Cannabis sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Cultivated Area Detection
2.2. Classification
2.3. Spectral Research
3. Materials and Methods
3.1. Case Study—Turkey
3.1.1. Specifics of the Investigated Plants
3.1.2. Satellite Remote Sensing Data
3.2. Methods
4. Results
4.1. Spectral Signatures
4.2. NDVI Values
4.3. Cannabis Classification Using Machine Learning
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauro, P.M.; Carliner, H.; Brown, Q.L.; Hasin, D.S.; Shmulewitz, D.; Rahim-Juwel, R.; Sarvet, A.L.; Wall, M.M.; Martins, S.S. Age Differences in Daily and Nondaily Cannabis Use in the United States, 2002–2014. J. Stud. Alcohol Drugs 2018, 79, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A.; Leung, J.; Larney, S.; Colledge, S.; Hickman, M.; Rehm, J.; Giovino, G.A.; West, R.; Hall, W.; Griffiths, P.; et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction 2018, 113, 1905–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, G.R.; Bouchard, M.; Decorte, T. The Globalization of Cannabis Cultivation, in World Wide Weed; Routledge: London, UK, 2016; pp. 21–40. [Google Scholar]
- Earleywine, M. Understanding Marijuana: A New Look at the Scientific Evidence; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Mee, C.; Siva, K.B.; Ahmad, H.M.H. Detecting and monitoring plant nutrient stress using remote sensing approaches: A review. Asian J. Plant Sci. 2017, 16, 1–8. [Google Scholar]
- Walthall, C.; Daughtry, C.; Pachepsky, L.; Erbe, E.; Lydon, J.; Higgins, M.; Vanderbilt, V.; Bobbe, T. Detection of Illegal Cannabis Cultivation Using Remote Sensing. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 2281–2284. [Google Scholar] [CrossRef]
- Daughtry, C.; Walthall, C. Spectral Discrimination of Cannabis sativa L. Leaves and Canopies. Remote Sens. Environ. 1998, 64, 192–201. [Google Scholar] [CrossRef]
- Mattiuzzi, M.; Bussink, C.; Thomas Bauer, V. Analysing Phenological Characteristics Extracted from Landsat NDVI Time Series to Identify Suitable Image Acquisition Dates for Cannabis Mapping in Afghanistan. PFG Photogramm. Fernerkund. Geoinf. 2014, 5, 383–392. [Google Scholar]
- Jia, K.; Wu, B.; Tian, Y.; Li, Q.; Du, X. An effective biophysical indicator for opium yield estimation. Comput. Electron. Agric. 2011, 75, 272–277. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, W. The application of remotely sensed data to the estimation of the leaf area index. Remote Sens. Land Resour. 2003, 3, 58–62. [Google Scholar]
- Portugal, E.; Hwan, J. Applied Science to Inform Management Efforts for Cannabis Cultivation, Humboldt, County, California. Calif. Fish Game 2020, 106, 13–30. [Google Scholar]
- Demir, S.; Başayiğit, L. Determination of Opium Poppy (Papaver Somniferum) Parcels Using High-Resolution Satellite Imagery. J. Indian Soc. Remote Sens. 2019, 47, 977–987. [Google Scholar] [CrossRef]
- Lisita, A.; Sano, E.E.; Durieux, L. Identifying potential areas of Cannabis sativa plantations using object-based image analysis of SPOT-5 satellite data. Int. J. Remote Sens. 2013, 34, 5409–5428. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Yuan, C.; Zhang, F.; Yang, G. Opium Poppy Detection Using Deep Learning. Remote Sens. 2018, 10, 1886. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.J.; Shaw, D.R.; Gerard, P.D.; Bruce, L.M. Utility of Multispectral Imagery for Soybean and Weed Species Differentiation. Weed Technol. 2008, 22, 713–718. [Google Scholar] [CrossRef]
- Simms, D.M.; Waine, T.W.; Taylor, J.C.; Juniper, G.R. The application of time-series MODIS NDVI profiles for the acquisition of crop information across Afghanistan. Int. J. Remote Sens. 2014, 35, 6234–6254. [Google Scholar] [CrossRef] [Green Version]
- Tunca, E.; Köksal, E. Sentinel 2 Uydu Görüntülerinden Bitki Türlerinin Makine Öğrenmesi ile Belirlenmesi. Çomü Ziraat Fakültesi Derg. 2021, 9, 189–200. [Google Scholar] [CrossRef]
- Azaria, I.; Goldschleger, N.; Ben-Dor, E. Identification of Cannabis plantations using hyperspectral technology. Isr. J. Plant Sci. 2012, 60, 77–83. [Google Scholar] [CrossRef]
- Waine, T.W.; Simms, D.M.; Taylor, J.C.; Juniper, G.R. Towards improving the accuracy of opium yield estimates with remote sensing. Int. J. Remote Sens. 2014, 35, 6292–6309. [Google Scholar] [CrossRef]
- Taylor, J.C.; Waine, T.; Juniper, G.R.; Simms, D.; Brewer, T. Survey and monitoring of opium poppy and wheat in Afghanistan: 2003–2009. Remote Sens. Lett. 2010, 1, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Sicre, C.M.; Baup, F.; Fieuzal, R. Determination of the crop row orientations from Formosat-2 multi-temporal and panchromatic images. ISPRS J. Photogramm. Remote Sens. 2014, 94, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Mourad, R.; Jaafar, H.; Anderson, M.; Gao, F. Assessment of Leaf Area Index Models Using Harmonized Landsat and Sentinel-2 Surface Reflectance Data over a Semi-Arid Irrigated Landscape. Remote Sens. 2020, 12, 3121. [Google Scholar] [CrossRef]
- Holmes, W.S.; Ooi, M.P.-L.; Kuang, Y.C.; Simpkin, R.; Lopez-Ubiria, I.; Vidiella, A.; Blanchon, D.; Gupta, G.S.; Demidenko, S. Classifying Cannabis sativa Flowers, Stems and Leaves using Statistical Machine Learning with Near-Infrared Hyperspectral Reflectance Imaging. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Pereira, J.F.Q.; Pimentel, M.F.; Amigo, J.M.; Honorato, R.S. Detection and identification of Cannabis sativa l. Using near infrared hyperspectral imaging and machine learning methods. A feasibility study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118385. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Young, S.; Linder, E.; Whipker, B.; Suchoff, D. Hyperspectral Imaging With Machine Learning to Differentiate Cultivars, Growth Stages, Flowers, and Leaves of Industrial Hemp (Cannabis sativa L.). Front. Plant Sci. 2022, 12, 810113. [Google Scholar] [CrossRef] [PubMed]
- Avdan, U.; Kaplan, G.; Avdan, Z.Y.; Matci, D.K.; Erdem, F.; Mizik, E.T.; Demirtas, I. Comparison of Remote Sensing Soil Electrical Conductivity from PlanetScope and Ground Measured Data in Wheat and Beet Yields. Biol. Life Sci. Forum 2021, 3, 48. [Google Scholar] [CrossRef]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Kerr, R.B.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Kaplan, G. Assessing the effectiveness of PlanetScope synthesized panchromatic bands for spatial enhancement of Sentinel-2 data. J. Appl. Remote Sens. 2020, 14, 036504. [Google Scholar] [CrossRef]
- Jamali, A. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran. SN Appl. Sci. 2019, 1, 1448. [Google Scholar] [CrossRef] [Green Version]
- Doğaner, A. Topluluk Öğrenme Yöntemleri ile Renal Hücreli Karsinom’un Tahmin Edilmesi. 2020. Available online: http://161.9.164.68/xmlui/handle/11616/18218 (accessed on 10 April 2022).
- Desai, S.; Ouarda, T.B. Regional hydrological frequency analysis at ungauged sites with random forest regression. J. Hydrol. 2020, 594, 125861. [Google Scholar] [CrossRef]
- Kalmegh, S.R. Comparative Analysis of the WEKA Classifiers Rules Conjunctiverule & Decisiontable on Indian News Dataset by Using Different Test Mode. Int. J. Eng. Sci. Invent. (IJESI) 2018, 7, 2319–6734. [Google Scholar]
- Pham, B.T.; Jaafari, A.; Nguyen-Thoi, T.; Van Phong, T.; Nguyen, H.D.; Satyam, N.; Masroor; Rehman, S.; Sajjad, H.; Sahana, M.; et al. Ensemble machine learning models based on Reduced Error Pruning Tree for prediction of rainfall-induced landslides. Int. J. Digit. Earth 2020, 14, 575–596. [Google Scholar] [CrossRef]
- Moayedi, H.; Jamali, A.; Gibril, M.B.A.; Foong, L.K.; Bahiraei, M. Evaluation of tree-base data mining algorithms in land used/land cover mapping in a semi-arid environment through Landsat 8 OLI image; Shiraz, Iran. Geomat. Nat. Hazards Risk 2020, 11, 724–741. [Google Scholar] [CrossRef]
- Kaplan, O.; Kaplan, G. Response Spectra-Based Post-Earthquake Rapid Structural Damage Estimation Approach Aided with Remote Sensing Data: 2020 Samos Earthquake. Buildings 2021, 12, 14. [Google Scholar] [CrossRef]
- Ferreira, A.; Felipussi, S.C.; Pires, R.; Avila, S.; Santos, G.; Lambert, J.; Huang, J.; Rocha, A. Eyes in the Skies: A Data-Driven Fusion Approach to Identifying Drug Crops From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4773–4786. [Google Scholar] [CrossRef]
- Yiğitoğlu, H. Kenevir (cannabis) Ekili Alanlarının Yüksek Çözünürlüklü Uydu Verileri ile Belirlenebilirliği. Master’s Thesis, Isparta University of Applied Sciences, Isparta, Turkey, 2019. [Google Scholar]
- Gülper Bilecik, S. Haşhaş ve Kenevirin Spektral Imzalarının Belirlenmesi ve Kayıt Kütüklerinin Oluşturulması. Master’s Thesis, Isparta University of Applied Sciences, Isparta, Turkey, 2019. [Google Scholar]
- Sujud, L.; Jaafar, H.; Hassan, M.A.H.; Zurayk, R. Cannabis detection from optical and RADAR data fusion: A comparative analysis of the SMILE machine learning algorithms in Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2021, 24, 100639. [Google Scholar] [CrossRef]
- Roslim, M.H.M.; Juraimi, A.S.; Che’Ya, N.N.; Sulaiman, N.; Manaf, M.N.H.A.; Ramli, Z.; Motmainna, M. Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy 2021, 11, 1809. [Google Scholar] [CrossRef]
Properties | PlanetScope (PS) | |
---|---|---|
Number of satellites | 200+ | |
Orbit | 475 km | |
Overpass time over the equator | 9:30–11:30 a.m. | |
Bands wavelengths (nm) | Blue | 455–515 |
Green | 500–590 | |
Red | 590–670 | |
NIR | 780–860 | |
Ground Sample Distance (nadir) | 3.7 m | |
Pixel resolution (Orthorectified) | 3.7 m | |
Frame | 24.6 km × 16.4 km | |
Temporal resolution | Daily | |
Radiometric resolution | 12 bit |
ML Algorithm | Correctly Classified Instances | Kappa | TP | FP | Precision | Recall | F-Score |
---|---|---|---|---|---|---|---|
DT | 75.2% | 0.51 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 |
RT | 87.1% | 0.74 | 0.87 | 0.13 | 0.87 | 0.87 | 0.87 |
KStar | 91.6% | 0.83 | 0.92 | 0.08 | 0.92 | 0.92 | 0.92 |
IBk | 92.1% | 0.84 | 0.92 | 0.08 | 0.92 | 0.92 | 0.92 |
RF | 93.1% | 0.86 | 0.93 | 0.07 | 0.93 | 0.93 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bicakli, F.; Kaplan, G.; Alqasemi, A.S. Cannabis sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning. Agriculture 2022, 12, 842. https://doi.org/10.3390/agriculture12060842
Bicakli F, Kaplan G, Alqasemi AS. Cannabis sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning. Agriculture. 2022; 12(6):842. https://doi.org/10.3390/agriculture12060842
Chicago/Turabian StyleBicakli, Fatih, Gordana Kaplan, and Abduldaem S. Alqasemi. 2022. "Cannabis sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning" Agriculture 12, no. 6: 842. https://doi.org/10.3390/agriculture12060842
APA StyleBicakli, F., Kaplan, G., & Alqasemi, A. S. (2022). Cannabis sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning. Agriculture, 12(6), 842. https://doi.org/10.3390/agriculture12060842