Light Interception and Radiation Use Efficiency of Cassava under Irrigated and Rainfed Conditions and Seasonal Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Study Sites
2.2. Data Collection
2.2.1. Weather Conditions
2.2.2. Soil Physical and Chemical Properties
2.2.3. Light Interception and Cumulative Solar Radiation
2.2.4. Leaf Area Index (LAI) and Extinction Coefficient (k)
2.2.5. Total Biomass and Storage Root Dry Weight
2.2.6. Radiation Use Efficiency (RUE)
2.3. Statistical Analysis
3. Results
3.1. Light Interception
3.2. Leaf Area Index and Light Interception
3.3. Extinction Coefficient (k)
3.4. Cumulative Solar Radiation Interception
3.5. Radiation Use Efficiency for Total Biomass (RUEbi)
3.6. Radiation Use Efficiency for Storage Root Dry Weight (RUEsr)
4. Discussion
4.1. Light Interception and k
4.2. Solar Radiation Interception and RUE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteith, J.L. Validity of the correlation between intercepted radiation and biomass. Agric. For. Meteorol. 1994, 68, 213–220. [Google Scholar] [CrossRef]
- Lindquist, J.L.; Arkebauer, T.J.; Walters, D.T.; Cassman, K.G.; Dobermann, A. Maize radiation use efficiency under optimal growth conditions. Agron. J. 2005, 97, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Rahman, T.; Yang, F.; Song, C.; Yong, T.; Liu, J.; Zhang, C.; Yang, W. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE 2017, 12, e0169218. [Google Scholar] [CrossRef] [PubMed]
- Zhi-qiang, T.; De-mei, W.; Shao-kang, M.; Yu-shuang, Y.; Guang-cai, Z.; Xu-hong, C. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. J. Integr. Agric. 2018, 17, 566–578. [Google Scholar]
- Raghuveera Rao, P.; Sailaja, B.; Desiraju, S.; Nageswara Rao, D.; Voleti, S.R.; Satyanarayana Reddy, P.; Sudarsana Rao, G.V. Variable radiation use efficiency in rice cultures grown at different locations. Indian. J. Plant. Physiol. 2012, 17, 57–60. [Google Scholar]
- Gonias, E.D.; Oosterhuis, D.M.; Bibi, A.C.; Roberts, B.A. Radiation use efficiency of cotton in contrasting environments. Am. J. Plant Sci. 2012, 3, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Pellet, D.; El-Sharkawy, M.A. Cassava varietal response to fertilization: Growth dynamic and implications for cropping sustainability. Exp. Agric. 1997, 33, 353–365. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; De Tafur, S.M.; Cadavid, L.F. Potential photosynthesis of cassava as affected by growth conditions. Crop. Sci. 1992, 32, 1336–1342. [Google Scholar] [CrossRef]
- Vos, J.; Evers, J.B.; Buck-Sorlin, G.H.; Andrieu, B.; Chelle, M.; De Visser, P.H.B. Functional–structural plant modelling: A new versatile tool in crop science. J. Exp. Bot. 2010, 61, 2101–2115. [Google Scholar] [CrossRef]
- Hay, R.; Walker, A. An Introduction to the Physiology of Crop Yield; Longmans: London, UK, 1989. [Google Scholar]
- Subbarao, G.V.; Ito, O.; Berry, W. Crop radiation use efficiency and photosynthate formation-avenues for genetic improvement. In Handbook of Photosynthesis, 2nd ed.; Pessarakli, M., Ed.; Taylor and Francis: New York, NY, USA, 2005; pp. 549–576. [Google Scholar]
- Gallagher, J.N.; Biscoe, P.V. Radiation absorption, growth and yield of cereal. J. Agric. Sci. Cambr. 1978, 91, 47–60. [Google Scholar] [CrossRef]
- Gosse, G.; Varlet-Grancher, C.; Bonhomme, R.; Chartier, M.; Allirand, J.M.; Lemaire, G. Maximum dry matter production and solar radiation intercepted by a canopy. Agronomie 1986, 6, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Kiniry, J.R.; Jones, C.A.; O’Toole, J.C.; Blanchet, R.; Cabelguenne, M.; Spanel, D.A. Radiation use efficiency in biomass accumulation prior to grain filling for five grain crop species. Field Crops Res. 1989, 20, 51–64. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Kemanian, A.R. Crop radiation capture and use efficiency: A framework for crop growth analysis. In Crop Physiology; Sadras, V., Calderini, D., Eds.; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 145–170. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Save and Grow a Guide to Sustainable Production Intensification; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- El-Sharkawy, M.A.; Cadavid, L.F. Response of cassava to prolonged water stress imposed at different stages of growth. Exp. Agric. 2002, 38, 333–350. [Google Scholar] [CrossRef]
- Odubanjo, O.O.; Olufayo, A.A.; Oguntunde, P.G. Water use, growth, and yield of drip irrigated cassava in a humid tropical environment. Soil Water Res. 2011, 6, 10–20. [Google Scholar] [CrossRef]
- Werner, C.; Ryel, R.J.; Correia, O.; Beyschlag, W. Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecol. 2001, 22, 129–138. [Google Scholar] [CrossRef]
- Jones, H.G.; Corlett, J.E. Current topics in drought physiology. J. Agric. Sci. 1992, 119, 291–296. [Google Scholar] [CrossRef]
- Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Banterng, P.; Kesmala, T.; Holbrook, C.C.; Kvien, C. Seasonal variations in canopy size and yield of Rayong 9 cassava genotype under rainfed and irrigated conditions. Agronomy 2019, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 2019, 76, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Fukai, S.; Alcoy, A.B.; Llamelo, A.B.; Patterson, R.D. Effects of solar radiation on growth of cassava (Manihot esculenta Crantz). I. Canopy development and dry matter growth. Field Crops Res. 1984, 9, 347–360. [Google Scholar] [CrossRef]
- Cock, J.H.; Franklin, D.; Sandoval, G.; Juri, P. The ideal cassava plant for maximum yield. Crop Sci. 1979, 19, 271–279. [Google Scholar] [CrossRef]
- Veltkamp, H.J. Physiological Causes of Yield Variation in Cassava (Manihot esculenta Crantz). Ph.D. Thesis, University of Wageningen, Wageningen, NL, USA, 1985; p. 132. [Google Scholar]
- Ezui, K.S.; Franke, A.C.; Leffelaar, P.A.; Mando, A.; Van Heerwaarden, J.; Sanabria, J.; Sogbedji, J.; Giller, K.E. Water and radiation use efficiencies explain the effect of potassium on the productivity of cassava. Eur. J. Agron. 2017, 83, 28–39. [Google Scholar] [CrossRef]
- Howeler, R.H. Cassava mineral nutrition and fertilization. In Cassava: Biology Production and Utilization; Hillocks, R.J., Thresh, J.M., Bellotti, A.C., Eds.; CAB International: Wallingford, UK, 2002. [Google Scholar]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- LI-COR Inc. LAI-2000 Plant Canopy Analyzer Instruction/Operating Manual; LI-COR Inc.: Lincoln, NE, USA, 1992. [Google Scholar]
- Monsi, M.; Saeki, T. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2005, 95, 549–567. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.P. Photosynthetic efficiency of the whole plant. In Food Production and Consumption: The Efficiency of Human Food Chains and Nutrient Cycles; Duckham, A.N., Jones, J.G.W., Roberts, E.H., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1976; pp. 107–126. [Google Scholar]
- Alves, A.A.C. Cassava botany and physiology. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Bellotti, A.C., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 67–89. [Google Scholar]
- Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Banterng, P.; Holbrook, C.C.; Kvien, C. Seasonal variation in canopy size, light penetration and photosynthesis of three cassava genotypes with different canopy architectures. Agronomy 2020, 10, 1554. [Google Scholar] [CrossRef]
- Godin, C. Representing and encoding plant architecture: A review. Ann. For. Sci. 2000, 57, 413–438. [Google Scholar] [CrossRef]
- Cayon, M.G.; El-Sharkawy, M.A.; Cadavid, L.F. Leaf gas exchange of cassava as affected by quality of planting material and water stress. Photosynthetica 1997, 34, 409–418. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Z.; Fan, J.; Zhou, D.; Tang, F. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Front. Earth Sci. 2014, 8, 599–609. [Google Scholar] [CrossRef]
- Adeboye, O.B.; Schultz, B.; Adekalu, K.O.; Prasad, K. Impact of water stress on radiation interception and radiation use efficiency of soybeans (Glycine max L. Merr.) in Nigeria. Braz. J. Sci. Technol. 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.D.O.; Lyra, G.B.; Silva, L.D.B.; De Souza, J.L.; Pereira, C.R.; Jorge, M.F. Extinction coefficient and interception efficiency of the photosynthetic photon flux density in cherry tomato under levels of nitrogen in greenhouse conditions. Aust. J. Crop Sci. 2019, 13, 1749–1755. [Google Scholar] [CrossRef]
- Matloobi, M. Light harvesting and photosynthesis by the canopy. In Advances in Photosynthesis—Fundamental Aspects; Najafpor, M.M., Ed.; IntechOpen: London, UK, 2012; pp. 235–256. [Google Scholar]
- Boote, K.J.; Loomis, R.S. The prediction of canopy assimilation. In Modeling Crop Photosynthesis—From Biochemistry to Canopy; No. 19; Boote, K.J., Loomis, R.S., Eds.; CSSA: Madison, WI, USA, 1991; pp. 109–137. [Google Scholar]
- Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Roytrakul, S.; Theerakulpisut, P. Canopy structure and photosynthetic performance of irrigated cassava genotypes growing in different seasons in a tropical savanna climate. Agronomy 2020, 10, 2018. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant. Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatfield, J.L. Radiation use efficiency: Evaluation of cropping and management systems. Agron. J. 2014, 106, 1820–1827. [Google Scholar] [CrossRef]
- Connor, D.J.; Cock, J.H.; Parra, G.E. Response of cassava to water shortage. I. Growth and yield. Field Crops Res. 1981, 4, 181–200. [Google Scholar] [CrossRef]
- Zhou, Z.; Plauborg, F.; Kristensen, K.; Andersen, M.N. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agric. For. Meteorol. 2017, 232, 595–605. [Google Scholar] [CrossRef]
- Gajanayake, B.; Reddy, K.R.; Shankle, M.W.; Arancibia, R.A.; Villordon. A.O. Quantifying storage root initiation, growth, and developmental responses of sweet potato to early season temperature. Agron. J. 2014, 106, 1796–1804. [Google Scholar] [CrossRef]
- Puangbut, D.; Jogloy, S.; Vorasoot, N.; Patanothai, A. Responses of growth, physiological traits and tuber yield in Helianthus tuberosus to seasonal variations under tropical area. Sci. Hortic. 2015, 195, 108–115. [Google Scholar] [CrossRef]
- Lowe, S.B.; Mahon, J.D.; Hunt, L.A. The effect of daylength on shoot growth and formation of root tubers in young plants of cassava (Manihot esculenta Crantz). Plant. Sci. Lett. 1976, 6, 57–62. [Google Scholar] [CrossRef]
- Carvalho, L.J.C.B.; Filho, J.F.; Anderson, J.V.; Figueiredo, P.W.; Chen, S. Storage root of cassava: Morphological types, anatomy, formation, growth, development and harvest time. In Cassava; Waisundara, V.Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
May Planting | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum Solar Radiation (MJ m−2) | Average Relative Humidity (%RH) | Tmax (°C) | Tmin (°C) | Total Rainfall (mm) | Sum Solar Radiation (MJ m−2) | Average Relative Humidity (%RH) | Tmax (°C) | Tmin (°C) | Total Rainfall (mm) | ||
MAP | May 2015 | MAP | May 2016 | ||||||||
1 | 656.2 | 63.6 | 36.2 | 25.7 | 130.0 | 1 | 592.9 | 64.0 | 35.6 | 25.5 | 47.4 |
2 | 553.3 | 66.6 | 34.5 | 25.4 | 120.2 | 2 | 489.6 | 75.7 | 33.2 | 24.6 | 237.5 |
3 | 512.6 | 79.4 | 32.7 | 24.1 | 254.1 | 3 | 527.9 | 77.1 | 32.8 | 24.6 | 189.4 |
4 | 498.8 | 79.0 | 32.8 | 24.4 | 159.8 | 4 | 514.1 | 78.3 | 32.9 | 24.5 | 251.6 |
5 | 465.8 | 77.3 | 32.7 | 23.3 | 63.4 | 5 | 461.7 | 79.2 | 32.0 | 23.9 | 197.2 |
6 | 529.5 | 66.5 | 34.8 | 22.6 | 4.2 | 6 | 507.9 | 73.0 | 31.9 | 21.8 | 58.1 |
7 | 456.5 | 58.0 | 33.5 | 20.1 | 0.0 | 7 | 448.5 | 61.0 | 30.5 | 19.4 | 0.0 |
8 | 461.5 | 58.4 | 34.3 | 19.9 | 13.3 | 8 | 449.4 | 60.4 | 31.2 | 19.7 | 2.1 |
9 | 491.4 | 50.9 | 32.2 | 16.3 | 2.7 | 9 | 530.0 | 49.6 | 31.6 | 17.2 | 0.0 |
10 | 490.6 | 40.1 | 37.6 | 21.5 | 2.5 | 10 | 461.1 | 52.9 | 35.0 | 21.4 | 13.7 |
11 | 549.3 | 43.6 | 39.5 | 25.3 | 21.6 | 11 | 580.8 | 61.2 | 35.1 | 23.4 | 28.4 |
12 | 603.2 | 58.5 | 37.7 | 25.9 | 111.3 | 12 | 556.1 | 70.8 | 35.0 | 23.9 | 150.8 |
Total | 6268.7 | 883.1 | 6120.0 | 1176.2 | |||||||
November Planting | |||||||||||
MAP | November 2015 | MAP | November 2016 | ||||||||
1 | 503.8 | 62.8 | 34.7 | 21.8 | 3.3 | 1 | 486.6 | 68.1 | 31.1 | 20.4 | 42.2 |
2 | 439.0 | 55.6 | 33.6 | 19.1 | 0.5 | 2 | 449.5 | 59.1 | 30.3 | 18.5 | 1.2 |
3 | 477.6 | 59.7 | 31.7 | 17.7 | 15.3 | 3 | 469.2 | 56.5 | 31.3 | 19.4 | 0.9 |
4 | 518.9 | 42.9 | 35.3 | 18.7 | 0.2 | 4 | 486.1 | 49.2 | 32.7 | 18.2 | 7.5 |
5 | 480.2 | 42.3 | 39.0 | 23.7 | 10.0 | 5 | 507.1 | 59.3 | 34.7 | 22.1 | 34.6 |
6 | 552.2 | 48.9 | 39.8 | 26.7 | 82.5 | 6 | 594.6 | 60.0 | 36.5 | 24.5 | 0.4 |
7 | 581.0 | 64.4 | 36.0 | 25.5 | 61.5 | 7 | 542.2 | 82.4 | 32.6 | 24.2 | 173.9 |
8 | 492.3 | 72.4 | 33.6 | 25.0 | 186.6 | 8 | 531.8 | 84.4 | 33.5 | 24.3 | 213.2 |
9 | 577.6 | 75.7 | 33.7 | 24.5 | 226.6 | 9 | 465.0 | 87.9 | 31.5 | 24.1 | 319.7 |
10 | 519.4 | 75.9 | 33.0 | 24.7 | 175.9 | 10 | 457.4 | 87.9 | 31.4 | 24.2 | 311.9 |
11 | 450.8 | 81.7 | 32.0 | 24.2 | 300.1 | 11 | 488.9 | 82.8 | 33.2 | 24.4 | 148.2 |
12 | 500.2 | 75.2 | 31.7 | 22.7 | 60.2 | 12 | 496.1 | 76.6 | 31.8 | 22.7 | 215.6 |
Total | 6093.0 | 1122.7 | 5974.5 | 1469.3 |
Solar Radiation Interception (MJ m−2) | May 2015 | November 2015 | May 2016 | November 2016 | F-Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigated | Rainfed | Irrigated | Rainfed | Irrigated | Rainfed | Irrigated | Rainfed | ||||||||||
0–3 MAP | 930 | C | 1040 | B | 421 | C | 508 | C | 545 | C | 776 | B | 417 | C | 503 | C | ns |
4–6 MAP | 1434 | A | 1419 | A | 1084 | B | 840 | B | 1267 | A | 1343 | A | 1108 | AB | 845 | B | ns |
7–9 MAP | 1051 | B | 629 | C | 1304 | A | 1379 | A | 863 | B | 641 | C | 1217 | A | 1268 | A | ns |
10–12 MAP | 1065 | B ab | 314 | D c | 960 | B b | 1264 | A a | 919 | B b | 878 | B b | 940 | B b | 1236 | A a | * |
F-test | ** | ** | ** | ** | ** | ** | ** | ** | |||||||||
Total solar radiation interception | 4480 | a | 3401 | c | 3769 | bc | 3990 | b | 3594 | bc | 3637 | bc | 3681 | bc | 3852 | b | * |
RUE | May 2015 | November 2015 | May 2016 | November 2016 | F-Test | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigated | Rainfed | Irrigated | Rainfed | Irrigated | Rainfed | Irrigated | Rainfed | ||||||||||||||||||
0–3 MAP | 0.53 | B | 0.63 | B | 0.63 | B | 0.63 | B | 0.42 | B | 0.46 | B | 0.67 | 0.34 | C | ns | |||||||||
4–6 MAP | 0.72 | B | bc | 1.02 | A | ab | 1.29 | A | a | 0.68 | B | bc | 1.19 | A | a | 1.22 | A | a | 0.61 | c | 0.58 | BC | c | * | |
7–9 MAP | 1.54 | A | a | 0.19 | C | d | 0.59 | B | cd | 0.85 | B | bc | 0.41 | B | cd | 0.46 | B | cd | 1.13 | ab | 1.33 | A | ab | ** | |
10–12 MAP | 0.27 | B | 0.49 | B | 1.64 | A | 1.60 | A | 0.22 | B | 0.38 | B | 0.49 | 0.75 | B | ns | |||||||||
Average | 0.77 | 0.58 | 1.04 | 0.94 | 0.56 | 0.63 | 0.73 | 0.75 | |||||||||||||||||
F-test | ** | ** | ** | ** | ** | * | ns | ** |
RUE | May 2015 | November 2015 | May 2016 | November 2016 | F-Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigated | Rainfed | Irrigated | Rainfed | Irrigated | Rainfed | Irrigated | Rainfed | ||||||||||
0–3 MAP | 0.10 | C | 0.19 | B | 0.23 | B | 0.23 | B | 0.09 | C | 0.16 | B | 0.26 | 0.08 | C | ns | |
4–6 MAP | 0.28 | BC e | 0.58 | A bcd | 0.82 | A a | 0.47 | A cde | 0.77 | A ab | 0.65 | A abc | 0.44 | cde | 0.42 | BC de | ** |
7–9 MAP | 0.84 | A | 0.19 | B | 0.29 | B | 0.40 | AB | 0.40 | B | 0.47 | AB | 0.84 | 0.89 | A | ns | |
10–12 MAP | 0.37 | B | 0.48 | AB | 0.73 | A | 0.56 | A | 0.26 | BC | 0.26 | B | 0.24 | 0.54 | AB | ns | |
Average | 0.40 | 0.36 | 0.52 | 0.42 | 0.38 | 0.39 | 0.45 | 0.48 | |||||||||
F-test | ** | * | ** | * | ** | * | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Holbrook, C.C.; Kvien, C.K.; Banterng, P. Light Interception and Radiation Use Efficiency of Cassava under Irrigated and Rainfed Conditions and Seasonal Variations. Agriculture 2022, 12, 725. https://doi.org/10.3390/agriculture12050725
Mahakosee S, Jogloy S, Vorasoot N, Theerakulpisut P, Holbrook CC, Kvien CK, Banterng P. Light Interception and Radiation Use Efficiency of Cassava under Irrigated and Rainfed Conditions and Seasonal Variations. Agriculture. 2022; 12(5):725. https://doi.org/10.3390/agriculture12050725
Chicago/Turabian StyleMahakosee, Supattra, Sanun Jogloy, Nimitr Vorasoot, Piyada Theerakulpisut, Carl Corley Holbrook, Craig K. Kvien, and Poramate Banterng. 2022. "Light Interception and Radiation Use Efficiency of Cassava under Irrigated and Rainfed Conditions and Seasonal Variations" Agriculture 12, no. 5: 725. https://doi.org/10.3390/agriculture12050725
APA StyleMahakosee, S., Jogloy, S., Vorasoot, N., Theerakulpisut, P., Holbrook, C. C., Kvien, C. K., & Banterng, P. (2022). Light Interception and Radiation Use Efficiency of Cassava under Irrigated and Rainfed Conditions and Seasonal Variations. Agriculture, 12(5), 725. https://doi.org/10.3390/agriculture12050725