



# **Recovery of Orange Peel Essential Oil from 'Sai-Namphaung' Tangerine Fruit Drop Biomass and Its Potential Use as Citrus Fruit Postharvest Diseases Control**

**Pattarapol Khamsaw 1,2 [,](https://orcid.org/0000-0002-2029-9578) Chompunut Lumsangkul 3,4,5,\* [,](https://orcid.org/0000-0003-2014-5306) Anuruddha Karunarathna <sup>1</sup> [,](https://orcid.org/0000-0003-0956-6636) Nuttacha Eva Onsa 2,6 , Sawaeng Kawichai <sup>7</sup> [,](https://orcid.org/0000-0003-1488-5105) Bajaree Chuttong 1,5 and Sarana Rose Sommano 2,[6](https://orcid.org/0000-0001-7356-2598)**

- <sup>1</sup> Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; pattarapol\_kha@cmu.ac.th (P.K.); anuruddha\_k@cmu.ac.th (A.K.); bajaree.c@cmu.ac.th (B.C.)
- <sup>2</sup> Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; nuttacha\_o@cmu.ac.th (N.E.O.); sarana.s@cmu.ac.th (S.R.S.)
- <sup>3</sup> Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- <sup>4</sup> Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand
- 5 Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- <sup>6</sup> Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- <sup>7</sup> Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; sawaeng.kaw@cmu.ac.th
- **\*** Correspondence: chompunut.lum@cmu.ac.th

**Abstract:** In this study, we assessed the quality of essential oil recovered from fruit drop biomass and assessed its usefulness in preventing postharvest diseases in the tangerine 'Sai-Namphaung'. Greening was the primary cause of the fruit drop, based on the enduring symptoms and occurrence of the disease in the area. Limonene, together with the presence of β-pinene and linalool, was discovered to be prevalent in essential oils of tangerine fruit peel, particularly that of 'Sai-Namphaung'. Through isolation of citrus postharvest fungi, we were able to identify four genera which were later DNA sequenced using Internal Transcribed Spacer: ITS and subjected to Basic Local Alignment Search Tool (BLAST), with a high possibility (>98% similarity) of being *Penicillium digitatum*, *Colletotrichum gloeosporioides*, *Fusarium sarcochrum* and *Geotrichum candidum*. Essential oil from 'Sai-Namphaung' and 'Fremont' peel biomass positively inhibited green mold rot and citrus anthracnose caused by *P. digitatum*, *C. gloeosporiodes*, but were less effective than the commercial citrus oil and *Zanthoxylum myriacanthum* oil. This is the first evidence of 'Sai-Namphaung' postharvest diseases caused by these two fungi and their controls using citrus essential oil.

**Keywords:** antifungal; citrus greening; green mold rot; limonene; *Penicillium digitatum*

# **1. Introduction**

Tangerine is an economic fruit crop that is widely cultivated around the world with global production reaching 29 million tons per year [\[1\]](#page-12-0). In Thailand, the cultivation in the northern region of 'Sai-Namphaung-Namphaung' tangerine alone accounts for more than 104,581 rais (167.33  $km^2$ ). During pre-harvesting, it was estimated that the total loss of fruit was ~20% of the total production yield, and plant diseases such as stem-end rot and citrus decline are the main causes of losses in the orchard [\[2,](#page-12-1)[3\]](#page-12-2). Dropped fruit was the major biomass that was left to decompose naturally due to high management costs. However, this practice has led to the accumulation of disease pathogens in the orchard that are difficult to eliminate and, in fact, cause an even higher maintenance levy. Fruit biomass



**Citation:** Khamsaw, P.; Lumsangkul, C.; Karunarathna, A.; Onsa, N.E.; Kawichai, S.; Chuttong, B.; Sommano, S.R. Recovery of Orange Peel Essential Oil from 'Sai-Namphaung' Tangerine Fruit Drop Biomass and Its Potential Use as Citrus Fruit Postharvest Diseases Control. *Agriculture* **2022**, *12*, 701. [https://doi.org/10.3390/](https://doi.org/10.3390/agriculture12050701) [agriculture12050701](https://doi.org/10.3390/agriculture12050701)

Academic Editor: Katarzyna Pobiega

Received: 27 April 2022 Accepted: 15 May 2022 Published: 16 May 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/)  $4.0/$ ).

can be used as raw material for extracting various valuable components. Citrus peel can be used for essential oil, fiber and pectin recovery and these components are highly demanded in the food and medicine industries  $[4-6]$  $[4-6]$ . Orange peel essential oil is the most sought-after natural food additive in the world [\[7\]](#page-12-5). The global citrus oil market was valued at USD 6.31 billion in 2018 and is expected to grow up to 6.8% between 2019 and 2025 [\[8\]](#page-12-6). Volatile components such as aliphatic hydrocarbons, alcohols, aldehydes, acids, esters and some aromatic compounds represent more than 80% of the essential oil, with D-limonene being the principal component  $[9,10]$  $[9,10]$ . In addition, the citrus essential oil possesses the ability to inhibit postharvest fungal diseases, especially in tropical fruit production [\[11](#page-12-9)[,12\]](#page-12-10). Citrus polysaccharides such as pectin are used as food additives, fat replacers or pharmaceutical ingredients [\[13,](#page-12-11)[14\]](#page-12-12). Considering the volume and feasibility of biomass recovery in the citrus industry, continued efforts are made to explore further applications, particularly since bio-circular green production is a major concern [\[15](#page-12-13)[–18\]](#page-12-14).

Harvested 'Sai-Namphaung' fruits are especially susceptible to fungal and microbial invasion which contribute up to 35% of the total postharvest loss. The major diseases are primarily green mold caused by *Penicillium digitatum*, and blue mold generated by *P. italicum* [\[19\]](#page-12-15). Fruit rots in citrus are caused by a variety of fungi, including *Penicillium, Alternaria, Aspergillus, Colletotrichum, Botryodiplodia* and *Phomopsis* [\[20\]](#page-12-16). To control these infections, the use of natural products, such as essential oils, has been shown to be effective in reducing the physiological activities of fruits during storage while also reducing overall qualitative and quantitative losses [\[21\]](#page-13-0). With this in mind and in line with the zero-waste production concept, the ultimate aims of this work are to analyse the quality of the essential oil recovery from fruit drop biomass and to evaluate its efficacy in controlling postharvest diseases of 'Sai-Namphaung' tangerines. The overall outcome of this study can hopefully be an immersing step forward to the Sustainable Development Goals (SDGs) by reducing the volume of agricultural waste and providing alternative uses for the Thai fruit industry.

# **2. Materials and Methods**

#### *2.1. Study Site and Survey of Preharvest Losses*

A survey of fruit loss during the pre-harvesting period was conducted in a 0.128 sq. km 'Sai-Namphaung' monocrop orchard (19.9301 N, 99.1325 E), located in Mon Pin sub-district, Fang district, Chiang Mai province, Thailand. The survey began after 7 months of fruit set from September to November 2021. Six plots of 12 m  $\times$  12 m each were laid out randomly in two separated alleviations within the site. Three 5-year-old citrus trees were selected from each plot, and losses (i.e., dropped fruits) were gathered from nylon sheets laid underneath the tree canopy (Figure [1\)](#page-2-0). Loose fruits were collected twice a month until the beginning of the harvest season and transferred to the laboratory at the Faculty of Agriculture, Chiang Mai University, immediately. In the lab, fruits were weighed and were visually determined for the cause of fruit loss including physical damage or citrus greening disease. Fruits were peeled and juiced, and each type of biomass was separated, weighed and used for the calculation of the total biomass [\[22,](#page-13-1)[23\]](#page-13-2).

# *2.2. Essential Oil and Chemical Analysis*

The peel was shade dried at room temperature ( $\sim$ 30 °C) until a constant weight was reached (<10% RH). The dried peel was ground to powder using a food processor (Mawin Quality Produce, Bangkok, Thailand) at high speed prior to essential oil extraction in a Clevenger's apparatus [\[24](#page-13-3)[,25\]](#page-13-4). The essential oil was collected after 2 h of distillation and thereafter dried using anhydrous sodium sulphate. The oil yield was also recorded. Similarly, essential oil of citrus fruit cv. 'Fremont' was extracted using peel biomass collected from commercial-stage fruit from the same farmer. The essential oil was stored at 4 ◦C in air-tight sealed glass vials until used. In addition, two additional essential oil viz., makhwaen (*Zanthoxylum myriacanthum*) and commercial orange essential oil were obtained from Plant Bioactive Compound laboratory, Chiang Mai University, Thailand and Royal Project shop, Chiang Mai, Thailand, respectively. The volatile components were

analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) of Agilent Technologies 7890A GC System and Agilent Technologies 5975C inert XL El/Cl MSD outfitted with  $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$ , HP-5MS UI column. Essential oil samples (2  $\mu$ L at the dilution of 1%, *v*/*v*, in ethyl acetate) were injected in a split mode (1:200). The oven temperature was set at 60 °C for 0 min, then increased by  $5$  °C/min until it reached 220 °C, where it was kept at this temperature for 0 min. Helium was used as the carrier gas, with a constant flow rate of 1 mL/min. The MS interface was maintained at 230  $^{\circ}$ C, and mass spectra were collected in electron impact ionization mode at 70 eV. The volatile compositions were identified by comparing mass spectra from NIST 0.5a.L libraries with >70% similarity. The *volatile retention indexes* (RI) were confirmed with the standard injection of N-alkane (C8–C20) [\[11\]](#page-12-9). The standard substance of limonene (Sigma-Aldrich, St. Louis, MO, USA) was also used to extrapolate the amount of limonene present in the essential oil.

<span id="page-2-0"></span>

**Figure 1.** Survey citrus fruits cv. 'Sai-Namphaung' loss during preharvest (A) Six plots of three 5-year-old citrus trees were selected from each plot (**B**) and losses (i.e., dropping fruits) were gathered from nylon sheets laid underneath the tree canopy.

# *2.2. Essential Oil and Chemical Analysis 2.3. Isolation of Fungal Causing Post-Harvest Disease*

Defective fruits (20 kg) were collected from a commercial postharvest warehouse reached whill be the dried and brought back to the Plant pathology clinic center, Department of Entomology esheed and Plant Pathology, Faculty of Agriculture, CMU, for disease evaluation and isolation in a set of  $A$ griculture, CMU, for disease evaluation and isolation of fungi that were causing diseases. The fungal isolations was performed by the single et the origin was also recorded. The only included was particular was processed spore isolation method [\[26\]](#page-13-5), and the fungal strains were consequently confirmed by DNA sequencing. In addition, the fungal specimens with the desired structure were mounted on lactic acid and microphotographs that were taken with a Canon EOS 6D digital camera and an Axiovision Zeiss Scope-A1 microscope (Zeiss, Jena, Germany) (Canon, Tokyo, Japan). The Tarosoft (R) Image Frame Work application was used to perform the morphological measurements (Tarosoft, Bangkok, Thailand). located within 5 km of the orchard. They were visually sorted, and only infected fruits were

The genomic DNA from the fungal mycelia was extracted according to the manufacturer's instructions using the DNA Extraction Mini Kit (FAVORGEN, Ping Tung, Taiwan). Polymerase chain reaction (PCR) was used to amplify the isolated DNA. Internal tran-scribed spacer [\[18\]](#page-12-14) gene sections were amplified using the primer pairs ITS5/ITS4. [\[27\]](#page-13-6). The PCR was carried out according to the procedure given by Haituk et al. [\[28\]](#page-13-7). The sequences were received from 1st BASE Company, a commercial sequence source (Kembangan, Malaysia). The sequence data were deposited in the GenBank database.

# 2.4. Pathogenicity Test

Citrus fruits cv. 'Sai-Namphaung' at the commercial harvesting stages from the same orchard were sent to the laboratory within 3 h. At the laboratory, fruits with no evident faults were washed with running tap water. Then, they were washed with 70% ethanol for 30 s and rinsed with sterilised water. They were thereafter washed with sodium hypochlorite (0.5%) for 30 s, rinsed with three times sterilised water, and air-dried at room temperature (25–28 °C). [\[29\]](#page-13-8). Fruits were inoculated by scratching on the skin (3× scratches on each fruit) with a steel blade (4 mm wide) and 15 µL a conidial suspension of *P. digitatum*  $(10^6 \text{ spores/mL})$  was suspended onto each incision independently. The inoculated fruits were in a sterile moist chamber using aseptic technique. The sterilised distilled water (15 µL) was used to inoculate the control fruit. After 2–4 days at 25 °C, observations on the percentage of fruits infected by fungal isolates were made. This study used a Completely Randomised Design, in which each isolate was repeated twice [\[30\]](#page-13-9).

# *2.5. In Vitro Antifungal Assay of the Essential Oil*

Pure cultures of the previously confirmed isolations which were maintained on Potato Dextrose Agar (PDA) at 4 <sup>°</sup>C were used. The isolations were reactivated on the PDA that was incubated for 7 days at 28  $\mathrm{^{\circ}C}$ , and the conidia were harvested in sterile distilled water filled with 0.1% tween 80.

A broth dilution test in the 96-well plates was used to determine the active inhibitory concentrations [\[31\]](#page-13-10). A 100 µL of Potato Dextrose Broth (PDB) with different concentrations of the essential oil (256, 128, 64, 32, 16  $\mu$ L/mL) was mixed with 100  $\mu$ L of spore suspension (10<sup>5</sup> CFU/mL). The 96-well plates were then covered and incubated for 72 h at 28  $°C$ . Each test was repeated thrice. The positive control consisted of the PDB mixed with the conidial suspension, while the negative control was the PDB alone. The minimum inhibitory concentration [\[32\]](#page-13-11) was determined as the lowest concentration that prevented visible fungus growth. The mixture from the well with no visible fungus development was then transferred onto a new PDA plate and cultivated for another 72 h. The lowest concentration that showed no fungal growth on the PDA plate was termed the minimal fungicidal concentration (MFC) [\[33\]](#page-13-12).

#### *2.6. In Vivo Antifungal Assay of the Essential Oil*

Citrus fruits cv. 'Sai-Namphaung' were prepared as the same method in 2.4. Fruits were inoculated by scratching on the skin with a steel blade and dropped with 15  $\mu$ L of essential oil solutions at the MFC for each type of essential oils onto each incision independently. After the droplets dried, a conidial suspension of the responding fungus was suspended onto each incision independently. Sterile distilled water (10  $\mu$ L) was used to inoculate the control fruits. After incubation at 25 °C for 2–4 days, observations on the percentage of fruits infected by the responding fungus were made. This study used a Completely Randomised Design, in which each treatment was repeated three times and each biological replication consisted of one fruit [\[30\]](#page-13-9). The evidence of disease development (viz., lesion or shrunken skin) was measured. Two fruits were used for this study. Each inclusion was treated as an independent replication for statistical analyses.

#### *2.7. Statistical Analysis*

For each test, at least three duplicates of each experiment were carried out. In the in vivo test, a paired sample *t*-test was used to test the difference between two biological samples using the SPSS 23.0 program (SPSS Inc., Chicago, IL, USA). A one-way analysis of variance and Duncan's Multiple Range Test were used to compare the mean of differences of each assay using Statistical Analysis System (SAS) software (SAS Institute Inc., Cary, NC, USA). Statistical significance was defined as a *p*-value of less than 0.05.

# **3. Results and Discussion**

# *3.1. Pre-Harvest Losses*

Data on fruit loss was collected over 60 days (Figure [2\)](#page-4-0). It was apparent that the major loss during pre-harvesting was fruit drops, and the volume increased over time with the average volume ranging from 0.60–1.50 kg/plot (each containing 3 representatives). As presented in Figure [2,](#page-4-0) the fruits mainly had uneven skin colour, sometimes greenish and

brown lesions and evident cracks present. Fruit sag was not fully developed and seeds were aborted. The fruit *Citrus* spp. are prone to various types of fungal, viral and bacterial pathogens right from nursery and pre-harvesting through post-harvesting stages to the bearing stage, resulting in incalculable losses to the plantation and its produce. The plant requires up to 5–9 months for maturity on trees. During fruit setting and until harvest, the fruits may be exposed to pathogens like *Colletotrichum gloeosporioides*, *C. acutatum*, *Botryodiplodia theobromae*, *Alternaria citri* and *Phomopsis citri* resulting in considerable damage to its production and quality of the fruit [\[34\]](#page-13-13). Post bloom fruit drop (PFD) caused by *C. acutatum* fungal disease that is linked to wet weather during the bloom of citrus flowers produces orange-brown lesions on flower petals, abscission of fruits and eventually causes fruitlets to fall off trees prematurely; however, the calyx remains attached to the branch [\[3](#page-12-2)[,35\]](#page-13-14). Later, *C. gloeosporioides* was also identified as an initiator of these symptoms [\[36\]](#page-13-15). Furthermore, the shortage of carbon sources, nutrient imbalances and plant hormones, as well as insects, have all been mentioned as the possible causes of fruit drop in citrus species [\[37\]](#page-13-16). Citrus greening is one of the world's most serious diseases in the citrus industry. The disease is predominately caused by the bacteria *Candidatus Liberibacter* species that can be transmitted either by grafting or insect carrier [\[38\]](#page-13-17). The phloem tissues of the leaf and root area are dramatically obstructed due to this bacteria's translocation. As a result of the blockage of the nutrients and sugar flows, citrus plants lose leaves, have uneven fruit size, which can impair the flavor and texture of the fruit, and premature fruit drop [\[39\]](#page-13-18). We believe that based on the persisting symptoms and occurrence of the disease in the areas, greening may be the primary causes of fruit drop.

<span id="page-4-0"></span>

**Figure 2.** The average volume of biomass and percentages of each biomass type (peel, juice, and **Figure 2.** The average volume of biomass and percentages of each biomass type (peel, juice, and seed and segment). Data were collected from October to November 2021 from 6 plots (each containing 3 plants).

Through the fruit development process, the amount of each type of biomass viz., peel, juice, seed and segment, varied. The percentage of biomass of peels (~15%) were much higher toward the early stage of fruit development i.e., 162 days after fruit set (DAF), and 178 DAF, the amount of peel biomass dropped significantly toward the mature stage of the fruit ( $\sim$ 5%). This pattern seems to be in accordance with the volume of seed and segment, while the amount of citrus juice remained the same (~17%) for 2 months prior to harvest. Generally, the citrus fruit peel consists of two tissues, the outer flavedo and the spongy cell, albedo. The flavedo accumulates pigments and essential oils, representing the citrus aroma, while the albedo is a rich source of pectin [\[40\]](#page-13-19). During the early stages of fruit development,

the albedo takes up the majority of the fruit volume, but as the juice cells in the pulp grow, it gradually thins out [\[41\]](#page-13-20).

#### *3.2. Volatile Components*

Peel biomass from each of the collecting days was used for essential oil extraction using hydrodistillation. As illustrated in Table [1,](#page-6-0) the number of essential oils of the tangerine biomass varied from 5.0–10.0%. The 'Fremont' mandarin peel gave a significantly lower amount of essential oil when compared with 'Sai-Namphaung' peel. These amounts, nonetheless, are much higher than what have been reported by other studies, in which the amounts of citrus oil are reported to be in the range between 2.0–5.0% depending on the methods of extraction [\[42](#page-13-21)[,43\]](#page-13-22). The volatile components of each type of essential oil were elucidated from mass spectrums derived from the GC. The essential oil of 'Sai-Namphaung' tangerine comprised of the dominant limonene followed by β-pinene and β-myrcene (Figure [3\)](#page-5-0). The amount of limonene (1.2 μL/100 μL) and β-pinene (0.02 μL/100 μL) of the essential oil were higher from peel biomass collected from the early stage of fruit development, though the volatile profile were not variable through the process of fruit development. Peel biomass from the 'Fremont' was composed of limonene and β-myrcene in an almost identical amount as of the 'Sai-Namphaung' peel. Additionally, linaloo  $(-0.02 \mu L/100 \mu L)$  was also detected. The essential oil profiles of citrus oil and essential oil of makhwaen were much complex. The commercial citrus oil contained especially 1-propanol, 2-(2-hydroxypropoxy) and dipropylene glycol, while γ-terpinene, ocimene and linalool were present in makhwaen oil. Moreover, the commercial type lacked sabinene, βpinene, β-myrcene, 1R-α-pinene and α-terpinene which again could be due to the methods of extraction applied.

<span id="page-5-0"></span>

**Figure 3.** Volatile component chromatograms of citrus essential oils from A = peel of 'Sai-Namphaung' phaung' tangerine; B = peel of 'Fremont' mandarin; C = commercial citrus oil; D = fruit of makhwaen. tangerine; B = peel of 'Fremont' mandarin; C = commercial citrus oil; D = fruit of makhwaen.

GC/MS was used to examine the chemical composition of *Citrus reticulata* Blanco essential oil. The majority of the oil was made up of monoterpene hydrocarbons [\[11\]](#page-12-9). The amount of essential oil extracted from orange peels depends on the type of citrus, extraction method and preliminary drying process. The essential oil content of orange peels is between 0.2–1.0% [\[44\]](#page-13-23). In other works, limonene was found to be dominant in the essential of the essential of the essential distribution of the estimate of the estimate of the estimate of the estimate of the estim the essential oil of tangerine fruit peels including that of 'Sai-Namphaung', along with the the presence of t presence of β-pinene, α-pinene, 3-carene and β-phellandrene [\[45–](#page-13-24)[47\]](#page-13-25). In the fruit peels  $\frac{1}{2}$ 'Fremont' mandarin, the chief component was limonene, followed by linalool and β-myrcene [48]. Among all other *Zanthoxylum* species, makhwaen are known to have complex β-myrcene [\[48\]](#page-14-0). Among all other *Zanthoxylum* species, makhwaen are known to have aromatic profiles comprising principally limonene, sabinene, L−phellandrene, β-ocimene, β-ocimene, terpinen-4-ol and γ-terpene [\[49,](#page-14-1)[50\]](#page-14-2). In addition, the composition of orange peel terpinen-4-ol and γ-terpene [49,50]. In addition, the composition of orange peel essential essential oil depends on the species, with similar main components: limonene, β-pinene oil depends on the species, with similar main components: limonene, β-pinene and myr-and myrcene [\[51\]](#page-14-3). These essential oils had been proven to be potential antimicrobial agents, center  $\alpha$  is the proven to the proven to be possible density of the proven to be possible due to the provence  $\alpha$  being components or their combinations  $[11.46.48.52]$ possibly due to the principal volatile components or their combinations  $[11,46,48,52]$  $[11,46,48,52]$  $[11,46,48,52]$  $[11,46,48,52]$ . of the 'Fremont' mandarin, the chief component was limonene, followed by linalool and complex aromatic profiles comprising principally limonene, sabinene, L−phellandrene,

| N <sub>0</sub> | <b>Compound Name</b>                | Formular        | Retention<br>Index       | 'Sai-Namphaung' Tangerine    |                             |                              |                              |                          | 'Fremont'                    | Zanthoxylum<br>myriacanthum | Commercial               |
|----------------|-------------------------------------|-----------------|--------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|--------------------------|------------------------------|-----------------------------|--------------------------|
|                |                                     |                 |                          | <b>162 DAF</b>               | <b>178 DAF</b>              | 193 DAF                      | <b>207 DAF</b>               | <b>221 DAF</b>           |                              |                             |                          |
|                |                                     | % Yield         |                          | $5.27 \pm 1.87$ <sup>d</sup> | $10.7 \pm 0.10^{\text{ a}}$ | 5.30 $\pm$ 0.30 <sup>d</sup> | $9.73 \pm 0.41$ <sup>b</sup> | $7.70 \pm 0.21$ c        | $3.30 \pm 0.93$ <sup>e</sup> |                             |                          |
|                | Sabinene                            | $C_{10}H_{16}$  | 936                      | $\overline{a}$               | $\overline{\phantom{a}}$    | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$     | $\overline{\phantom{a}}$ | $\overline{\phantom{a}}$     | 0.051                       |                          |
|                | $\beta$ -pinene                     | $C_{10}H_{16}$  | 975                      | 0.021                        | 0.011                       | 0.011                        | 0.011                        | 0.011                    | $\overline{\phantom{0}}$     | 0.004                       |                          |
|                | $\beta$ -myrcene                    | $C_{10}H_{16}$  | 980                      | $\overline{\phantom{0}}$     | 0.012                       | 0.012                        | 0.012                        | 0.012                    | 0.012                        | $\overline{\phantom{0}}$    |                          |
|                | $1R-\alpha$ -pinene                 | $C_{10}H_{16}$  | 993                      | $\overline{a}$               | $\overline{\phantom{a}}$    | $\overline{\phantom{0}}$     | $\overline{\phantom{a}}$     | $\overline{\phantom{0}}$ | $\overline{\phantom{a}}$     | 0.010                       |                          |
|                | $\alpha$ -terpinene                 | $C_{10}H_{16}$  | 1009                     | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$    | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$     | $\overline{\phantom{a}}$ | $\overline{\phantom{0}}$     | 0.012                       | -                        |
|                | 2-propanol, 1,1'-oxybis             | $C_6H_{14}O_3$  | $\sim$                   | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$    |                              | $\overline{\phantom{a}}$     | $\overline{\phantom{0}}$ | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$    | 0.198                    |
|                | o-cymene                            | $C_{10}H_{14}$  | 1027                     |                              | $\overline{\phantom{0}}$    |                              | $\overline{\phantom{a}}$     | $\overline{\phantom{0}}$ |                              | 0.008                       | $\overline{\phantom{0}}$ |
| 8              | limonene                            | $C_{10}H_{16}$  | 1032.5                   | 1.210                        | 0.853                       | 0.962                        | 0.900                        | 0.821                    | 1.219                        | 0.103                       | 0.248                    |
| 9              | 1-propanol,<br>2-(2-hydroxypropoxy) | $C_6H_{14}O_3$  | $\overline{\phantom{a}}$ |                              | $\overline{\phantom{0}}$    |                              | $\overline{\phantom{a}}$     | $\overline{\phantom{0}}$ | $\overline{\phantom{0}}$     |                             | 0.145                    |
| 10             | dipropylene glycol                  | $C_6H_{14}O_3$  |                          | $\overline{a}$               | $\overline{\phantom{0}}$    |                              |                              | $\overline{\phantom{0}}$ | $\overline{\phantom{0}}$     |                             | 0.171                    |
| 11             | $\gamma$ -terpinene                 | $C_{10}H_{16}$  | 1046.2                   | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$    | $\overline{\phantom{0}}$     | $\overline{\phantom{a}}$     | $\overline{\phantom{a}}$ | $\overline{\phantom{0}}$     | 0.022                       | $\overline{\phantom{0}}$ |
| 12             | Ocimene                             | $C_{10}H_{16}$  | 1089                     | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$    | $\overline{\phantom{0}}$     | $\overline{\phantom{0}}$     | $\overline{\phantom{a}}$ | $\overline{\phantom{0}}$     | 0.005                       |                          |
| 13             | Linalool                            | $C_{10}H_{18}O$ | 1104                     | $\overline{a}$               | $\overline{\phantom{0}}$    |                              |                              | $\overline{\phantom{0}}$ | 0.024                        | 0.009                       |                          |

**Table 1.** Volatile components of essential oils from the *cirtus* spp.

<span id="page-6-0"></span>The amount was reported as  $\mu L/100$   $\mu L$ , which was calculated corresponding to limonene running independently. In the essential oil yield the value is the mean  $\pm$  SE (n = 3) with different lowercase letters being significantly different (*p* < 0.05).

### *3.3. Pathogenic Identification and Phylogenetic Species of Fungi*

Four fungal isolates were isolated from 'Sai-Namphaung' tangerine fruits at the commercial packing house. They were assigned as BACI01-04 (Table [2\)](#page-8-0). After 14 days, BACI01 was light green and the hyphae were segmented cells (septate) with spores of ellipsoid shape. After inoculation, we found a light green spore mass on lesions which occurred on the skin of the fruit (Figure [4A](#page-7-0)). The colony of BACI02 was white and grew in 7 days. The morphology under a microscope showed that hyphae were septate and the spores were of a long, ellipsoid shape. When this isolate was inoculated on fruit skin for 3 days, the fruit showed a shrunken and darkened lesion (Figure [4B](#page-7-0)). BACI03 had a light green colony after 7 day-subculturing; however, there was no evidence of pathogenicity. The hyphae were segmented cells and the spore is a long curved cylindrical shape with both acute ends (Figure [4C](#page-7-0)). Finally, the BACI04 had a light green colony which extended after 3 days. However, after inoculation, the fruit did not show any symptoms. Under compound microscope, the hyphae were septate, and the spores were of a small, cylindrical shape (Figure [4D](#page-7-0)). These isolates were sent to the Plant Pathology Clinique, Department of Plant Pathology, Chiang Mai University, where they were morphologically confirmed by experts as belonging to *Penicillium* sp., *Colletotrichum* sp., *Fusarium* sp. and *Geotrichum* sp., respectively. They were later confirmed by BLAST from their ITS gene sequences as being *P. digitatum*, *C. gloeosporiodes*, *F. sarcochrum* and *G. candidum* (Supplementary Figure S1). Confirming the information from BLAST, a high possibility with >98% similarity was provided. *Penicillium* sp., *Colletotrichum* sp., *Fusarium* sp. and *Geotrichum* sp. are species complexes. However, for identification at the species level, multigene phylogeny together with proper taxonomy are required.

<span id="page-7-0"></span>

**Figure 4.** Morphological characteristic and pathogenicity of 'Sai-Namphaung' tangerine postharvest **Figure 4.** Morphological characteristic and pathogenicity of 'Sai-Namphaung' tangerine postharvest fungal isolates. (A) Penicillium sp. (B) Colletotrichum sp. (C) Fusarium sp. (D) Geotrichum sp.



<span id="page-8-0"></span>**Table 2.** Morphology of fungal isolates collected from 'Sai-Namphaung' tangerine fruits during postharvest.

# *3.4. In Vitro Antifungal Assays of Essential Oils and In Vivo Study*

In this study, we applied the microplate technique for antifungal assays. Four essential oil types (viz., 'Sai-Namphaung' 162 DAF, 'Fremont', makhwaen and citrus oil) at five concentrations (16–256  $\mu$ L/mL) were tested against four fungal isolates (Table [3\)](#page-9-0). By using the tangerine oil, *F. sarcochroum* and *P. digitatum* were inhibited at the highest concentration, while *G. candidum* was not. The MIC of 'Sai-Namphaung' was 64 µL/mL for *C. gloeosporioides*. The essential oil of the 'Fremont' citrus was clearly effective in the inhibition of *C. gloeosporioides* at a MIC of as little as 16 µL/mL. In fact, all other essential oil types illustrated the same pattern. The MIC of 'Fremont' for *G. candidum*, *F. sarcochroum* and *P. digitatum* was 128 µL/mL. The MIC for *G. candidum* was 64 µL/mL, while the MIC for *F. sarcochroum* and *P. digitatum* was 16 µL/mL using commercial citrus oil. The essential oil

of makhwaen showed excellent inhibitory capabilities against all fungal isolates at a MIC of  $16 \mu L/mL$ . The solution at each MIC point was then suspended on the PDA plates and incubated for 72 h to test the MFC. The result revealed that none of the fungal isolates were killed with 'Sai-Namphaung' oil, while 'Fremont' oil killed *P. digitatum* and *C. gloeosporioides* at an MFC of  $128 \mu L/mL$ . The commercial citrus oil and makhwaen oil were effective for *C. gloeosporioides* at 16 µL/mL, followed by *F. sarcochroum* at 64 and 32 µL/mL, respectively. *G. candidum* was completely killed by both essential oil types at 256 µL/mL and 128 µL/mL for the commercial citrus oil and makhwaen oil, respectively. Citrus essential oils which were made from indifferent varieties and genera are known to inhibit fungal pathogens such as those belonging to *Aspergillus* spp., *Penicillium* spp. and *Fusarium* spp. [\[61\]](#page-14-13). Moreover, in another study, it has been found that citrus peel essential oil is effective against five genera of fungi viz. *A. alternata*, *Rhizoctonia solani*, *Curvularia lunata*, *F. oxysporum* and *Helminthosporium oryzae* [\[46\]](#page-13-26). The composition of the volatile compounds is specific to the inhibition of plant pathogenic fungi. In the genus *Penicillium* sp., limonene, γ-terpinene and α-pinene are effective against *P. digitatum*, and β-pinene is able to inhibit *P. italicum* [\[11](#page-12-9)[,61\]](#page-14-13). Our results seem to be in line with this work suggesting that most types of citrus oils contain limonene and β-pinene which are able to inhibit *P. digitatum*. The essential oil of the fruit of the genus *Zanthoxylum* can inhibit *A. funigatus* which is the pathogen that causes damage to commodity during storage [\[62\]](#page-14-14). Green mold, blue mold, and sour rot are the most serious post-harvest fungal diseases of citrus fruits caused by *Penicillium* spp. and *Geotrichum* spp. [\[63\]](#page-14-15). The disease causing fungi can be controlled by the use of essential oils such as those from *Thymus* sp., peels of *C. reticulata* and also chemical compounds like cinnamaldehyde, eugenol and carvacrol [\[11,](#page-12-9)[64–](#page-14-16)[66\]](#page-14-17). *Colletotrichum* spp. are reported as pathogens associated with citrus anthracnose [\[67\]](#page-14-18). The conidial germination of *C. gloeosporioides* was controlled by the vapor treatments of essential oil containing carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool [\[68\]](#page-14-19). Post-harvest Fusarium rot caused by *Fusarium* spp. was reported on *C. reticulata* Blanco and mandarin [\[69](#page-14-20)[–71\]](#page-14-21). The alcoholic extract of chili and ginger tested positive in controlling this disease at the concentration of 300 ppm [\[72\]](#page-14-22). Based on the results, we only selected the essential oil types at MFC for the in vivo study of citrus diseases caused by *P. digitatum* and *C. gloeosporioides*. The essential oil of 'Sai-Namphaung' for *P. digitatum* was omitted as the MFC in the tested range was unidentified.

|                              | <b>Essential Oil Concentrations</b> |                |                              |                          |               |                          |  |  |  |  |
|------------------------------|-------------------------------------|----------------|------------------------------|--------------------------|---------------|--------------------------|--|--|--|--|
| <b>Essential Oil Types</b>   | Pathogen Isolates                   | $256 \mu L/mL$ | $128 \mu L/mL$               | $64 \mu L/mL$            | $32 \mu L/mL$ | $16 \mu L/mL$            |  |  |  |  |
| 'Sai-Namphaung'              |                                     |                | $+$                          |                          |               |                          |  |  |  |  |
|                              |                                     |                | $^{+}$                       |                          |               |                          |  |  |  |  |
|                              |                                     |                | $^{+}$                       |                          |               |                          |  |  |  |  |
|                              |                                     |                | -                            |                          |               |                          |  |  |  |  |
| 'Fremont'                    |                                     |                |                              |                          |               |                          |  |  |  |  |
|                              |                                     |                | $\overline{\phantom{0}}$     |                          |               |                          |  |  |  |  |
|                              |                                     |                | ٠                            | $^+$                     |               |                          |  |  |  |  |
|                              |                                     |                |                              | -                        |               |                          |  |  |  |  |
| Commercial citrus oil        |                                     |                | $\overline{\phantom{0}}$     | $+$                      |               |                          |  |  |  |  |
|                              |                                     |                |                              | $\overline{\phantom{a}}$ |               |                          |  |  |  |  |
|                              |                                     |                |                              |                          |               |                          |  |  |  |  |
|                              |                                     |                |                              |                          |               |                          |  |  |  |  |
| Zanthoxylum myriacanthum oil |                                     |                | -                            | $\overline{\phantom{a}}$ |               |                          |  |  |  |  |
|                              |                                     |                | $\qquad \qquad \blacksquare$ |                          |               |                          |  |  |  |  |
|                              |                                     |                | -                            |                          |               | $\overline{\phantom{0}}$ |  |  |  |  |
|                              |                                     |                |                              |                          |               |                          |  |  |  |  |

<span id="page-9-0"></span>**Table 3.** Minimum inhibitory concentrations (MIC) and Minimum fungicidal concentrations (MFC) determinations.

The minimum concentration(s) at which the fungus was completely killed (MFC) at 72 h is highlighted in pink. Abbreviations; *Geotrichum candidum* (G), *Fusarium sarcochroum* (F), *Penicillium digitatum* (P), *Colletotrichum gloeosporioides* (C).

In the in vitro study, we found that green mold disease caused by *P. digitatum* was only controlled by commercial citrus oil and makhwaen oil. Essential oils of all types were able to control citrus anthracnose disease caused by *C. gloeosporioides*, and makhwaen oil is the most effective (Table 4). The result of the in vivo test is well correspondent to the in vitro analysis. All in all, this is the first report of the topical use of citrus oils from biomass during pre-harvest production in controlling post-harvest diseases of 'Sai-Namphaung' tangerines, which supports the sustainable use of by-products from agricultural production. vitro analysis. All in all, this is the first report of the topical use of citrus oils from biomass in the in vitro study, we found that green mold disease caused by *F. aiguarum* was only vitro analysis. All in all in all in all, this is the first report of the topical use of city  $\alpha$ during production in control in control in control in control in controlled product and the internal position in control in the internal position in the internal position in the internal position of the internal position i vitro analysis. All in all, this is the first report of the topical use of citrus oils from biomass In the in vitro study, we found that green mold disease caused by  $P$ . *digitatum* was only

Table 4. The lesion size (mm<sup>2</sup>) of pathogens (Penicillium digitatum and Colletotrichum gloeosporioides) inoculums on 'Sai-Namphaung' tangerine fruits (n = 6) over 4 days.





<span id="page-11-0"></span>Table 4. *Cont.* 

The values are mean  $\pm$  SE (n = 6); where each inoculum was treated as independent replications, considering that the two fruits were subjected to a pair sample *t*-test and were not biological different (Supplementary Table S1). For each pathogen, mean values with different lowercase letters are significantly different (*p* < 0.05).

# **4. Conclusions**

In an effort to find an alternative and environmentally friendly method to control postharvest diseases of tangerine cv. 'Sai-Namphaung,' the efficacy of essential oil extracted from fruit drop biomass was evaluated. Based on the symptoms and prevalence of the disease in the region, greening was the major cause of fruit drop. Limonene, together with β-pinene and linalool, were detected as the principal active ingredients in the essential oils of tangerine fruit peel. Four genera were identified viz., *Penicillium digitatum, Colletotrichum gloeosporioides*, *Fusarium sarcochrum*, and *Geotrichum candidum* from infected fruits. 'Sai-Namphaung' and 'Fremont' peel essential oils were less effective in preventing green mold rot and citrus anthracnose caused by *P. digitatum* and *C. gloeosporioides* than commercial citrus oils and *Zanthoxylum myriacanthum* oil.

**Supplementary Materials:** The following supporting information can be downloaded at: [https:](https://www.mdpi.com/article/10.3390/agriculture12050701/s1) [//www.mdpi.com/article/10.3390/agriculture12050701/s1,](https://www.mdpi.com/article/10.3390/agriculture12050701/s1) Figure S1: The Basic Local Alignment Search Tool (BLAST) of isolate BACI01, BACI02, BACI03 and BACI04; Table S1: Student *t*-test of 2 biological samples for in vivo study of essential oil on 'Sai-Namphaung' tangerine.

**Author Contributions:** Conceptualization, S.R.S. and P.K.; methodology, P.K., A.K. and S.K.; formal analysis, P.K., A.K. and S.K.; investigation, P.K., A.K. and S.K.; resources, P.K. and N.E.O.; data curation, P.K. and N.E.O.; writing—original draft preparation, P.K. and S.R.S.; writing—review and editing, S.R.S.; visualization, N.E.O. and P.K.; supervision, S.R.S.; project administration, C.L.; funding acquisition, C.L. and B.C. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research work was partially supported by Chiang Mai University.

**Informed Consent Statement:** Not applicable.

**Conflicts of Interest:** The authors declare no conflict of interest.

# **References**

- <span id="page-12-0"></span>1. Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin fruit quality: A review. *J. Sci. Food Agric.* **2018**, *98*, 18–26. [\[CrossRef\]](http://doi.org/10.1002/jsfa.8495)
- <span id="page-12-1"></span>2. Gustafsson, J.; Cederberg, C.; Sonesson, U.; Emanuelsson, A. *The Methodology of the FAO Study: Global Food Losses and Food Waste-Extent, Causes and Prevention"-FAO, 2011*; Food and Agriculture Organization of the United Nations: Roma, Italy, 2013.
- <span id="page-12-2"></span>3. Perondi, D.; Fraisse, C.W.; Dewdney, M.M.; Cerbaro, V.A.; Andreis, J.H.D.; Gama, A.B.; Junior, G.J.S.; Amorim, L.; Pavan, W.; Peres, N.A. Citrus advisory system: A web-based postbloom fruit drop disease alert system. *Comput. Electron. Agric.* **2020**, *178*, 105781. [\[CrossRef\]](http://doi.org/10.1016/j.compag.2020.105781)
- <span id="page-12-3"></span>4. Boluda-Aguilar, M.; García-Vidal, L.; del Pilar González-Castañeda, F.; López-Gómez, A. Mandarin peel wastes pretreatment with steam explosion for bioethanol production. *Bioresour. Technol.* **2010**, *101*, 3506–3513. [\[CrossRef\]](http://doi.org/10.1016/j.biortech.2009.12.063) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/20093022)
- 5. De Barros, C.H.N.; Cruz, G.C.F.; Mayrink, W.; Tasic, L. Bio-based synthesis of silver nanoparticles from orange waste: Effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. *Nanotechnol. Sci. Appl.* **2018**, *11*, 1–14. [\[CrossRef\]](http://doi.org/10.2147/NSA.S156115) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/29618924)
- <span id="page-12-4"></span>6. Yi, F.; Jin, R.; Sun, J.; Ma, B.; Bao, X. Evaluation of mechanical-pressed essential oil from Nanfeng mandarin (*Citrus reticulata* Blanco cv. Kinokuni) as a food preservative based on antimicrobial and antioxidant activities. *LWT* **2018**, *95*, 346–353. [\[CrossRef\]](http://doi.org/10.1016/j.lwt.2018.05.011)
- <span id="page-12-5"></span>7. Barbieri, C.; Borsotto, P. Essential oils: Market and legislation. In *Potential of Essential Oils*; IntechOpen: London, UK, 2018; pp. 107–127.
- <span id="page-12-6"></span>8. Grandviewresearch. Citrus Oil Market Size, Share & Trends Analysis Report by Product (Orange Oil, Lemon Oil), by Application (Personal Care, Food & Beverages, Aromatherapy), by Region, and Segment Forecasts, 2019–2025. Available online: [https:](https://www.grandviewresearch.com/industry-analysis/citrus-oil-market#) [//www.grandviewresearch.com/industry-analysis/citrus-oil-market#](https://www.grandviewresearch.com/industry-analysis/citrus-oil-market#) (accessed on 26 April 2022).
- <span id="page-12-7"></span>9. Javed, S.; Javaid, A.; Nawaz, S.; Saeed, M.; Mahmood, Z.; Siddiqui, S.; Ahmad, R. Phytochemistry, GC-MS analysis, antioxidant and antimicrobial potential of essential oil from five citrus species. *J. Agric. Sci.* **2014**, *6*, 201. [\[CrossRef\]](http://doi.org/10.5539/jas.v6n3p201)
- <span id="page-12-8"></span>10. Chandharakool, S.; Koomhin, P.; Sinlapasorn, J.; Suanjan, S.; Phungsai, J.; Suttipromma, N.; Songsamoe, S.; Matan, N.; Sattayakhom, A. Effects of Tangerine Essential Oil on Brain Waves, Moods, and Sleep Onset Latency. *Molecules* **2020**, *25*, 4865. [\[CrossRef\]](http://doi.org/10.3390/molecules25204865)
- <span id="page-12-9"></span>11. Tao, N.; Jia, L.; Zhou, H. Anti-fungal activity of *Citrus reticulata* Blanco essential oil against *Penicillium italicum* and *Penicillium digitatum*. *Food Chem.* **2014**, *153*, 265–271. [\[CrossRef\]](http://doi.org/10.1016/j.foodchem.2013.12.070)
- <span id="page-12-10"></span>12. Hamad, Y.K.; Fahmi, M.M.; Zaitoun, F.M.; Ziyada, S.M. Role of essential oils in controlling fungi that cause decline disease of guava. *Int. J. Pure Appl. Biosci.* **2015**, *3*, 143–151. [\[CrossRef\]](http://doi.org/10.18782/2320-7051.2136)
- <span id="page-12-11"></span>13. Hosseini, S.S.; Khodaiyan, F.; Yarmand, M.S. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. *Carbohydr. Polym.* **2016**, *140*, 59–65. [\[CrossRef\]](http://doi.org/10.1016/j.carbpol.2015.12.051)
- <span id="page-12-12"></span>14. Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. *Processes* **2020**, *8*, 549. [\[CrossRef\]](http://doi.org/10.3390/pr8050549)
- <span id="page-12-13"></span>15. Perazzini, H.; Perazzini, M.T.; Freire, F.B.; Freire, F.B.; Freire, J.T. Modeling and cost analysis of drying of citrus residues as biomass in rotary dryer for bioenergy. *Renew. Energy* **2021**, *175*, 167–178. [\[CrossRef\]](http://doi.org/10.1016/j.renene.2021.04.144)
- 16. Bhatti, H.N.; Bajwa, I.I.; Hanif, M.A.; Bukhari, I.H. Removal of lead and cobalt using lignocellulosic fiber derived from *Citrus reticulata* waste biomass. *Korean J. Chem. Eng.* **2010**, *27*, 218–227. [\[CrossRef\]](http://doi.org/10.1007/s11814-009-0325-1)
- 17. Porto, D.S.; Forim, M.R.; Costa, E.S.; Fernandes, J.B.; da Silva, M.F. Evaluation of lignins of trunk and roots from *Citrus sinensis* L. Osbeck: A large available Brazilian biomass. *J. Braz. Chem. Soc.* **2021**, *32*, 29–39. [\[CrossRef\]](http://doi.org/10.21577/0103-5053.20200150)
- <span id="page-12-14"></span>18. Bruno, M.R.; Russo, D.; Cetera, P.; Faraone, I.; Lo Giudice, V.; Milella, L.; Todaro, L.; Sinisgalli, C.; Fritsch, C.; Dumarçay, S. Chemical analysis and antioxidant properties of orange-tree (*Citrus sinensis* L.) biomass extracts obtained via different extraction techniques. *Biofuels Bioprod. Biorefining* **2020**, *14*, 509–520. [\[CrossRef\]](http://doi.org/10.1002/bbb.2090)
- <span id="page-12-15"></span>19. Moraes Bazioli, J.; Belinato, J.R.; Costa, J.H.; Akiyama, D.Y.; Pontes, J.G.d.M.; Kupper, K.C.; Augusto, F.; de Carvalho, J.E.; Fill, T.P. Biological control of citrus postharvest phytopathogens. *Toxins* **2019**, *11*, 460. [\[CrossRef\]](http://doi.org/10.3390/toxins11080460)
- <span id="page-12-16"></span>20. Talibi, I.; Boubaker, H.; Boudyach, E.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. *J. Appl. Microbiol.* **2014**, *117*, 1–17. [\[CrossRef\]](http://doi.org/10.1111/jam.12495)
- <span id="page-13-0"></span>21. Jhalegar, M.J.; Sharma, R.; Singh, D. In vitro and in vivo activity of essential oils against major postharvest pathogens of Kinnow (*Citrus nobilis* × *C. deliciosa*) mandarin. *J. Food Sci. Technol.* **2015**, *52*, 2229–2237. [\[CrossRef\]](http://doi.org/10.1007/s13197-014-1281-2)
- <span id="page-13-1"></span>22. Sahoo, U.K.; Nath, A.J.; Lalnunpuii, K. Biomass estimation models, biomass storage and ecosystem carbon stock in sweet orange orchards: Implications for land use management. *Acta Ecol. Sin.* **2021**, *41*, 57–63. [\[CrossRef\]](http://doi.org/10.1016/j.chnaes.2020.12.003)
- <span id="page-13-2"></span>23. Sangta, J.; Wongkaew, M.; Tangpao, T.; Withee, P.; Haituk, S.; Arjin, C.; Sringarm, K.; Hongsibsong, S.; Sutan, K.; Pusadee, T. Recovery of Polyphenolic Fraction from Arabica Coffee Pulp and Its Antifungal Applications. *Plants* **2021**, *10*, 1422. [\[CrossRef\]](http://doi.org/10.3390/plants10071422)
- <span id="page-13-3"></span>24. Sharma, N.; Tripathi, A. Fungitoxicity of the essential oil of *Citrus sinensis* on post-harvest pathogens. *World J. Microbiol. Biotechnol.* **2006**, *22*, 587–593. [\[CrossRef\]](http://doi.org/10.1007/s11274-005-9075-3)
- <span id="page-13-4"></span>25. Tangpao, T.; Krutmuang, P.; Kumpoun, W.; Jantrawut, P.; Pusadee, T.; Cheewangkoon, R.; Sommano, S.R.; Chuttong, B. Encapsulation of Basil Essential Oil by Paste Method and Combined Application with Mechanical Trap for Oriental Fruit Fly Control. *Insects* **2021**, *12*, 633. [\[CrossRef\]](http://doi.org/10.3390/insects12070633) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/34357294)
- <span id="page-13-5"></span>26. Zhang, K.; Yuan-Ying, S.; Cai, L. An optimized protocol of single spore isolation for fungi. *Cryptogam. Mycol.* **2013**, *34*, 349–356. [\[CrossRef\]](http://doi.org/10.7872/crym.v34.iss4.2013.349)
- <span id="page-13-6"></span>27. Haituk, S.; Withee, P.; Sangta, J.; Senwanna, C.; Khamsaw, P.; Karunarathna, A.; Hongsibsong, S.; Sringarm, K.; Prasad, S.K.; Sommano, S.R. Production of Non-Volatile Metabolites from Sooty Molds and Their Bio-Functionalities. *Processes* **2022**, *10*, 329. [\[CrossRef\]](http://doi.org/10.3390/pr10020329)
- <span id="page-13-7"></span>28. Haituk, S.; Suwannarach, N.; Hongsanan, S.; Senwanna, C.; Cheewangkoon, R. New genus of epiphytic sooty mold: *Alloscorias syngonii* (Readerielliopsidaceae) from Thailand. *Phytotaxa* **2021**, *507*, 271–282. [\[CrossRef\]](http://doi.org/10.11646/phytotaxa.507.4.1)
- <span id="page-13-8"></span>29. Billones-Baaijens, R.; Jaspers, M.; Allard, A.; Hong, Y.; Ridgway, H.; Jones, E. Management of Botryosphaeriaceae species infection in grapevine propagation materials. *Phytopathol. Mediterr.* **2015**, *54*, 355–367.
- <span id="page-13-9"></span>30. Plaza, P.; Torres, R.; Usall, J.; Lamarca, N.; Vinas, I. Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. *J. Hortic. Sci. Biotechnol.* **2004**, *79*, 935–940. [\[CrossRef\]](http://doi.org/10.1080/14620316.2004.11511869)
- <span id="page-13-10"></span>31. Perumal, S.; Pillai, S.; Cai, L.W.; Mahmud, R.; Ramanathan, S. Determination of minimum inhibitory concentration of *Euphorbia hirta* (L.) extracts by tetrazolium microplate assay. *J. Nat. Prod.* **2012**, *5*, 68–76.
- <span id="page-13-11"></span>32. Gottwald, J.R.; Krysan, P.J.; Young, J.C.; Evert, R.F.; Sussman, M.R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. *Proc. Natl. Acad. Sci. USA* **2000**, *97*, 13979–13984. [\[CrossRef\]](http://doi.org/10.1073/pnas.250473797)
- <span id="page-13-12"></span>33. Li, Y.; Zhao, R.; Li, Y.; Zhou, Z. Limonin Enhances the Antifungal Activity of Eugenol Nanoemulsion against *Penicillium Italicum* In Vitro and In Vivo Tests. *Microorganisms* **2021**, *9*, 969. [\[CrossRef\]](http://doi.org/10.3390/microorganisms9050969)
- <span id="page-13-13"></span>34. Naqvi, S.A.M.H. Diagnosis and Management of Pre and Post-harvest Diseases of Citrus fruit. In *Diseases of Fruits and Vegetables Volume I: Diagnosis and Management*; Naqvi, S.A.M.H., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 339–359.
- <span id="page-13-14"></span>35. Timmer, L.; Zitko, S. Evaluation of a model for prediction of postbloom fruit drop of citrus. *Plant Dis.* **1996**, *80*, 380–383. [\[CrossRef\]](http://doi.org/10.1094/PD-80-0380)
- <span id="page-13-15"></span>36. Lima, W.G.; Spósito, M.B.; Amorim, L.; Gonçalves, F.P.; de Filho, P.A.M. Colletotrichum gloeosporioides, a new causal agent of citrus post-bloom fruit drop. *Eur. J. Plant Pathol.* **2011**, *131*, 157. [\[CrossRef\]](http://doi.org/10.1007/s10658-011-9795-1)
- <span id="page-13-16"></span>37. Nartvaranant, P. Effects of fruit thinning on fruit drop, leaf carbohydrates concentration, fruit carbohydrates concentration, leaf nutrient concentration and fruit quality in Pummelo cultivar Thong Dee. *Songklanakarin J. Sci. Technol.* **2016**, *38*, 249–255.
- <span id="page-13-17"></span>38. Garnier, M.; Bové, J.M. Citrus greening disease and the greening bacterium. In Proceedings of the International Organization of Citrus Virologists Conference Proceedings (1957–2010), New Dehli, India, 23–27 November 1992.
- <span id="page-13-18"></span>39. Tipu, M.M.H.; Masud, M.M.; Jahan, R.; Baroi, A.; Hoque, A.K.M.A. Identification of citrus greening based on visual symptoms: A grower's diagnostic toolkit. *Heliyon* **2021**, *7*, e08387. [\[CrossRef\]](http://doi.org/10.1016/j.heliyon.2021.e08387)
- <span id="page-13-19"></span>40. Katz, E.; Boo, K.H.; Kim, H.Y.; Eigenheer, R.A.; Phinney, B.S.; Shulaev, V.; Negre-Zakharov, F.; Sadka, A.; Blumwald, E. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. *J. Exp. Bot.* **2011**, *62*, 5367–5384. [\[CrossRef\]](http://doi.org/10.1093/jxb/err197)
- <span id="page-13-20"></span>41. Spiegel-Roy, P.; Goldschmidt, E.E. *The Biology of Citrus*; Cambridge University Press: Cambridge, UK, 1996.
- <span id="page-13-21"></span>42. Ahmad, M.M.; Rehman, S.U.; Anjum, F.M.; Bajwa, E.E. Comparative physical examination of various citrus peel essential oils. *Int. J. Agric. Biol.* **2006**, *8*, 186–190.
- <span id="page-13-22"></span>43. Teigiserova, D.A.; Tiruta-Barna, L.; Ahmadi, A.; Hamelin, L.; Thomsen, M. A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils. *J. Environ. Manag.* **2021**, *280*, 111832. [\[CrossRef\]](http://doi.org/10.1016/j.jenvman.2020.111832)
- <span id="page-13-23"></span>44. Kamal, G.; Anwar, F.; Hussain, A.; Sarri, N.; Ashraf, M. Yield and chemical composition of *Citrus* essential oils as affected by drying pretreatment of peels. *Int. Food Res. J.* **2011**, *18*, 1275.
- <span id="page-13-24"></span>45. Kwangjai, J.; Cheaha, D.; Manor, R.; Sa-ih, N.; Samerphob, N.; Issuriya, A.; Wattanapiromsakul, C.; Kumarnsit, E. Modification of brain waves and sleep parameters by *Citrus reticulata* Blanco. cv. Sai-Nam-Phueng essential oil. *Biomed. J.* **2021**, *44*, 727–738. [\[CrossRef\]](http://doi.org/10.1016/j.bj.2020.05.017)
- <span id="page-13-26"></span>46. Chutia, M.; Bhuyan, P.D.; Pathak, M.G.; Sarma, T.C.; Boruah, P. Antifungal activity and chemical composition of *Citrus reticulata* Blanco essential oil against phytopathogens from North East India. *LWT-Food Sci. Technol.* **2009**, *42*, 777–780. [\[CrossRef\]](http://doi.org/10.1016/j.lwt.2008.09.015)
- <span id="page-13-25"></span>47. Lota, M.-L.; de Rocca Serra, D.; Tomi, F.; Joseph, C. Chemical variability of peel and leaf essential oils of mandarins from *Citrus reticulata* Blanco. *Biochem. Syst. Ecol.* **2000**, *28*, 61–78. [\[CrossRef\]](http://doi.org/10.1016/S0305-1978(99)00036-8)
- <span id="page-14-0"></span>48. Varano, A.; Shirahigue, L.D.; Azevedo, F.A.; Altenhofen da Silva, M.; Ceccato-Antonini, S.R. Mandarin essential oil as an antimicrobial in ethanolic fermentation: Effects on *Limosilactobacillus fermentum* and *Saccharomyces cerevisiae*. *Lett. Appl. Microbiol.* **2022**. [\[CrossRef\]](http://doi.org/10.1111/lam.13690) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/35247276)
- <span id="page-14-1"></span>49. Sriwichai, T.; Suksathan, R.; Charoenlertthanakit, N.; Sommano, S.R. *Zanthoxylum* spp.: A new potential sources of essential oil for the perfumery and pharmaceutical industries in Thailand. *Med. Plants-Int. J. Phytomed. Relat. Ind.* **2019**, *11*, 26–45. [\[CrossRef\]](http://doi.org/10.5958/0975-6892.2019.00009.1)
- <span id="page-14-2"></span>50. Sriwichai, T.; Wisetkomolmat, J.; Pusadee, T.; Sringarm, K.; Duangmal, K.; Prasad, S.K.; Chuttong, B.; Sommano, S.R. Aromatic Profile Variation of Essential Oil from Dried Makwhaen Fruit and Related Species. *Plants* **2021**, *10*, 803. [\[CrossRef\]](http://doi.org/10.3390/plants10040803) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/33921889)
- <span id="page-14-3"></span>51. Ahmad, M.M.; Iqbal, Z.; Anjum, F.M.; Sultan, J.I. Genetic variability to essential oil composition in four citrus fruit species. *Pak. J. Bot.* **2006**, *38*, 319.
- <span id="page-14-4"></span>52. Li, R.; Yang, J.-J.; Shi, Y.-X.; Zhao, M.; Ji, K.-L.; Zhang, P.; Xu, Y.-K.; Hu, H.-B. Chemical composition, antimicrobial and antiinflammatory activities of the essential oil from Maqian (*Zanthoxylum myriacanthum* var. *pubescens) in Xishuangbanna, SW China. J. Ethnopharmacol.* **2014**, *158*, 43–48. [\[CrossRef\]](http://doi.org/10.1016/j.jep.2014.10.006) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/25448503)
- <span id="page-14-5"></span>53. Houbraken, J.; de Vries, R.P.; Samson, R.A. Modern taxonomy of biotechnologically important *Aspergillus* and *Penicillium* species. *Adv. Appl. Microbiol.* **2014**, *86*, 199–249.
- <span id="page-14-6"></span>54. Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of *Penicillium* subgenus *Penicillium*. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. *Stud. Mycol.* **2004**, *49*, 1–174.
- <span id="page-14-7"></span>55. Torres-Calzada, C.; Tapia-Tussell, R.; Higuera-Ciapara, I.; Perez-Brito, D. Morphological, pathological and genetic diversity of Colletotrichum species responsible for anthracnose in papaya (*Carica papaya* L). *Eur. J. Plant Pathol.* **2013**, *135*, 67–79. [\[CrossRef\]](http://doi.org/10.1007/s10658-012-0065-7)
- <span id="page-14-8"></span>56. Ajay Kumar, G. Colletotrichum gloeosporioides: Biology, pathogenicity and management in India. *J. Plant Physiol. Pathol.* **2014**, *2*, 2–11.
- <span id="page-14-9"></span>57. Nelson, P.E.; Dignani, M.C.; Anaissie, E.J. Taxonomy, biology, and clinical aspects of Fusarium species. *Clin. Microbiol. Rev.* **1994**, *7*, 479–504. [\[CrossRef\]](http://doi.org/10.1128/CMR.7.4.479) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/7834602)
- <span id="page-14-10"></span>58. Sandoval-Denis, M.; Guarnaccia, V.; Polizzi, G.; Crous, P. Symptomatic Citrus trees reveal a new pathogenic lineage in *Fusarium* and two new *Neocosmospora* species. *Pers.-Mol. Phylogeny Evol. Fungi* **2018**, *40*, 1–25. [\[CrossRef\]](http://doi.org/10.3767/persoonia.2018.40.01) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/30504994)
- <span id="page-14-11"></span>59. Suprapta, D.N.; Arai, K.; Iwai, H. Distribution of Geotrichum candidum citrus race in citrus groves and non-citrus fields in Japan. *Mycoscience* **1995**, *36*, 277–282. [\[CrossRef\]](http://doi.org/10.1007/BF02268602)
- <span id="page-14-12"></span>60. Kara, M.; Soylu, E.M. Assessment of glucosinolate-derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri-aurantii. *J. Phytopathol.* **2020**, *168*, 279–289. [\[CrossRef\]](http://doi.org/10.1111/jph.12889)
- <span id="page-14-13"></span>61. Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of citrus essential oils. *J. Agric. Food Chem.* **2014**, *62*, 3011–3033. [\[CrossRef\]](http://doi.org/10.1021/jf5006148)
- <span id="page-14-14"></span>62. Zhang, H.-L.; Gan, X.-Q.; Fan, Q.-F.; Yang, J.-J.; Zhang, P.; Hu, H.-B.; Song, Q.-S. Chemical constituents and anti-inflammatory activities of Maqian (*Zanthoxylum myriacanthum* var. *pubescens*) bark extracts. *Sci. Rep.* **2017**, *7*, 45805.
- <span id="page-14-15"></span>63. Wang, W.; Liu, S.; Deng, L.; Ming, J.; Yao, S.; Zeng, K. Control of Citrus Post-harvest Green Molds, Blue Molds, and Sour Rot by the Cecropin A-Melittin Hybrid Peptide BP21. *Front. Microbiol.* **2018**, *9*, 2455. [\[CrossRef\]](http://doi.org/10.3389/fmicb.2018.02455)
- <span id="page-14-16"></span>64. Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.; Aoumar, A.A.B. Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. *Ind. Crops Prod.* **2016**, *86*, 95–101. [\[CrossRef\]](http://doi.org/10.1016/j.indcrop.2016.03.036)
- 65. Yang, R.; Miao, J.; Shen, Y.; Cai, N.; Wan, C.; Zou, L.; Chen, C.; Chen, J. Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against *Penicillium digitatum* and application in postharvest preservation of citrus fruit. *LWT* **2021**, *141*, 110924. [\[CrossRef\]](http://doi.org/10.1016/j.lwt.2021.110924)
- <span id="page-14-17"></span>66. Dou, S.; Ouyang, Q.; You, K.; Qian, J.; Tao, N. An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii. *Postharvest Biol. Technol.* **2018**, *138*, 31–36. [\[CrossRef\]](http://doi.org/10.1016/j.postharvbio.2017.12.011)
- <span id="page-14-18"></span>67. Wang, W.; de Silva, D.D.; Moslemi, A.; Edwards, J.; Ades, P.K.; Crous, P.W.; Taylor, P.W.J. Colletotrichum Species Causing Anthracnose of Citrus in Australia. *J. Fungi* **2021**, *7*, 47. [\[CrossRef\]](http://doi.org/10.3390/jof7010047) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/33445649)
- <span id="page-14-19"></span>68. Hong, J.K.; Yang, H.J.; Jung, H.; Yoon, D.J.; Sang, M.K.; Jeun, Y.-C. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides. *Plant Pathol. J.* **2015**, *31*, 269–277. [\[CrossRef\]](http://doi.org/10.5423/PPJ.OA.03.2015.0027) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/26361475)
- <span id="page-14-20"></span>69. Moosa, A.; Farzand, A.; Sahi, S.T.; Khan, S.A.; Abbas, M.F.; Abbas, A.; Binyamin, R. First report of post-harvest Fusarium rot caused by *Fusarium oxysporum* on *Citrus reticulata* Blanco cv. 'Kinnow'in Pakistan. *J. Plant Pathol.* **2020**, *102*, 945–946. [\[CrossRef\]](http://doi.org/10.1007/s42161-020-00521-6)
- 70. Moosa, A.; Farzand, A.; Khan, S.A.; Ahmad, T.; Aslam, H.M.U.; Saeed, S.; Shafique, M.; Masroor, A.; Akhtar, S. First Report of Postharvest Fusarium Rot of Mandarin (*Citrus reticulata* 'Kinnow') Caused by *Fusarium equiseti* in Pakistan. *Plant Dis.* **2021**, *105*, 4170. [\[CrossRef\]](http://doi.org/10.1094/PDIS-03-21-0513-PDN)
- <span id="page-14-21"></span>71. Hasan, M.F.; Islam, M.A.; Sikdar, B. First report on molecular identification of Fusarium species causing fruit rot of mandarin (*Citrus reticulata*) in Bangladesh. *F1000Research* **2020**, *9*, 1212. [\[CrossRef\]](http://doi.org/10.12688/f1000research.26464.1)
- <span id="page-14-22"></span>72. Singh, H.; Al-samarai, G.; Syarhabil, M. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of citrus. *Int. J. Sci. Res. Publ.* **2012**, *2*, 108–111.