nitrate content in potato. Agron. Res. 2016, 14, 1486–1493. [Google Scholar]
- Tamm, L. The future challenge and prospects in organic crop protection. In Proceedings of the IFOAM 2000, the World Grows Organic: Proceedings, 13th International IFOAM Scientific Conference, Basel, Switzerland, 28–31 August 2000; Alföldi, T., Lockeretz, W., Niggli, U., Eds.; vdf Hochschulverlag AG an der ETH Zürich: Zürich, Switzerland, 2000; pp. 106–109. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2006, World Soil Resource Report 103, 2nd ed.; Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Kauer, K.; Pärnpuu, S.; Talgre, L.; Eremeev, V.; Luik, A. Soil particulate and mineral-associated organic matter increases in organic farming under cover cropping and manure addition. Agriculture 2021, 11, 903. [Google Scholar] [CrossRef]
- Alaru, M.; Talgre, L.; Eremeev, V.; Tein, B.; Luik, A.; Nemvalts, A.; Loit, E. Crop yields and supply of nitrogen compared in conventional and organic systems. Agric. Food Sci. 2014, 23, 317–326. [Google Scholar] [CrossRef]
- Statsoft. Statistica 7.0; Copyright 1984–2005; StatSoft Inc.: Tulka, OK, USA, 2005; 716p. [Google Scholar]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric. Ecosyst. Environ. 2021, 312, 1–12. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Laaniste, P.; Eremeev, V.; Tahtjarv, T.; Kaurilind, E.; Tosens, T.; Niinemets, Ü.; Williams, I.H. Does winter oilseed rape as a winter cover crop influence potato late blight development in an organic crop rotation? Biol. Agric. Hortic. 2020, 36, 71–83. [Google Scholar] [CrossRef]
- Eremeev, V.; Talgre, L.; Kuht, J.; Mäeorg, E.; Esmaeilzadeh-Salestani, K.; Alaru, M.; Loit, E.; Runno-Paurson, E.; Luik, A. The soil microbial hydrolytic activity, content of nitrogen and organic carbon were enhanced by organic farming management using cover crops and composts in potato cultivation. Acta Agric. Scan. Sect. B Soil Plant Sci. 2020, 70, 87–94. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Hansen, M.; Tein, B.; Loit, K.; Jõgi, K.; Luik, A.; Metspalu, L.; Eremeev, V.; Williams, I.H.; Mänd, M. Cultivation technology influences the occurrence of potato early blight (Alternaria solani) in an organic farming system. Zemdirb.-Agric. 2014, 101, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Lammerts van Bueren, E.T.; Struik, P.; Jacobsen, E. Ecological concepts in organic farming and their consequences for an organic ideotype. Neth. J. Agric. Sci. 2002, 50, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Talgre, L.; Eremeev, V.; Tein, B.; Madsen, H.; Luik, A. Winter cover crops impact on plant nutrients in an organic crop rotation. In Proceedings of the 19th Nitrogen Workshop. Efficient Use of Different Sources of Nitrogen in Agriculture—From theory to Practice, Skara, Sweden, 27–29 June 2016; Delin, S., Wetterlind, J., Aronsson, H., Engström, L., Carlsson, G., Eds.; SLU: Skara, Sweden, 2016; pp. 382–383. [Google Scholar]
- Juzl, M.; Štefl, M. The effect of leaf area index on potatoes yield in soils contaminated by some heavy metals. Rostilinna Vyroba. 2002, 48, 298–306. [Google Scholar] [CrossRef]
- Eremeev, V.; Lõhmus, A.; Jõudu, J. Effects of thermal shock and pre-sprouting on field performance of potato in Estonia. Agron. Res. 2007, 5, 21–30. [Google Scholar]
- Eremeev, V.; Lõhmus, A.; Lääniste, P.; Jõudu, J.; Talgre, L.; Lauringson, E. The influence of thermal shock and pre-sprouting of seed potatoes on formation of some yield structure elements. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 35–42. [Google Scholar] [CrossRef]
- Keres, I.; Alaru, M.; Eremeev, V.; Talgre, L.; Luik, A.; Loit, E. Long-term effect of farming systems on the yield of crop rotation and soil nutrient content. Agric. Food Sci. 2020, 29, 210–221. [Google Scholar] [CrossRef]
- Mulders, P.J.S.M.; van den Heuvel, E.R.; van den Borne, J.; van de Molengraft, R.; Heemels, W.P.M.H.; Reidsma, P. Data science at farm level: Explaining and predicting within-farm variability in potato growth and yield. Eur. J. Agron. 2021, 123, 126220. [Google Scholar] [CrossRef]
- Munoz, F.; Mylavarapu, R.S.; Hutchinson, C.M. Environmentally responsible potato production. J. Plant Nutr. 2005, 28, 1287–1309. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.X.; Huard, F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Prashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [Green Version]
- MacKerron, D.K.L.; Jefferies, R.A. The influence of early soil moisture stress on tuber numbers in potato. Potato Res. 1986, 29, 299–312. [Google Scholar] [CrossRef]
- Eremeev, V.; Talgre, L.; Alaru, M.; Kuht, J.; Loit, E.; Luik, A. Viljelusviiside mõju kartuli saagile, saagi kvaliteedile ning mulla toiteelementide sisaldusele. (The effect of crop production system on the potato yield, quality and soil nutrient content). In Agronomy 2018; Alaru, M., Ed.; Eesti Maaülikool: Tartu, Estonia, 2018; pp. 53–58. (In Estonian) [Google Scholar]
- Eremeev, V.; Tein, B.; Luik, A. Kartul mahe-ja tavaviljeluse süsteemide võrdluskatses aastatel 2008–2012. (Potato production in organic and conventional management systems in 2008–2012). In From Science to Organic Farming; Metspalu, L., Luik, A., Eds.; Eesti Maaülikool: Tartu, Estonia, 2012; pp. 25–27. (In Estonian) [Google Scholar]
Month | Decade | Temperatures (°C) | Precipitation (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 1964–2020 | 2018 | 2019 | 2020 | 1964–2020 | ||
May | I | 12.4 | 6.9 | 10.0 | 9.6 | 6.9 | 17.4 | 6.0 | 12.4 |
II | 17.6 | 13.1 | 6.3 | 11.5 | 0.9 | 24.8 | 17.8 | 20.7 | |
III | 17.8 | 14.0 | 12.1 | 13.0 | 0.0 | 17.6 | 8.4 | 19.6 | |
June | I | 14.2 | 19.6 | 15.1 | 14.9 | 8.4 | 1.4 | 30.0 | 16.3 |
II | 17.6 | 18.8 | 19.5 | 15.4 | 22.5 | 39.6 | 40.6 | 28.7 | |
III | 15.8 | 17.4 | 20.5 | 16.3 | 29.9 | 9.8 | 46.8 | 26.3 | |
July | I | 15.6 | 14.4 | 15.9 | 17.0 | 10.7 | 9.0 | 19.0 | 21.3 |
II | 22.7 | 15.3 | 16.9 | 17.2 | 3.0 | 18.6 | 5.4 | 23.8 | |
III | 23.7 | 19.1 | 16.2 | 17.9 | 0.2 | 13.2 | 44.4 | 23.6 | |
August | I | 22.6 | 14.9 | 18.4 | 17.5 | 2.3 | 8.8 | 10.6 | 28.9 |
II | 17.9 | 17.1 | 16.8 | 16.1 | 38.2 | 33.8 | 6.6 | 25.0 | |
III | 16.3 | 17.9 | 15.4 | 14.8 | 18.9 | 15.4 | 47.0 | 26.5 | |
September | I | 18.2 | 16.8 | 14.2 | 13.1 | 17.0 | 2.2 | 34.8 | 20.3 |
II | 14.7 | 10.5 | 12.5 | 10.9 | 12.7 | 60.0 | 8.8 | 19.2 | |
May– September | I-III | 17.6 | 15.4 | 15.0 | 14.7 | 171.6 | 271.6 | 326.2 | 312.7 |
Factor | Dry Matter Yield, t ha−1 | Marketable Tubers, % | Weight of a Tuber, g | Number of Tubers per Plant | Starch Yield, t ha−1 | Starch Content, % |
---|---|---|---|---|---|---|
Year (Y) | F2,63 = 71.57; p < 0.001 * | F2,63 = 11.69; p < 0.001 * | F2,63 = 10.17; p < 0.001 * | F2,63 = 83.24; p < 0.001 * | F2,63 = 81.57; p < 0.001 * | F2,63 = 28.84; p < 0.001 * |
Farming system (FS) | F6,63 = 13.69; p < 0.001 * | F6,63 = 7.59; p < 0.001 * | F6,63 = 12.16; p < 0.001 * | F6,63 = 0.44; p = 0.846 | F6,63 = 15.65; p < 0.001 * | F6,63 = 20.33; p < 0.001 * |
Y x FS | F12,63 = 3.81; p = 0.001 * | F12,63 = 2.06; p = 0.033 * | F12,63 = 1.98; p = 0.041 * | F12,63 = 0.88; p = 0.575 | F12,63 = 3.69; p < 0.001 * | F12,63 = 5.18; p < 0.001 * |
Farming System | Tuber Dry Matter Yield, t ha−1 | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2018–2020 | |
Org I | 3.7 A1a2 ± 0.1 | 4.5 Aab ± 0.2 | 5.1 Ab ± 0.5 | 4.5 A ± 0.2 |
Org II | 3.9 Aa ± 0.2 | 4.6 Aa ± 0.2 | 6.9 ABb ± 0.4 | 5.1 AB ± 0.4 |
Org III | 4.7 Aa ± 0.6 | 6.5 Bab ± 0.5 | 7.8 ABCb ± 0.6 | 6.3 AB ± 0.5 |
N0 | 4.3 Aa ± 0.5 | 5.2 ABa ± 0.7 | 5.4 Aa ± 0.9 | 5.0 AB ± 0.4 |
N50 | 4.8 Aa ± 0.4 | 6.4 Bab ± 0.4 | 9.4B Cb ± 1.2 | 6.9 AB ± 0.7 |
N100 | 5.2 Aa ± 0.4 | 6.2 Ba ± 0.7 | 10.6 Cb ± 0.6 | 7.3 B ± 0.8 |
N150 | 4.7 Aa ± 0.5 | 6.4 Bb ± 0.3 | 10.9 Cc ± 0.5 | 7.3 B ± 0.8 |
Farming System | Marketable Tubers, % | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2018–2020 | |
Org I | 92.2 A1a2 ± 2.1 | 84.4 Aa ± 3.4 | 78.4 Aa ± 6.4 | 85.0 A ± 2.8 |
Org II | 97.0 Ab ± 0.6 | 88.3 ABa ± 3.7 | 87.0 ABa ± 1.6 | 90.7 AB ± 1.8 |
Org III | 95.3 Aa ± 2.3 | 93.9 BCa ± 2.1 | 91.1 ABa ± 1.0 | 93.4 B ± 1.1 |
N0 | 95.7 Ab ± 0.7 | 92.7 BCab ± 2.1 | 80.0 Aa ± 5.9 | 89.5 AB ± 2.8 |
N50 | 98.1 Aa ± 0.5 | 94.8 BCa ± 1.5 | 94.4 Ba ± 1.1 | 95.8 B ± 0.8 |
N100 | 93.7 Aa ± 2.5 | 96.4 Ca ± 1.0 | 94.2 Ba ± 1.6 | 94.7 B ± 1.0 |
N150 | 95.7 Aa ± 1.1 | 97.5 Ca ± 0.5 | 96.2 Ba ± 0.8 | 96.5 B ± 0.5 |
Farming System | Average Weight of a Tuber, g | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2018–2020 | |
Org I | 42.1 A1a2 ± 5.2 | 45.5 Aa ± 4.9 | 38.1 Aa ± 5.8 | 41.9 A ± 2.9 |
Org II | 56.9 Aa ± 4.7 | 50.2 ABa ± 7.4 | 44.0 ABa ± 2.0 | 50.4 AB ± 3.1 |
Org III | 54.8 Aa ± 8.6 | 61.4 ABCa ± 2.9 | 52.3 ABa ± 2.2 | 56.1 ABC ± 3.1 |
N0 | 49.5 Aab ± 6.9 | 66.4 BCb ± 5.1 | 40.2 Aa ± 5.9 | 52.0 AB ± 4.5 |
N50 | 67.0 Aa ± 8.7 | 73.3 Ca ± 6.4 | 60.4 BCa ± 3.2 | 66.9 BCD ± 3.8 |
N100 | 60.6 Aa ± 8.6 | 76.9 Ca ± 6.2 | 72.3 Ca ± 5.9 | 69.9 CD ± 4.2 |
N150 | 55.4 Aa ± 7.4 | 95.2 Db ± 5.8 | 72.7 Ca ± 2.4 | 74.4 D ± 5.7 |
Farming System | Average Number of Tubers per Plant | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2018–2020 | |
Org I | 7.5 A1a2 ± 0.9 | 8.3 Aa ± 0.9 | 12.4 Ab ± 0.9 | 9.4 A ± 0.8 |
Org II | 5.3 Aa± 0.2 | 8.1 Aa ± 1.2 | 13.6 Ab ± 0.7 | 9.0 A ± 1.1 |
Org III | 7.0 Aa ± 0.5 | 8.6 Aa ± 0.9 | 13.7 Ab ± 0.6 | 9.8 A ± 0.9 |
N0 | 7.4 Aab ± 0.7 | 6.9 Aa ± 1.4 | 12.1 Ab ± 1.6 | 8.8 A ± 1.0 |
N50 | 6.9 Aa ± 0.7 | 7.9 Aa ± 0.7 | 14.5 Ab ± 2.0 | 9.8 A ± 1.2 |
N100 | 7.9 Aa ± 0.9 | 7.5 Aa ± 1.1 | 13.4 Ab ± 1. | 9.6 A ± 1.0 |
N150 | 8.2 Aa ± 0.8 | 6.5 Aa ± 0.4 | 13.9 Ab ± 1.0 | 9.5 A ± 1.0 |
Farming System | Average Starch Yield, t ha−1 | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2018–2020 | |
Org I | 2.6 A1a2 ± 0.1 | 3.1 Aab ± 0.1 | 3.8 Ab ± 0.3 | 3.2 A ± 0.2 |
Org II | 2.6 Aa ± 0.2 | 3.2 Aa ± 0.2 | 5.0 ABb ± 0.4 | 3.6 AB ± 0.3 |
Org III | 3.3 Aa ± 0.4 | 4.4 BCab ± 0.3 | 5.7 ABCb ± 0.5 | 4.5 BC ± 0.4 |
N0 | 2.9 Aa ± 0.4 | 3.6 ABa ± 0.5 | 3.8 Aa ± 0.6 | 3.4 AB ± 0.3 |
N50 | 3.6 Aa ± 0.3 | 4.7 BCab ± 0.3 | 6.9 BCb ± 1.0 | 5.1 BC ± 0.5 |
N100 | 3.5 Aa ± 0.3 | 4.5 Ca ± 0.5 | 7.6 Cb ± 0.4 | 5.2 BC ± 0.6 |
N150 | 3.3 Aa ± 0.3 | 4.9 Cb ± 0.2 | 8.2 Cc ± 0.4 | 5.5 C ± 0.6 |
Farming System | Starch Content, % | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2018–2020 | |
Org I | 17.3 D1b2 ± 0.3 | 16.1 Ca ± 0.2 | 15.8 Ba ± 0.2 | 16.4 C ± 0.2 |
Org II | 17.2 Db ± 0.2 | 16.1 Ca ± 0.1 | 15.8 Ba ± 0.4 | 16.3 C ± 0.2 |
Org III | 17.4 Db ± 0.3 | 15.9 BCa ± 0.3 | 15.1 Aa ± 0.2 | 16.1 BC ± 0.3 |
N0 | 16.2 Cb ± 0.2 | 15.8 BCb ± 0.2 | 15.0 Aa ± 0.1 | 15.6 ABC ± 0.2 |
N50 | 15.6 BCa ± 0.3 | 15.4 ABa ± 0.2 | 14.9 Aa ± 0.1 | 15.3 AB ± 0.2 |
N100 | 15.1 Ba ± 0.3 | 15.0 Aa ± 0.2 | 15.0 Aa ± 0.1 | 15.0 A ± 0.1 |
N150 | 14.7 Aa ± 0.2 | 14.9 Aab ± 0.2 | 15.4 ABb ± 0.1 | 15.0 A ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margus, K.; Eremeev, V.; Loit, E.; Runno-Paurson, E.; Mäeorg, E.; Luik, A.; Talgre, L. Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions. Agriculture 2022, 12, 568. https://doi.org/10.3390/agriculture12040568
Margus K, Eremeev V, Loit E, Runno-Paurson E, Mäeorg E, Luik A, Talgre L. Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions. Agriculture. 2022; 12(4):568. https://doi.org/10.3390/agriculture12040568
Chicago/Turabian StyleMargus, Kalle, Viacheslav Eremeev, Evelin Loit, Eve Runno-Paurson, Erkki Mäeorg, Anne Luik, and Liina Talgre. 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions" Agriculture 12, no. 4: 568. https://doi.org/10.3390/agriculture12040568
APA StyleMargus, K., Eremeev, V., Loit, E., Runno-Paurson, E., Mäeorg, E., Luik, A., & Talgre, L. (2022). Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions. Agriculture, 12(4), 568. https://doi.org/10.3390/agriculture12040568