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Abstract: Existing push robots mainly use magnetic induction technology. These devices are suscep-
tible to external electromagnetic interference and have a low degree of intelligence. To make up for
the insufficiency of the existing material pushing robots, and at the same time solve the problems
of labor-intensive, labor-intensive, and inability to push material in time at night, etc., in this study,
an autonomous navigation pusher robot based on 3D lidar is designed, and an obstacle avoidance
strategy based on the improved artificial potential field method is proposed. Firstly, the 3D point
cloud data of the barn is collected by the self-designed pushing robot, the point cloud data of the
area of interest is extracted using a direct-pass filtering algorithm, and the 3D point cloud of the barn
is segmented using a height threshold. Secondly, the Least-Squares Method (LSM) and Random
Sample Consensus (RANSAC) were used to extract fence lines, and then the boundary contour
features were extracted by projection onto the ground. Finally, a target influence factor is added to the
repulsive potential field function to determine the principle of optimal selection of the parameters of
the improved artificial potential field method and the repulsive direction, and to clarify the optimal
obstacle avoidance strategy for the pusher robot. It can verify the obstacle avoidance effect of the
improved algorithm. The experimental results showed that under three different environments: no
noise, Gaussian noise, and artificial noise, the fence lines were extracted using RANSAC. Taking the
change in the slope as an indicator, the obtained results were about −0.058, 0.058, and −0.061, respec-
tively. The slope obtained by the RANSAC method has less variation compared to the no-noise group.
Compared with LSM, the extraction results did not change significantly, indicating that RANSAC has
a certain resistance to various noises, but RANSAC performs better in extraction effect and real-time
performance. The simulation and actual test results show that the improved artificial potential field
method can select reasonable parameters and repulsive force directions. The optimized path increases
the shortest distance of the obstacle point cloud from the navigation path from 0.18 to 0.41 m, where
the average time is 0.059 s, and the standard deviation is 0.007 s. This shows that the optimization
method can optimize the path in real time to avoid obstacles, basically meet the requirements of
security and real-time performance, and effectively avoid the local minimum problem. This research
will provide corresponding technical references for pusher robots to overcome the problems existing
in the process of autonomous navigation and pushing operation in complex open scenarios.
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1. Introduction

Dairy farming is an indispensable part of modern agriculture, which occupies a
high proportion in the agricultural industry [1,2]. In China, the traditional technology
of dairy farming is relatively backward, and most of them adopt the management mode
of small-scale scattered farming, which is not conducive to the development of modern
agriculture; as a result, the mode is changing toward the direction of large-scale, factory,
and standardization. [3,4]. In the past few years, China’s dairy industry has developed
rapidly, and its output value and scale are at the forefront of the world [5]. According to the
data released by the Ministry of Agriculture and Rural Affairs, China’s milk production in
2020 was 35.3 million tons, an increase of 7% over 2015, on the other hand, the proportion
of farming with more than 100 heads reached 67.2%, an increase of 18.9% compared with
2015. In this situation, it is undeniable that the dairy industry not only meets the residents’
consumption demand for milk, but also increases the income of dairy farmers. In addition,
it plays a key role in optimizing the rural industrial structure [6].

The continuous prosperity of the social economy makes the public put forward higher
requirements for the quality of dairy products, which indirectly promotes the development
of the dairy industry [7,8]. However, the rapid development has also exposed new prob-
lems, operators gradually found that the existing high-tech aquatic products could not
meet the production needs. For example, in the process of cow feeding, part of the feed
will be removed from the feeding area due to the cow’s activity, resulting in accumulation,
which will lead to the deterioration of uneaten feed in the long run. The current solution
is to use manual or manual pushing equipment to push the accumulated feedback into
the feeding area. In this situation, enterprises need to arrange more labor or equipment to
promote feed [9]. Relying on manual labor will make it impossible for the farm to complete
the feeding work in a timely and stable manner; as a result, the milk yield of the cow will
be reduced. In this case, the robot used to push feed is very practical.

The accuracy and execution efficiency of multimedia target recognition technology
have been greatly improved with the development of deep learning (DL) and machine learn-
ing, under the circumstances [10–12]; the application of the technology has been extended
to the fields of medical imaging [13], video surveillance [14], and robot navigation [15]. In
the wave of technological change, traditional agricultural machinery has ushered in a new
opportunity for development. Agricultural robots such as feeding robots, transport robots,
and picking robots have begun to apply DL and machine learning techniques [16–18].
Among them, the self-propelled robot has been favored by many scholars as a new research
hotspot. Some researchers have studied the technical difficulties of navigating the path
extraction of agricultural robots based on visual geometry inference and DL [19]. The
classical methods to infer visual geometry include simultaneous localization, mapping, and
motion structure. This kind of technology obtains parameter values through sensors such
as optical detection and ranging (LiDAR), sound navigation and ranging, optical flow, and
stereo and monocular cameras, and uses corresponding algorithms for obstacle avoidance
and path planning [20]. Among similar sensors, Lidar has the advantages of high-ranging
accuracy, good resolution, and a strong anti-jamming ability. It has been widely used in
the perception and extraction of agricultural indoor environmental information, and has
become a research hotspot for agricultural production robots [21]. In the research field of
push robots, new technologies continue to emerge. DeLaval has developed an automatic
mixing and pushing robot using magnetic induction technology, which can independently
plan the walking route and speed, and is suitable for automatic mixing and the pushing
of different types and quantities of feed. Pavkin et al. [22] concentrated on the simulation
modeling of a feed pusher robot using Simulink tools in the Matlab environment to facili-
tate robot modernization or optimize the final cost for artificial testing of typical system
elements and reduce production costs. However, the application of Lidar in the bullpen
has not been reported, but the research on bullpen path extraction and obstacle avoidance
based on Lidar and machine vision has a certain application value.
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At present, the existing research at home and abroad has solved the problem of
navigation path extraction in some agricultural scenarios, but the working environment of
dairy farms was rarely mentioned. In this study, a new type of machine vision system was
developed to fill this gap. The system will be used for extraction and tracking control of
the working path of the pusher robot. Taking the cowshed environment as the research
object, the self-designed pusher robot and 3D lidar were used to collect the point cloud
data of the cowshed. The ground point cloud was removed by point cloud preprocessing,
and the pass-through filtering algorithm extracted the point cloud data of the region of
interest. Then, the least-squares method (LSM) and random sample consensus (RANSAC)
were used to extract fence lines, project them and obtain boundary contour features, and
extract fence lines and initial paths. At the same time, a robot navigation path optimization
and obstacle avoidance method based on the improved artificial potential field method
is proposed, which will provide corresponding technical references for pusher robots to
overcome the problems existing in autonomous navigation and pushing operations in
complex open scenarios. The system designed in this study could autonomously generate
accurate navigation paths for robots in a dynamic farm environment, which will provide
technical reference for autonomous navigation of farming robots and the development of
precision animal husbandry.

This paper is organized as follows: Section 2 details the materials and methods em-
ployed to achieve the research objective. In Section 3, experimental results and discussion
of the proposed technique are presented. Finally, in Section 4, the conclusion and future
work is provided.

2. Materials and Methods
2.1. The Composition of the Pusher Robot System in the Farm

The pusher robot needs to replace the labor for the feeding process, thereby reducing
the feed cost and labor intensity of feeding dairy cows. The pusher robot can meet the
functions of autonomous walking and pushing. Therefore, the pusher robot was mainly
composed of a vehicle navigation hardware system, pusher operation system, and naviga-
tion and operation control system. Among them, the vehicle navigation hardware system
and the pushing operation system were the specific execution systems of the instructions,
which were responsible for receiving and executing the task instructions issued by the
control system to complete the autonomous navigation and pushing operation. The navi-
gation and operation control system were responsible for setting the working mode of the
vehicle system, issuing target point instructions, displaying the robot position in real time,
and controlling the pushing operation system. Through the fusion and analysis of various
sensor information, the pusher robot could realize autonomous positioning and navigation
in the natural environment.

The hardware device and the control system communicated in real time via a wireless
network to complete the autonomous navigation and operation tasks of the pusher robot
on the farm together, as shown in Figure 1. The vehicle navigation hardware system
mainly included a robot chassis, drive module, control module, environmental information
perception module, communication module, and power supply module.
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Figure 1. The vehicle navigation hardware system.

According to the task of the farm operation and the needs of the environment, the driv-
ing module of the robot adopted a two-wheel differential drive structure, and the steering
control of the robot could be realized by setting different speeds for the two driving wheels.
This drive system was not only simple in structure and small in turning radius, but also
more flexible in movement, which greatly improved the control accuracy of the whole ma-
chine. The power system was provided by 60 V lithium battery modules. In order to ensure
that the robot had powerful computing functions, the main control unit used Jetson Nano
development board (NVIDIA, Shanghai, China), equipped with Tegra X1 heterogeneous
SOC (NVIDIA, Shanghai, China), the size of this unit was 100 mm × 80 mm × 29 mm.
The basic framework of ROS navigation was built under the Ubuntu 18.04 system, and
information was exchanged with the chassis using RS-485 communication. The generated
signal was transmitted to the main control unit via USB3.0. The car was equipped with
the STM32F103 embedded motherboard (Haoyao, Shenzhen, China) as the underlying
controller. According to the speed information provided by the encoder, the odometer data
(moving speed, driving distance, and turning angle) of the vehicle system were obtained
through kinematics calculation. Finally, the control of the vehicle-mounted system and the
pushing operation system was completed through the control algorithm.

The environmental information perception module uses a 16-beam miniature LiDAR
(RS-LiDAR-16, Sagitar Juchuang, Shenzhen Sagitar Juchuang Technology Co., Ltd., Shen-
zhen China). The compact housing of the RS-LiDAR-16, mounted with 16 laser/detector
pairs, rapidly spins and sends out high-frequency laser pulses to continuously scan the
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surrounding environment, collecting real-time 3D point clouds. The 3D space point cloud
data and object reflectivity are provided by the distance measurement algorithm, so that
the pusher robot can digitally model the cowshed, providing a strong guarantee for its
positioning, navigation, and obstacle avoidance. The lidar is installed in the center of the
front end of the robot chassis, at a height of 0.6 m from the ground, and its performance
parameters are shown in Table 1.

Table 1. Parameters of LiDAR.

Parameters Values

Wavelength/nm 905
Detecting range/m 1–150

Accuracy/cm ±2
Vertical view/(◦) ±15

Horizontal view/(◦) 360
Vertical resolution/(◦) 2.0

Horizontal resolution/(◦) 0.1
Data rate/(pts·s−1) 6,000,000

Frame rate/Hz 10
Rotation speed/rpm 600

The 3D schematic diagram and physical map of the installation of each module of the
pushing robot are shown in Figure 2. The overall length of the pusher robot is 1.78 m, the
width is 1.15 m, the height is 1.40 m, and the rated load is 1 m3.
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2.2. Collection and Preprocessing of Point Cloud Data
2.2.1. Collection of Point Cloud Data

The 3D point cloud data of cowsheds were collected in Jinlan Dairy Farm (Figure 3) in
Tai’an City, Shandong Province, China from 16 to 30 October 2021. The cowshed is arranged
in a double row with a distance (D) of 6.25 m between the two pens. The point clouds of
the cowshed are unevenly distributed, with dense clouds at the near end and gradually
sparse ones at the far end (Figure 3b). As shown in Figure 3b, taking the geometric center
of the lidar as the origin point O, the forward direction of the robot is the positive direction
of the Y-axis, the vertical Y-axis to the left is the positive direction of the X-axis, and the
Z-axis is determined by the right-hand rule to establish a 3D lidar local coordinate system.
This study extracts the 3D point cloud data in the range of X-axis (0–10 m), Y-axis (−20 to
10 m), and Z-axis (0–2 m) from the coordinate system as the region of interest (Region of
Interest, ROI). Feeding of dairy cows will lead to the cluttered distribution of some of the
far-end feeds, and the collected point cloud data will be messier. Therefore, it is necessary
to filter out the ground point cloud to reduce the interference of the ground point cloud
data on the initial path extraction.

Agriculture 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 

2.2. Collection and Preprocessing of Point Cloud Data 
2.2.1. Collection of Point Cloud Data 

The 3D point cloud data of cowsheds were collected in Jinlan Dairy Farm (Figure 3) 
in Tai’an City, Shandong Province, China from October 16 to 30, 2021. The cowshed is 
arranged in a double row with a distance (D) of 6.25 m between the two pens. The point 
clouds of the cowshed are unevenly distributed, with dense clouds at the near end and 
gradually sparse ones at the far end (Figure 3b). As shown in Figure 3b, taking the geo-
metric center of the lidar as the origin point O, the forward direction of the robot is the 
positive direction of the Y-axis, the vertical Y-axis to the left is the positive direction of the 
X-axis, and the Z-axis is determined by the right-hand rule to establish a 3D lidar local 
coordinate system. This study extracts the 3D point cloud data in the range of X-axis (0–
10 m), Y-axis (−20 to 10 m), and Z-axis (0–2 m) from the coordinate system as the region 
of interest (Region of Interest, ROI). Feeding of dairy cows will lead to the cluttered dis-
tribution of some of the far-end feeds, and the collected point cloud data will be messier. 
Therefore, it is necessary to filter out the ground point cloud to reduce the interference of 
the ground point cloud data on the initial path extraction. 

  
(a) (b) 

Figure 3. Cattle farm 3D point cloud acquisition: (a) Experimental cattle farm, (b) 3D point cloud 
of the original cattle farm. 

2.2.2. Preprocessing of Point Cloud Data 
There are about 16,000 points in each frame of the collected 3D point cloud data of 

the cowshed, which is a huge amount of data. In order to reduce the amount of calculation, 
it is first necessary to preprocess the 3D point cloud data of the cowshed to remove noise 
and outliers [23,24]. Then, use the pass-through filtering algorithm to extract the ROI point 
cloud; the centroid of the cube is used to represent all points in the cube, and the voxel 
filtering algorithm downsamples the point cloud to greatly reduce the number of 3D point 
clouds while preserving the structural features of the 3D point cloud data. Therefore, this 
study uses a cube with a side length of 0.1m to downsample the ROI point cloud. There 
are still many noise points and outliers in the filtered 3D point cloud, so statistical filtering 
is used to remove the noise and outliers [25]. In order to reduce the interference of the 
ground point cloud on the cowshed outline extraction, the ground plane fitting (GPF) al-
gorithm proposed in the literature [26] is used to segment the ground and non-ground 
point clouds. 

  

Figure 3. Cattle farm 3D point cloud acquisition: (a) Experimental cattle farm, (b) 3D point cloud of
the original cattle farm.

2.2.2. Preprocessing of Point Cloud Data

There are about 16,000 points in each frame of the collected 3D point cloud data of the
cowshed, which is a huge amount of data. In order to reduce the amount of calculation,
it is first necessary to preprocess the 3D point cloud data of the cowshed to remove noise
and outliers [23,24]. Then, use the pass-through filtering algorithm to extract the ROI point
cloud; the centroid of the cube is used to represent all points in the cube, and the voxel
filtering algorithm downsamples the point cloud to greatly reduce the number of 3D point
clouds while preserving the structural features of the 3D point cloud data. Therefore, this
study uses a cube with a side length of 0.1 m to downsample the ROI point cloud. There are
still many noise points and outliers in the filtered 3D point cloud, so statistical filtering is
used to remove the noise and outliers [25]. In order to reduce the interference of the ground
point cloud on the cowshed outline extraction, the ground plane fitting (GPF) algorithm
proposed in the literature [26] is used to segment the ground and non-ground point clouds.

2.3. Fence and Initial Path Extraction

To make the segmented fence show a better effect, the preprocessed bullpen 3D point
cloud was segmented by a high threshold method. The height threshold was determined
according to the actual height of the cowshed and empirical methods, and the height
threshold here was set to 0.1 m. The fence point cloud has apparent line features. The fence
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point cloud is projected onto the XY plane, and the fence lines are extracted by LSM and
RANSAC, respectively, and the extraction effects of the two are compared. Project the fence
point cloud on the XY plane, extract the boundary contour features of the fence point cloud,
and calculate the navigation path of the pusher robot according to the fence’s boundary
outline to improve the mobile robot’s accuracy in pushing grass during the operation.

2.3.1. The Least-Squares Method

LSM is a mathematical tool that has been widely used in many disciplines of data
processing such as error estimation, system identification and prediction, and forecasting.
It finds the best function parameters for point cloud data by minimizing the sum of squared
errors. The basic principle is as follows: data {(xi, yi), i = 1, 2, . . . , m}, obtain the data
fitting function ϕ(x). Then, the fitting function ϕ(x) should reflect the changing trend of all
data as much as possible, but it is not required to pass all data points; that is to say, there is
a certain error between the fitting function ϕ(x) and the actual measured data at xi. Here, it
is represented by εi:

εi = ϕ(xi)− f (xi)(i = 1, . . . , n)

In order to meet the requirement that the fitting function curve can reflect the change
trend of all data as much as possible, its 2-norm is required to be a minimum.

‖ E ‖2=

{
n

∑
i=1

[ϕ(xi)− f (xi)]
2

} 1
2

where ‖ E ‖2 is the 2 norm of error.
In order to facilitate calculation, analysis, and application, the square of 2 norm is

usually calculated, namely:

‖ E ‖2
2=

n

∑
i=1

[ϕ(xi)− f (xi)]
2

This fitting method, which requires the minimum sum of squares of errors, is called
the least-squares method.

The Fence Fitting Line was extracted by LSM fitting the point clouds on both sides of
the mobile robot’s driving direction. When the point cloud coordinates satisfy the minimum
value of F(W), W is the parameter matrix of the fitted Fence Fitting Line equation, as shown
in Equation (1):

F(W) = min
(
X′W −Y

)T(X′W −Y
)

(1)

where W = [k d]T is the parameter matrix of the fence line; k is the slope of the fence
line; d is the fence line intercept, and m : X′n×2 = [X I] is the matrix composed of the
point cloud X-axis coordinate value matrix Xn×1=[x1 x 2 . . . xn]

T and the unit matrix I;
Yn×1 = [y1y2 . . . yn]

T is the matrix composed of the Y coordinate values of the point
cloud. Taking the derivative of Equation (1), when X′TX′′ is a positive definite matrix, the
parameter matrix W of the fence line equation is shown in Equation (2):

W =
(

X′TX′
)−1

X′TY (2)

2.3.2. Random Sampling Consistency

The RANSAC method can iteratively estimate the parameters of a mathematical model
from a set of observational data sets containing “outliers” [27,28]. The random sampling
consensus algorithm can well estimate the model parameters from the data containing a
large number of outliers, and can eliminate the interference of outliers on the estimated
overall data model, and obtain the global optimal solution. It is an indeterminate algorithm.
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It has a certain probability of producing a good result, and to increase the likelihood, the
number of iterations must be increased.

The purpose of RANSAC is to find the optimal parameter matrix so that the number
of data points that satisfy the matrix is the largest. Usually, h33 = 1 is used to normalize
the matrix. Since the homography matrix has 8 unknown parameters, at least 8 linear
equations are needed to solve, corresponding to the point position information, a set of
point pairs can list two equations, and at least 4 sets of matching point pairs are included.
The resulting matrix equation is shown in Equation (3):

s

x′

y′

1

 =

h11h12h13
h21h22h23
h31h32h33

x
y
1

 (3)

where S represents the sample data and hij represents a single element in the normalized matrix.
The RANSAC algorithm randomly selects 4 samples from the matching data set

and ensures that the 4 samples are not collinear, calculates the homography matrix, then
uses this model to test all data, and calculates the number and projection of data points
that satisfy this model. Error (i.e., cost function), if this model is the optimal model,
the corresponding cost function is the smallest. The resulting loss function is shown in
Equation (4):

L =
n

∑
i=1

(
x′i ,

h11xi + h12yi + h13

h31xi + h32yi + h33

)2
+

(
y′i,

h21xi + h22yi + h23

h31xi + h32yi + h33

)2
(4)

where xi
′, yi

′ are the elements in the parameter matrix; xi, yi are the elements in the
surrogate matrix.

A matrix is obtained by random sampling, and using Equation (3), it is verified
whether other points conform to the model, and then the conforming points become
“internal points”, and the nonconforming points become “external points”. Next time,
extract points from the “new interior point set” to construct a new matrix, and recalculate
the error. The final error is the smallest, and the maximum number of points is the final
model. The steps of the RANSAC algorithm:

(1) Randomly extract S sample data from the data set, fit multiple models (the 4 samples
cannot be collinear), calculate the transformation matrix H, and record it as model M;

(2) Calculate the projection error of all data in the dataset and the model M, if the error is
less than the threshold, add the inner point set I;

(3) If the number of elements in the current interior point set I is greater than the optimal
interior point set I_best, then update I_ best = I, and update the number of iterations k
as shown in Equation (5):

k =
log(1− p)

log(1− wm)
(5)

where p is the confidence level, which is generally taken as 0.995; w is the proportion of
“inner points”; m is the minimum number of samples required to calculate the model;

(4) If the number of iterations is greater than k, exit; otherwise, add 1 to the number of
iterations, and repeat the above steps.

RANSAC is used to extract the fence lines on both sides, and a subset is selected from
the point clouds of the fences on both sides by random sampling to establish a straight-line
model. Then, the number of interior points of the straight-line model is calculated to check
the correctness of the straight-line model, and iterate continuously to obtain the optimal
straight-line model, which is the extracted fence line (Figure 4).
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The iteration threshold KRANSAC is a key parameter for random sampling fitting. If
the value of KRANSAC is set too large, it will take too long, and if the value of KRANSAC is
set too small, the fitting effect will be poor. The selection basis of the K value is shown in
Equation (6):

KRANSAC = lg(1− α)/lg(1−ωN) (6)

where α is the probability that all points selected in the iterative process are interior
points, %; ω is the probability that an interior point is selected from the data, %; N is the
total number of data points.

2.4. Work Path Extraction
2.4.1. Noise Processing

The real-time performance is evaluated by the processing time of extracting grid
lines [29], and the anti-noise ability is the resistance ability of the fence line extraction
method to two kinds of noise [30]. This study evaluates the effect of LSM and RANSAC in
extracting fence lines from the aspects of real-time performance and anti-noise ability, so
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that the extraction method can have strong real-time performance and anti-noise ability.
Add Gaussian noise and man-made noise to the fence point cloud; among them, Gaussian
noise cancels the statistical filtering process, and processes the Gaussian noise with the
mean value of 0 and the variance of 0.1 on the point cloud of the fence. The artificial noise
is achieved by adding interfering points between two fence point clouds.

2.4.2. Path Extraction

The boundary contour data are extracted from the fence point cloud using the point
cloud vector method. First, the fence point cloud and its adjacent points projected on
the XY plane are fitted with straight lines. Then, a point P in the fence point cloud is
selected, and its adjacent point cloud is set Pk = {P0, P1 . . . Pk−1}, a straight line is set
u·x + v·y = c

(
u2 + v2 = 1

)
, and the LSM is used to fit the straight line. At this time, the

vector q(u, v) is the normal vector of the point P. Then, referring to the content of the
literature, the method where the maximum angle between adjacent points is greater than
the set threshold is used to extract the fence outline point cloud, and the fence outline point
cloud is recorded as the point set U = {d0, d1 . . . dn−1}. Finally, the positional relationship
between the fence line and the fence outline data points is judged by Equation (7). After
removing the data outside the fence line, the point cloud data inside the fence line are
divided into the left point set (UL) and the right point set (UR).

dli =
|kl ·xi+bl−yi |√

kl
2+bl

2

dri =
|kr ·xi+br−yi |√

kr2+br2

UL =

{
(kl · xi + bl − yi) · (kr · xi + br − yi) <

0∩ dli − dri < 0|di(xi, yi) ∈ U

}
UR =

{
(kl · xi + bl − yi) · (kr · xi + br − yi) <

0∩ dli − dri > 0|di(xi, yi) ∈ U

} (7)

In the formula, dli and dri are the distance between the fence outline point di(xi, yi) and
the left and right fence lines, m; i is the index number of the point set, i = 0, 1, 2, . . . , n−1; n
is the number of point clouds of fence outline.

When the cows have been feeding for a period of time, the cows will push the forage
to the outside at will, causing part of the forage to enter the area where they cannot eat, and
the shape of the forage pile becomes irregular and the thickness of the pile becomes uneven.
Therefore, the pusher robot is operated along the outermost part of the no-eating area, and
the forage in the no-eating area is pushed to the eating area. As shown in Figure 5, during
the operation of the pushing robot, the sideline of the auger always coincides with the
inner boundary of the inaccessible area. The initial path is approximated by the translation
transformation of the fence line fitted by the two methods. In this study, the intercept (b1)
of the initial path was used as the index, the width of the edible area was 70 cm, and the
length of the auger of the pushing robot was 110 cm.

b1 = b0 + m1 +
1
2

m2 (8)

where b0 is the intercept of the fence line, m1 is the width of the edible area, and m2 is the
length of the auger of the pushing robot.
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Figure 5. Working diagram of grass pushing robot.

2.5. Improvement of Obstacle Avoidance Strategy

The pusher robot will inevitably encounter obstacles during the operation of the cattle
farm. The obstacle avoidance module is an essential part of the pusher robot to ensure that
it can pass through obstacles during mobile operations. This paper chooses the artificial
potential field method as the basis of the obstacle avoidance algorithm, and improves and
analyzes the situation that it falls into the local optimum point.

2.5.1. Artificial Potential Field Method

Artificial Potential Field (APF) is an obstacle avoidance strategy represented by ar-
tificially defined virtual forces [31,32]. The mobile robot is assumed to be a point, which
moves in a virtual force field, which is composed of the gravitational field of the target
point to the robot and the repulsion field of the obstacle to the robot. The gravitational field
is generated by the target point, and the repulsive force field is composed of the force field
generated by all obstacles [33].

As shown in Figure 6, the repulsive force of the obstacle acting on the mobile machine
is denoted as Frep, and the direction is from the obstacle to the mobile robot; the gravitational
force of the target point acting on the mobile robot is recorded as Fatt, and the direction is
from the mobile robot to the target point, then the force that the mobile robot receives at
this position is the combined force of the repulsion force Frep and the gravitational force
Fatt is F.
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Figure 6. Stress diagram of artificial potential field method.

In the process of path planning, the environment of the unmanned vehicle is treated
in a two-dimensional space, but the entire potential field distribution is three-dimensional.
As shown in Figure 7, the gravitational potential energy leads to the generation of the third
dimension, which is the main force in the process of path planning of the unmanned vehicle.
The obstacles in the driving environment form peaks in the potential field distribution map.
Under the action of the potential field, the unmanned vehicle can only move from the high
potential energy point to the low potential energy point, so that the unmanned vehicle will
not hit the obstacles, and it can safely plan the obstacle avoidance route.
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Let the positions of the mobile robot, the target point, and the obstacle, be denoted
as q = (x, y)T and qg =

(
xg, yg

)
, respectively, and qobs = (xobs, yobs) is the gravitational

potential field generated by the target point to the mobile robot, and Uatt(q) is the repulsive
potential field generated by the obstacle to the mobile robot.

When the mobile robot is far away from the target point, the target point should
generate a larger gravitational force for the mobile robot to move the mobile robot towards
the target point. At the same time, when the mobile robot is at the target point, the robot
should be at the zero-force point, so the gravitational potential field function is expressed as:

Uatt(q) =
1
2

ξρ2(q, qg
)

(9)
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where ξ is the gain coefficient of the gravitational field, and ρ(q, qg) represents the dis-
tance between the target point and the current position of the mobile robot (expressed in
Euclidean distance).

2.5.2. Improvement of Artificial Potential Field Method

The artificial potential field method converts the complex environmental information
around the mobile robot into a simple force field model, which can achieve a relatively
good obstacle avoidance effect in general [34,35]. However, due to the limitations of the
definition of the gravitational potential field function and the repulsive potential field
function itself, there may be situations in which the set target cannot be reached as expected
and local minima appear before reaching the set target point. The reason for the above
situation is mainly due to the defects brought by the definition of the gravitational potential
field function and the repulsive potential field function itself. If the gravitational and
repulsive forces are zero when the mobile robot reaches the target point, then the target
point is the global optimal point. Considering the above problems, the distance between
the target point and the robot is introduced into the repulsion function, and the repulsion
field function expression is redefined:

Urep(q) =

{
1
2 η
[

1
ρ(q,qobs)

− 1
ρ0

]2(
X− Xgoal

)n
, ρ(q, qobs) ≤ ρ0

0 , ρ(q, qobs) > ρ0

(10)

where (X − Xgoal) is the distance between the robot and the target, and n is a constant and
greater than 0. Similarly, the repulsive force on the mobile robot is the negative gradient of
the repulsive force field, and the repulsive force Frep (q) is expressed as:

Frep(q) =
{

Frep1 + Frep2, ρ(q, qobs) ≤ ρ0
0 , ρ(q, qobs) > ρ0

(11)

Frep1 = η

[
1

ρ(q, qobs)
− 1

ρ0

]
1

ρ2ρ(q, qobs)

(
X− Xgoal

)n
(12)

Frep2 =
n
2

η

[
1

ρ(q, qobs)
− 1

ρ0

]2(
X− Xgoal

)n−1
(13)

In the formula, the direction of Frep1 is from the obstacle to the mobile robot, and the
direction of Frep2 is from the target robot to the target point.

3. Results Analysis
3.1. Cowshed Point Cloud Preprocessing Results

In order to clarify the influence of the preprocessing method of point cloud data on the
pusher robot in different motion states, the pusher robot collected 3D point cloud data in
static and moving (forward speed is 0.5 m/s) states. From the collected 3D point cloud data,
200 frames of point clouds were selected for preprocessing. The number of preprocessed
point clouds and the processing time of the filtering algorithm are shown in Table 2. It can be
seen from the table that the pre-processed average point cloud numbers of the data collected
by the robot at rest and in motion were 3257 and 3249, and the total average processing
time was 0.338 and 0.319 s. There was no significant change in the number of point clouds
and the total average processing time, which indicated that the preprocessing method
selected in this study was suitable for machines in different motion states. Comparing the
processing time of through filtering, downsampling filtering, and statistical filtering, it was
found that statistical filtering took the longest time (0.122 s), accounting for 37.5% of the
total preprocessing time, which was not conducive to real-time processing.
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Table 2. Cowshed point cloud preprocessing results.

Motion States Preprocessing Methods Number of Point Clouds Processing Times/s

Static

Through the filter 9872 0.0763
Statistical filter 8253 0.125

Down-sampled filter 4777 0.0684
Ground plane filter 3257 0.0641

Motion

Through the filter 9865 0.0653
Statistical filter 8255 0.119

Down-sampled filter 4765 0.0676
Ground plane filter 3249 0.0642

The visualization results of the preprocessed 3D point cloud data are shown in Figure 8.
The ROI point cloud was extracted by pass-through filtering (Figure 8a), and the number of
processed point clouds was 9872, which was reduced by 40%, and significantly reduced the
number of point clouds; the number of point clouds after voxel downsampling filtering was
4777, which was reduced by 70%, and still retained the structural features of the original
point cloud data (Figure 8b); the number of point clouds after statistical filtering was 8253,
and 7% of outliers were removed (Figure 8c); after fitting the ground plane, the number of
point clouds was 3257, which reduced the ground point cloud data by 79%, and retained
the fence information (Figure 8d).
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3.2. Extraction Results of Fence Lines and Paths

In the experiment, Gaussian noise and artificial noise were added to the cowshed
point cloud data, and the LSM and RANSAC were used to extract the fence lines and the
initial paths. The visualization results were shown in Figure 8 and Table 3. It could be
found from Figure 9 that both methods could process the fence point cloud data, and the
processing effect was better. From Table 3, the value of the slope of the right fence line
extracted by the LSM was −0.095 after adding artificial noise. Compared with no noise
added (the value of the slope was about −0.061), there was a larger error and the extraction
effect was reduced. The LSM considers the shortest distance from the overall point cloud to
the extraction line and the phenomenon that the extracted fence line deviates when many
data are deviating from the fence point cloud. The results of the RANSAC extracting fence
lines without adding noise, adding Gaussian noise, and adding artificial noise (take the
value of the slope of the right fence line as an example) were about −0.058, 0.058, and
−0.061, respectively, and there was no significant change, indicating that RANSAC has
certain resistance to both Gaussian noise and man-made noise. It could be seen from Table 2
that after adding artificial noise, the intercept value of the initial path extracted by the
LSM was about −0.610, and the group without noise (the intercept was about −0.603) was
quite different; The intercepts value extracted by the RANSAC in the three groups were
−0.602, −0.603, and −0.601, and the intercept changes were not obvious, indicating that
the RANSAC was better for initial path extraction.

Table 3. Extraction of bullpen line and initial path analysis by LSM and RANSAC.

Point Cloud Noise Methods Intercept of
Bullpen b0/m

Line Slope of
Bullpen k0

Intercept of Initial
Path b1/m

Processing
Time/10−3 s

Without noise
LSM −1.853 ± 0.001 0.062 ± 0.002 −0.603 ± 0.001 2.352 ± 0.125

RANSAC −1.852 ± 0.001 0.056 ± 0.001 −0.602 ± 0.001 1.157 ± 0.012

Gaussian noise
LSM −1.853 ± 0.005 0.079 ± 0.012 −0.603 ± 0.005 2.638 ± 0.119

RANSAC −1.847 ± 0.005 0.058 ± 0.037 −0.597 ± 0.005 1.162 ± 0.015

Artificial noise
LSM −1.860 ± 0.007 0.095 ± 0.007 −0.610 ± 0.007 2.931 ± 0.124

RANSAC −1.851 ± 0.006 0.062 ± 0.005 −0.601 ± 0.006 1.165 ± 0.013

From the analysis of the processing time of the two methods, it could be found that
there was no significant difference in the processing time of RANSAC in the non-noise
group, the Gaussian noise group, and the artificial noise group. The processing time
(2.352 × 10−3 s) of the LSM without noise group was significantly different from the other
two groups, indicating that the processing time of RANSAC was less affected by noise than
the LSM method. The running time of RANSAC is significantly lower than that of LSM
transform, and RANSAC can obtain better real-time performance by selecting a reasonable
number of iterations.
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Figure 9. Results of extracted ridgeline and initial path by three methods under different
noise. (a) Least squares method; (b) Random sampling consistency.

3.3. Simulation Analysis of Obstacle Avoidance Algorithm

In response to the problem that the traditional artificial potential field method is prone
to the defect of falling into minimal values, a new repulsion field function is proposed, and
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the selection range of the repulsion field gain coefficient is analyzed. In order to verify
the effectiveness of the improved artificial potential field method when there are multiple
obstacles, and the influence of parameter selection on the obstacle avoidance effect. This
paper conducts simulation experiments in MATLAB BR2020a. Since there are cows and
feed belts on both sides of the fence, it is only necessary to place obstacles at the proximal
and distal ends of the feed belts. The simulation space adopts a 10 × 10 grid map. It sets
the coordinates of the starting position of the robot to be (0, 0) marked with a square, and
the coordinates of the end point of the target point to be (10, 10), marked with a triangle,
and the obstacle coordinate points marked with circles are set between the two to simulate
the actual situation.

As shown in Figure 10, five obstacle coordinate points were set, with the coordinates
being (1.1, 1.2), (3, 2.4), (5.5, 5.5), (6, 2), and (8, 8.5). Then, the simulation parameters
were set: the improved repulsion potential field parameter gain coefficient value

Agriculture 2022, 12, x FOR PEER REVIEW 17 of 23 
 

 

3.3. Simulation Analysis of Obstacle Avoidance Algorithm 
In response to the problem that the traditional artificial potential field method is 

prone to the defect of falling into minimal values, a new repulsion field function is pro-
posed, and the selection range of the repulsion field gain coefficient is analyzed. In order 
to verify the effectiveness of the improved artificial potential field method when there are 
multiple obstacles, and the influence of parameter selection on the obstacle avoidance ef-
fect. This paper conducts simulation experiments in MATLAB BR2020a. Since there are 
cows and feed belts on both sides of the fence, it is only necessary to place obstacles at the 
proximal and distal ends of the feed belts. The simulation space adopts a 10 × 10 grid map. 
It sets the coordinates of the starting position of the robot to be (0, 0) marked with a square, 
and the coordinates of the end point of the target point to be (10, 10), marked with a tri-
angle, and the obstacle coordinate points marked with circles are set between the two to 
simulate the actual situation. 

As shown in Figure 10, five obstacle coordinate points were set, with the coordinates 
being (1.1, 1.2), (3, 2.4), (5.5, 5.5), (6, 2), and (8, 8.5). Then, the simulation parameters were 
set: the improved repulsion potential field parameter gain coefficient value ŋ = 5, the grav-
itational potential field gain coefficient value 𝜉 = 15, the value of the maximum distance 
that obstacles affect the mobile robot was 1.5 m, and the iterative step size of the mobile 
robot was 0.1 m. The simulation results showed that the mobile robot could successfully 
move from the starting point to the target point and achieve the effect of avoiding obsta-
cles. 

 
Figure 10. Simulation results of improved artificial potential field method. 

To illustrate the influence of the improved artificial potential field algorithm param-
eter selection on the obstacle avoidance effect, the obstacle avoidance effect of the mobile 
robot in the moving process is analyzed from the perspective of reducing the repulsion 
force and the gain coefficient of the gravitational potential field. Figure 11a showed the 
simulation results when the repulsive potential field gain coefficient was too small. It 
could be clearly seen that although there would be some collisions with obstacles during 
the movement, the robot could still move to the target point in the end. Figure 11b shows 
the simulation results when the gravitational potential field gain coefficient was too small. 
It can be clearly seen that the mobile robot would oscillate back and forth at certain posi-
tions. In addition, the robot cannot reach the set target point. 

= 5, the
gravitational potential field gain coefficient value ξ = 15, the value of the maximum distance
that obstacles affect the mobile robot was 1.5 m, and the iterative step size of the mobile
robot was 0.1 m. The simulation results showed that the mobile robot could successfully
move from the starting point to the target point and achieve the effect of avoiding obstacles.
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To illustrate the influence of the improved artificial potential field algorithm parameter
selection on the obstacle avoidance effect, the obstacle avoidance effect of the mobile robot
in the moving process is analyzed from the perspective of reducing the repulsion force and
the gain coefficient of the gravitational potential field. Figure 11a showed the simulation
results when the repulsive potential field gain coefficient was too small. It could be clearly
seen that although there would be some collisions with obstacles during the movement,
the robot could still move to the target point in the end. Figure 11b shows the simulation
results when the gravitational potential field gain coefficient was too small. It can be clearly
seen that the mobile robot would oscillate back and forth at certain positions. In addition,
the robot cannot reach the set target point.

Figure 12 shows the situation where the obstacle is located on the extension line
between the robot and the target point, and the target point is within the repulsive potential
field of the obstacle. At this time, the coordinates of the target point are set to (8, 8), the
coordinates of the obstacle are set to (9, 9), and the maximum action radius of the repulsive
potential field of the obstacle is 1.5 m. The mobile robot reaches the target point smoothly
according to the planned path.
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Figure 12. Simulation results when the target point is in the middle.

Figure 13 shows the simulation results when the obstacle is set between the starting
point and the target point, and the resultant force is on the connection line between the
two, in which the position coordinates of the obstacle in Figure 13a are (5, 5); the position
coordinates of the obstacles in Figure 13b are (5, 5), (4.5, 5.5), (4, 6), (3.5, 6.5), and (3, 7). It
can be seen that the robot can successfully get rid of the minimum point and avoid obstacles
when it falls into a local minimum value during the movement process, and finally can
move to the target point.

Take single obstacle and multiple obstacles as examples, the simulation results of the
traditional artificial potential field method are shown in Figure 14 below. It can be seen
that compared with the improved artificial potential field method, the traditional artificial
potential field method will fall into oscillation when the robot is close to the obstacles, and
requires more steps when it is away from the obstacles, which is not conducive to the rapid
obstacle avoidance of the robot.
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The above results show that the improved artificial potential field method has better
performance under reasonable parameter selection. The forward path is predicted and
judged before the robot moves, and simplifies the restricted obstacles; that is, the robot
only affects the repulsive force of the obstacles on the target side within the affected
range; then, a reasonable virtual target point is set near the simplified obstacle, and the
improved repulsion function guides the robot to quickly generate a smooth, stable, and
collision-free path in a complex environment. Moreover, the rationality of the selection
of the gravitational potential field gain coefficient and the repulsive potential field gain
coefficient directly affects the obstacle avoidance effect. The algorithm can realize the
obstacle avoidance function of a mobile robot.

3.4. Experimental Research on Obstacle Avoidance

A simple obstacle avoidance test is carried out on the designed pusher robot in this
section. The static obstacle is set up in the experiment. In the three scenarios, the maximum
speed of the inspection robot is set to 0.5 m/s. Due to the low vehicle speed, the influence
radius of obstacles is set to 1.5 m; objects detected within 1.5 m in front of the robot
are regarded as obstacles. In the obstacle avoidance experiment, after placing the static
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obstacle objects in the test area, the robot is initialized to collect and model the surrounding
environment information. The robot is instructed to move along the extracted path to verify
the robot’s response to static obstacles. After the robot completes the map construction and
bypasses the obstacles, it quickly moves in the direction of the robot.

The pusher robot performs linear work toward the target until the robot moves to
the position shown in Figure 15a. At this time, the robot enters the influence range of the
obstacle. Under the combined action of attraction and repulsion, it deflects an angle to
the right to drive. Figure 15b shows the position where the robot is closest to the obstacle.
Under the action of the resultant force, the robot gradually crosses the obstacle until it
successfully reaches the end point (Figure 15c). During the entire driving and obstacle
avoidance process, the closest distance to the obstacle is 0.41 m. The optimized path
increases the shortest distance value of the obstacle point cloud from the navigation path
from 0.18 to 0.41 m, where the average time is 0.059 s and the standard deviation is 0.007 s,
which shows that the optimization method can optimize the path in real time to avoid
obstacles, basically meeting the requirements of security and real-time performance, and
effectively avoiding the local minimum problem The entire obstacle avoidance path is
relatively smooth, which can successfully avoid obstacles and reach the destination point.
The test proves that the pusher robot can efficiently extract the working path, make timely
decisions when detecting static obstacles, avoid collisions with obstacles, and has good
stability and reliability.
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4. Conclusions

Based on the research on the existing cowshed fence line extraction method, a robot
navigation path optimization method based on the improved artificial potential field
method is proposed. This method improves the safety of the unmanned driving of the
feeding machine, and provides theoretical support and development basis for the intelligent
agricultural equipment in the dairy farm.

(1) The functional requirements of the pushing robot were analyzed and the hardware
system was designed. According to the functional requirements of each module, the
model was selected and designed, and the research and experimental platform of the
pusher robot was built.

(2) The performance of LSM and RANSAC for extracting ridge lines and initial paths was
evaluated from the aspects of real-time performance and anti-noise capability. Under
three different environments: no noise, Gaussian noise, and artificial noise, the fence
lines were extracted using RANSAC, and the obtained results were about −0.058,
0.058, and −0.061, respectively. Compared with LSM, RANSAC was less affected by
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noise in processing time (between 1.157 × 10−3 and 1.165 × 10−3 s). It was shown
that the running time, anti-noise ability, and extraction effect of RANSAC were better.

(3) The obstacle avoidance method of the pusher robot was optimized. The target point
influence factor was introduced into the repulsive potential field function, and the
parameter selection strategy of the improved artificial potential field method was
analyzed. Finally, the correctness and feasibility of the obstacle avoidance method
were verified by simulation experiments.
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