Genetic Analysis of Maternal Haploid Inducibility for In Vivo Haploid Induction in Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Phenotypic Evaluation
2.3. Data Analysis
2.4. Genotyping
2.5. Linkage Map Construction and QTL Analysis
3. Results
3.1. Phenotypic Analysis of Maternal Haploid Inducibility
3.2. Construction of Linkage Map
3.3. Single Environment QTL Analysis
3.4. QTL by Environment Interaction Analysis
3.5. Prediction of Candidate Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szarejko, L.; Forster, B.P. Doubled haploidy and induced mutation. Euphytica 2007, 158, 359–370. [Google Scholar] [CrossRef]
- Chang, M.T.; Coe, E.H. Doubled haploids. In Molecular Genetic Approaches to Maize Improvement; Kriz, A.L., Larkins, B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 63, pp. 127–142. [Google Scholar] [CrossRef]
- Geiger, H.H. Doubled haploids. In Handbook of Maize, Genetics and Genomics; Bennetzen, J.L., Hake, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 641–657. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Ren, J.; Mei, M.; Frei, U.K.; Trampe, B.; Lübberstedt, T. Maize doubled haploids. In Plant Breeding Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; Volume 40, pp. 123–166. [Google Scholar] [CrossRef]
- Prigge, V.; Xu, X.X.; Li, L.; Babu, R.; Chen, S.J.; Atlin, G.N.; Melchinger, A.E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coe, E.H. A Line of Maize with High Haploid Frequency. Am. Nat. 1959, 93, 381–382. [Google Scholar] [CrossRef]
- Röber, F.K.; Gordillo, G.A.; Geiger, H.H. In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 2005, 50, 275–283. [Google Scholar]
- Zhang, Z.; Qiu, F.Z.; Liu, Y.Z.; Ma, K.J.; Li, Z.Y.; Xu, S.Z. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep. 2008, 27, 1851–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotarenco, V.A.; Dicu, G.; State, D.; Fuia, S. New inducers of maternal haploids in maize. Maize Genet. Newsl. 2010, 84, 15. [Google Scholar]
- Prigge, V.; Schipprack, W.; Mahuku, G.; Atlin, G.N.; Melchinger, A.E. Development of in vivo haploid inducers for tropical maize breeding programs. Euphytica 2012, 185, 481–490. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Chen, M.; Li, W.; Zhong, Y.; Dong, X.; Xu, X.; Chen, C.; Tian, X.; Chen, S. Development of high-oil maize haploid inducer with a novel phenotyping strategy. Crop J. 2022, 10, 524–531. [Google Scholar] [CrossRef]
- Prigge, V.; Sánchez, C.; Dhillon, B.S.; Schipprack, W.; Araus, J.L.; Bänziger, M.; Melchinger, A.E. Doubled haploids in tropical maize. I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci. 2011, 51, 1498–1506. [Google Scholar] [CrossRef]
- De La Fuente, G.N.; Frei, U.K.; Trampe, B.; Nettleton, D.; Zhang, W.; Lübberstedt, T. A diallel analysis of a maize donor population response to in vivo maternal haploid induction I: Inducibility. Crop Sci. 2018, 58, 1830–1837. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Li, H.; Ren, J.; Chen, S. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 2014, 196, 413–421. [Google Scholar] [CrossRef]
- Trampe, B.; Batîru, G.; Pereira da Silva, A.; Frei, U.K.; Lübberstedt, T. QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize. Plants 2022, 11, 878. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Effects of In Vivo Haploid Induction in Maize and Application of Machine Learning in Doubled Haploid Technology; China Agricultural University: Beijing, China, 2017. [Google Scholar]
- Nair, S.K.; Chaikam, V.; Cowda, M.; Hindu, V.; Melchinger, A.E.; Boddupalli, P.M. Genetic dissection of maternal influence on in vivo haploid induction in maize. Crop J. 2022, 8, 287–298. [Google Scholar] [CrossRef]
- Dong, X.; Xu, X.; Li, L.; Liu, C.; Tian, X.; Li, W.; Chen, S. Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol. Breed. 2014, 34, 1147–1158. [Google Scholar] [CrossRef]
- Li, L.; Xu, X.; Jin, W.; Chen, S.J. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 2009, 230, 367–376. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- R core Team. R: A Language and Environment for Statistical Computing Version 3.6.2; Springer: Vienna, Austria, 2019. [Google Scholar]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Portwood, J.C.L.; Woodhouse, M.R.; Cannon, E.K.; Gardiner, J.M.; Harper, L.C.; Schaeffer, M.L.; Walsh, J.R.; Sen, T.Z.; Cho, K.T.; Schott, D.A.; et al. MaizeGDB 2018: The maize multi-genome genetics and genomics database. Nucleic Acids Res. 2019, 47, D1146–D1154. [Google Scholar] [CrossRef]
- Stuber, C.W.; Edwards, M.D.; Wendel, J.F. Molecular Marker-Facilitated Investigations of Quantitative Trait Loci in Maize. II. Factors Influencing Yield and its Component Trait. Crop Sci. 1987, 27, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, A.; Huang, X.; Zhao, Q.; Dong, G.; Qian, Q.; Sang, T.; Han, B. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor. Appl. Genet. 2011, 122, 327–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Yan, J.; Li, J.; Yang, X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biol. 2014, 14, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Boerman, N.A.; Liu, R.; Wu, P.; Trampe, B.; Vanous, K.; Frei, U.K.; Chen, S.; Lübberstedt, T. Mapping of QTL and identifification of candidate genes conferring spontaneous haploid genome doubling in maize (Zea mays L.). Plant Sci. 2020, 293, 110337. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Wu, P.; Zhang, A.; Liu, Y.; Hu, G.; Cao, S.; Qu, J.; Dhliwayo, T.; Zheng, H.; et al. Genetic dissection of quantitative resistance to common rust (Puccinia sorghi) in tropical Maize (Zea mays L.) by combined genome-wide association study, linkage mapping, and genomic prediction. Frontiers 2021, 12, 692205. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Nakamura, K.; Harada, J.J.; Ohto, M.A.; Fischer, R.L. Control of seed mass by APETALA2. Proc. Natl. Acad. Sci. USA 2005, 102, 3123–3128. [Google Scholar]
- Gao, M.J.; Li, X.; Lui, H.; Gropp, G.M.; Lydiate, D.D.; Wei, S.; Hegedus, D.D. Asil1 is required for proper timing of seed filling in arabidopsis. Plant Signal. Behav. 2011, 6, 1885–1888. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Fu, J.; Chen, Y.; Fan, K.; He, C.; Zhang, Z.; Li, L.; Liu, Y.; Zheng, J.; Ren, D.; et al. The U6 biogenesis-Like 1 plays an important role in maize kernel and seedling development by affecting the 3′ end processing of U6 snRNA. Mol. Plant 2017, 10, 470–482. [Google Scholar] [CrossRef] [Green Version]
Environment | Mean | Min | Max | Median | SD | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
JSH | 10.46 | 2.94 | 14.45 | 10.73 | 2.04 | 0.26 | −0.61 |
ELG | 9.01 | 2.26 | 16.62 | 8.85 | 2.68 | −0.32 | −0.02 |
HN | 11.10 | 3.11 | 15.75 | 11.31 | 2.41 | −0.16 | −0.47 |
Combine | 10.19 | 5.64 | 14.12 | 10.29 | 1.76 | −0.26 | −0.32 |
Source of Variation | Degree of Freedom | Sum of Square | Mean of Square | F-Value | p-Value | H2 |
---|---|---|---|---|---|---|
Environment | 2 | 20.46 | 10.23 | 3.25 | <0.01 ** | 0.40 |
Genotype | 199 | 4008.93 | 20.14 | 2.74 | <0.01 ** | |
GXE | 398 | 8983.60 | 22.57 | 3.12 | <0.01 ** | |
Residual | 597 | 3117.01 | 5.21 | |||
Total | 1195 | 16,130.00 |
Chromosomes | Number of SNPs | Chromosome Length (cM) | Average SNP Distance (cM) | Maximum Gap (cM) |
---|---|---|---|---|
1 | 270 | 444.11 | 1.65 | 17.01 |
2 | 257 | 392.01 | 1.53 | 10.93 |
3 | 346 | 440.67 | 1.28 | 6.34 |
4 | 129 | 249.25 | 1.95 | 14.91 |
5 | 193 | 315.80 | 1.64 | 17.14 |
6 | 85 | 178.57 | 2.13 | 22.70 |
7 | 111 | 274.18 | 2.49 | 16.95 |
8 | 150 | 265.54 | 1.78 | 10.19 |
9 | 89 | 233.36 | 2.65 | 17.95 |
10 | 225 | 292.23 | 1.30 | 11.51 |
Total | 1855 | 3085.72 |
QTL | Env | Chr | Bin | Genetic Position (cM) | Left Marker a | Right Marker | LOD | PVE b (%) | Add c | Dom | Gene Effect d |
---|---|---|---|---|---|---|---|---|---|---|---|
qMHI5 | JSH | 5 | 5.05/5.06 | 229 | S5_192539104 | S5_198930944 | 3.67 | 6.84 | 0.86 | −0.14 | A |
qMHI6 | JSH | 6 | 6.07 | 160 | S6_168195277 | S6_169331347 | 2.64 | 5.24 | 0.68 | 0.65 | D |
qMHI7-1 | JSH | 7 | 7.00 | 4 | S7_2687664 | S7_5084568 | 2.63 | 5.65 | −0.4 | 0.85 | OD |
qMHI7-2 | JSH | 7 | 7.02 | 133 | S7_118697494 | S7_119793590 | 3.09 | 5.26 | −0.45 | 0.73 | OD |
qMHI10 | JSH | 10 | 10.06 | 243 | S10_139299755 | S10_139367146 | 2.63 | 4.81 | −0.70 | 0.12 | A |
qMHI4-1 | ELG | 4 | 4.09 | 226 | S4_238620990 | S4_238810734 | 3.53 | 5.97 | −1.12 | −0.05 | A |
qMHI9 | ELG | 9 | 9.02 | 79 | S9_20780866 | S9_21925680 | 2.99 | 5.43 | −0.05 | 1.40 | OD |
qMHI5 | HN | 5 | 5.05/5.06 | 229 | S5_192539104 | S5_198930944 | 2.62 | 6.04 | 0.89 | −0.06 | A |
qMHI7-3 | HN | 7 | 7.03 | 167 | S7_144352936 | S7_149327555 | 2.83 | 5.97 | −0.39 | 1.01 | OD |
qMHI4-2 | Combine | 4 | 4.05 | 85 | S4_63834477 | S4_67727362 | 3.17 | 4.79 | 0.28 | −0.78 | OD |
qMHI5 | Combine | 5 | 5.05/5.06 | 231 | S5_192539104 | S5_198930944 | 5.72 | 10.10 | 0.87 | −0.41 | PD |
qMHI7-4 | Combine | 7 | 7.01 | 50 | S7_9620150 | S7_10978116 | 3.33 | 5.55 | −0.24 | 0.84 | OD |
QTL | Chr | Bin | Genetic Position (cM) | Left Marker a | Right Marker | LOD | PVE (%) b | PVE (A) (%) c | PVE (A by E) (%) d | Add e | Dom | Gene Effect f |
---|---|---|---|---|---|---|---|---|---|---|---|---|
qMHI4-1 | 4 | 4.09 | 227 | S4_238810734 | S4_241403945 | 5.97 | 2.28 | 1.06 | 1.22 | −0.39 | 0.45 | OD |
qMHI5 | 5 | 5.05/5.06 | 229 | S5_192539104 | S5_198930944 | 7.56 | 2.47 | 2.30 | 0.17 | 0.74 | −0.23 | PD |
qMHI9-1 | 9 | 9.02 | 79 | S9_20780866 | S9_21925680 | 5.78 | 2.04 | 0.17 | 1.87 | 0.20 | 0.03 | A |
Chr | Physical Location (Mb) | Candidate Gene | Annotation |
---|---|---|---|
5 | 193,683,447–193,687,796 | Zm00001d017366 | AP2-EREBP-transcription factor 76 |
5 | 195,390,564–195,397,434 | Zm00001d017420 | Trihelix-transcription factor 20 |
5 | 195,843,468–195,848,738 | Zm00001d017432 | U6 biogenesis like1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Zhang, X.; Li, Z.; Wu, P. Genetic Analysis of Maternal Haploid Inducibility for In Vivo Haploid Induction in Maize. Agriculture 2022, 12, 845. https://doi.org/10.3390/agriculture12060845
Ren J, Zhang X, Li Z, Wu P. Genetic Analysis of Maternal Haploid Inducibility for In Vivo Haploid Induction in Maize. Agriculture. 2022; 12(6):845. https://doi.org/10.3390/agriculture12060845
Chicago/Turabian StyleRen, Jiaojiao, Xiaoyu Zhang, Zongze Li, and Penghao Wu. 2022. "Genetic Analysis of Maternal Haploid Inducibility for In Vivo Haploid Induction in Maize" Agriculture 12, no. 6: 845. https://doi.org/10.3390/agriculture12060845
APA StyleRen, J., Zhang, X., Li, Z., & Wu, P. (2022). Genetic Analysis of Maternal Haploid Inducibility for In Vivo Haploid Induction in Maize. Agriculture, 12(6), 845. https://doi.org/10.3390/agriculture12060845