Analyzing Rice Grain Collision Behavior and Monitoring Mathematical Model Development for Grain Loss Sensors
Abstract
:1. Introduction
- Due to the concentrated working time of combine harvesters, the high working intensity, the complicated working environment, and the unilateral pursuit of working efficiency by the operator, the feeding rates generally exceeds the rated machine value, resulting in excessive grain loss.
- With the emergence of family farms in China, a large number of farmers have purchased their own combine harvesters. However, new operators are not proficient in operating such machinery and are not able to adjust settings according to changes in operating conditions, owing to a lack of operational experience and insufficient training, resulting in a considerable grain loss.
- Due to the low level of intelligence of combine harvesters made in China, the operators cannot obtain machine performance information in real time and can only judge the grain loss level by checking for grain in the field after shutting down the machine, which is a lagging indicator that cannot accurately identify the source of grain loss. The measures taken are often inappropriate, and the grain loss cannot be corrected in a timely manner.
2. Materials and Methods
2.1. Establishment of the Collision Model
2.2. Setting of Simulation Parameters
2.3. Verifying the Simulation Results by High-Speed Photography Experiment
2.4. Effects of Particle Size Ratio on Collision Signal
2.5. Establishment of the Grain Sieve Loss Monitoring Mathematical Model
2.6. Grain Loss Sensor Monitoring Accuracy Experiment
3. Results and Discussion
3.1. Analysis of Simulation Results
3.2. Experimental Verification
3.3. Effect of Particle Size Ratio on Collision Mechanical Properties
3.4. Relationship between Working Parameters and Total Grain Sieve Loss
3.5. Grain Loss Distribution in the Monitoring Area
3.6. Grain Sieve Loss Monitoring Mathematical Model
3.7. Grain Loss Sensor Monitoring Accuracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eldredge, K.W. Grain Loss Indicator. U.S. Patent 4,490,964, 2 May 1980. [Google Scholar]
- Diekhans, N.; Behnke, W. Lost-Grain Detector for Harvesting Machine. U.S. Patent 4,902,264, 20 February 1990. [Google Scholar]
- Gerd, B.; Ralf, H. Apparatus and Method for Determining Grain Loss in Combine Harvesters. U.S. Patent 6,869,355, 22 March 2005. [Google Scholar]
- Osselaere, G.H.J. Offset Grain Loss Sensor for Combine Harvesters. U.S. Patent 4,540,003, 10 September 1985. [Google Scholar]
- Strubbe, G.J.I. Grain Loss Monitors for Harvesting Machines. U.S. Patent 5,046,362, 10 September 1991. [Google Scholar]
- Liu, C.; Leonard, J. Monitoring actual grain loss from an axial flow combine in real time. Comput. Electron. Agric. 1993, 9, 231–242. [Google Scholar] [CrossRef]
- Van Quekelberg, H.; Eric, P.J. Grain Sensor Arrangement for an Agricultural Harvester. U.S. Patent 6,524,183, 25 February 2003. [Google Scholar]
- Zhou, L.M.; Zhang, X.; Liu, C.Y.; Yuan, Y.W. Design of PVDF sensor array for grain losses measuring. Trans. CSAM 2010, 41, 167–171. [Google Scholar]
- Gao, J.M.; Zhang, G.; Yu, L.; Li, Y. Chaos detection of grain impact at combine cleaning loss sensor. Trans. CSAE 2011, 27, 22–27. [Google Scholar]
- Zhao, Z.; Li, Y.M.; Chen, J.; Yu, J. Grain separation loss monitoring system in combine harvester. Comput. Electron. Agric. 2011, 76, 183–188. [Google Scholar] [CrossRef]
- Ni, J.; Mao, H.P.; Tian, Y.C.; Yao, X.; Zhu, Y. Design and experimentation of sensitive element of piezoelectric crystal sensor array for grain cleaning loss. Afr. J. Biotechnol. 2011, 10, 6913–6919. [Google Scholar]
- Mao, H.P.; Liu, W.; Han, L.H.; Zhang, X. Design of intelligent grain cleaning losses monitor based on symmetry sensors. Trans. CSAE 2012, 28, 34–39. [Google Scholar]
- Maertens, K.; Ramon, H.; Baerdemaeker, J.D. An on-the-go monitoring algorithm for separation processes in combine harvesters. Comput. Electron. Agric. 2004, 43, 197–207. [Google Scholar] [CrossRef]
- Craessaerts, G.; Baerdemaeker, J.D.; Missotten, B.; Saeys, W. Fuzzy control of the cleaning process on a combine harvester. Biosyst. Eng. 2010, 106, 103–111. [Google Scholar] [CrossRef]
- De Baerdemaeker, J.; Saeys, W. Advanced Control of Combine Harvesters. IFAC Proc. 2013, 46, 1–5. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings. Chem. Eng. Sci. 2008, 63, 5728–5770. [Google Scholar] [CrossRef]
- Wojtkowski, M.; Pecen, J.; Horabik, J.; Molenda, M. Rapeseed impact against a flat surface: Physical testing and DEM simulation with two contact models. Powder Technol. 2010, 198, 61–68. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.M.; Liang, Z.W.; Gong, Z.Q. DEM simulation and physical testing of rice seed impact against a grain loss sensor. Biosyst. Eng. 2013, 116, 410–419. [Google Scholar]
- Bentaher, H.; Ibrahmi, A.; Hamza, E.; Hbaieb, M.; Kantchev, G.; Maalej, A.; Arnold, W. Finite element simulation of moldboard-soil interaction. Soil Tillage Res. 2013, 134, 11–16. [Google Scholar] [CrossRef]
- Li, Y.M.; Xu, T.B.; Xu, L.Z.; Zhan, Z. Test bed of threshing and separating unit with multi cylinder. Trans. CSAM 2013, 44, 95–98. [Google Scholar]
- Goos, P. Optimal Design of Experiments: A Case Study Approach; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wang, Z.; Che, D.; Bai, X.P. Design and experiment of cleaning loss monitoring device for corn combined harvester. Trans. Chin. Soc. Agric. Mach. 2018, 49, 100–108. [Google Scholar]
Component | Number of Elements | Number of Nodes |
---|---|---|
Grain | 79,104 | 81,141 |
Steel plate | 178,220 | 216,270 |
Material Property | Rice Grains | 304 Stainless Steel |
---|---|---|
Density (kg/m3) | 1350 | 7850 |
Modulus of elasticity (MPa) | 200 | 80,000 |
Poisson’s ratio | 0.25 | 0.29 |
Test No. | Fan Speed /rpm | Sieve Opening /mm | Guide Plate II Angle/° | Grain Loss Ratio /% |
---|---|---|---|---|
1 | 1300 | 25 | 45 | 0.39 |
2 | 1300 | 20 | 29 | 0.15 |
3 | 1100 | 20 | 45 | 0.14 |
4 | 1500 | 20 | 45 | 1.02 |
5 | 1500 | 30 | 45 | 0.93 |
6 | 1300 | 25 | 13 | 0.62 |
7 | 1100 | 20 | 13 | 0.25 |
8 | 1500 | 20 | 13 | 2.01 |
9 | 1300 | 30 | 29 | 0.53 |
10 | 1100 | 30 | 45 | 0.24 |
11 | 1500 | 30 | 13 | 1.80 |
12 | 1500 | 25 | 29 | 1.28 |
13 | 1300 | 25 | 29 | 0.69 |
14 | 1100 | 25 | 29 | 0.45 |
15 | 1100 | 30 | 13 | 0.60 |
16 | 1300 | 25 | 29 | 0.56 |
No. | Fan Speed /rpm | Guide Plate II Angle/° | Actual Value /g | Calculated Value/g | Relative Error /% |
---|---|---|---|---|---|
1 | 1300 | 29 | 244.6 | 236.7 | 3.25 |
2 | 1500 | 45 | 461.2 | 442.8 | 3.99 |
3 | 1500 | 13 | 738.3 | 718.3 | 2.71 |
4 | 1100 | 13 | 110.8 | 112.0 | 1.12 |
No. | Fan Speed /rpm | Guide Plate II Angle/° | Measurement Value/g | Calculated Value/g | Relative Error /% |
---|---|---|---|---|---|
1 | 1300 | 29 | 46.98 | 44.6 | 5.07 |
2 | 1500 | 45 | 78.21 | 74.4 | 4.87 |
3 | 1500 | 13 | 121.76 | 117.2 | 3.75 |
4 | 1100 | 13 | 17.28 | 18.0 | 4.00 |
No. | Fan Speed /rpm | Guide Plate II Angle/° | Measurement Value/g | Calculated Value/g | Relative Error /% |
---|---|---|---|---|---|
1 | 1300 | 29 | 0.192 | 0.188 | 2.00 |
2 | 1500 | 45 | 0.170 | 0.168 | 1.20 |
3 | 1500 | 13 | 0.165 | 0.163 | 1.00 |
4 | 1100 | 13 | 0.156 | 0.160 | 2.56 |
Test No. | Fan Speed /rpm | Sieve Opening/mm | Guide Plate II Angel/° | Manually Measured Loss /g | Monitored Loss /g | Averaged Relative Error /% |
---|---|---|---|---|---|---|
1 | 1300 | 25 | 45 | 164.0 | 22.1 | 3.68 |
2 | 1300 | 20 | 29 | 41.0 | 5.6 | 2.32 |
3 | 1100 | 20 | 45 | 64.5 | 8.8 | 2.58 |
4 | 1500 | 20 | 45 | 593.4 | 78.8 | 5.16 |
5 | 1500 | 30 | 45 | 363.6 | 48.3 | 5.09 |
6 | 1300 | 25 | 13 | 314.6 | 42.3 | 4.03 |
7 | 1100 | 20 | 13 | 46.4 | 6.3 | 2.54 |
8 | 1500 | 20 | 13 | 936.0 | 122.6 | 6.41 |
9 | 1300 | 30 | 29 | 183.9 | 24.8 | 3.72 |
10 | 1100 | 30 | 45 | 134.0 | 18.2 | 3.05 |
11 | 1500 | 30 | 13 | 846.0 | 112.3 | 5.22 |
12 | 1500 | 25 | 29 | 529.4 | 71.3 | 3.77 |
13 | 1300 | 25 | 29 | 321.5 | 43.1 | 4.3 |
14 | 1100 | 25 | 29 | 139.0 | 18.8 | 3.25 |
15 | 1100 | 30 | 13 | 198.5 | 26.7 | 3.84 |
16 | 1300 | 25 | 29 | 321.5 | 43.0 | 4.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, Z.; Liang, Z.; Zhu, F.; Xu, T.; Cui, X.; Zhao, P. Analyzing Rice Grain Collision Behavior and Monitoring Mathematical Model Development for Grain Loss Sensors. Agriculture 2022, 12, 839. https://doi.org/10.3390/agriculture12060839
Li D, Wang Z, Liang Z, Zhu F, Xu T, Cui X, Zhao P. Analyzing Rice Grain Collision Behavior and Monitoring Mathematical Model Development for Grain Loss Sensors. Agriculture. 2022; 12(6):839. https://doi.org/10.3390/agriculture12060839
Chicago/Turabian StyleLi, Depeng, Zhiming Wang, Zhenwei Liang, Fangyu Zhu, Tingbo Xu, Xinyang Cui, and Peigen Zhao. 2022. "Analyzing Rice Grain Collision Behavior and Monitoring Mathematical Model Development for Grain Loss Sensors" Agriculture 12, no. 6: 839. https://doi.org/10.3390/agriculture12060839
APA StyleLi, D., Wang, Z., Liang, Z., Zhu, F., Xu, T., Cui, X., & Zhao, P. (2022). Analyzing Rice Grain Collision Behavior and Monitoring Mathematical Model Development for Grain Loss Sensors. Agriculture, 12(6), 839. https://doi.org/10.3390/agriculture12060839