Yield and Resource Utilization Efficiency Gap in Early Maturing Japonica Rice Cultivars under Different Management Strategies—A Different Location Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experiments and Crop Management
2.3. Yield and Yield Components
2.4. Resource-Use Efficiency
2.5. Statistical Analysis
3. Results
3.1. Yield and Yield Components
3.2. Yield Gap
3.3. Harvest Index and Biomass
3.4. Resource Utilization Efficiency
3.4.1. Water-Use Efficiency
3.4.2. Radiation-Use Efficiency
3.4.3. Heat-Use Efficiency
3.5. Correlation Analysis
3.5.1. Regression Analysis of Yield and Resource-Use Efficiency
3.5.2. Correlations between Yield Components and Resource-Use Efficiency
3.5.3. Correlations among the Harvest Index, Biomass, and Resource-Use Efficiency
3.5.4. Correlations between Rice Yield and Yield Components, Harvest Index, and Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance-A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food security: The challenge of feed 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Wart, J.V.; Kersebaum, K.C.; Peng, S.; Milner, M.; Gassman, K.G. Estimating crop yield potential at regional to national scales. Field Crop. Res. 2013, 143, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.S.; Shen, J.B.; Yuan, L.X.; Jiang, R.F.; Chen, X.P.; Davies, W.J.; Zhang, F.S. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef]
- Yuan, L.P. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef]
- Alexandratos, N. World Agriculture: Towards 2010; Food and Agriculture Organization of the United Nations: New York, NY, USA, 1995. [Google Scholar]
- Licker, R.; Johnstong, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the gap: How do climate and agricultural management explain the yield gap of croplands around the world. Glob. Ecol. Biogeog. Lett. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Zaks, D.P.M. Solutions for a cultivate planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.Z.; Li, Y.N.; Chen, G.F.; Chen, D.D.; Qu, H.R.; Ma, W.Q. Identifying the limiting factors. driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain. J. Integr. Agric. 2019, 18, 2–4. [Google Scholar] [CrossRef]
- Shao, J.J.; Zhao, W.Q.; Zhou, Z.G.; Du, K.; Kong, L.J.; Wang, Y.H. A new feasible method for yield gap analysis in regions dominanted by smallholder farmers, with a case study of Jiangsu Province, China. J. Integr. Agric. 2021, 2, 450–459. [Google Scholar] [CrossRef]
- Li, K.N.; Yang, X.G.; Liu, Z.J.; Zhang, T.Y.; Lu, S.; Liu, Y. Low yield gap of winter wheat in the North China Plain. Eur. J. Agron. 2014, 59, 1–12. [Google Scholar] [CrossRef]
- Senapati, N.; Semenov, M.A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob. Food Secur. 2020, 24, 100340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.G. Impacts of Climatic Changes on Crop Potential Productivity in Northeast China; Hunan Agricultural University: Changsha, China, 2007. [Google Scholar]
- Wang, X.Y. Study on Yield Gaps and Efficiency Gaps for Rice in Northeast China; China Agricultural University: Beijing, China, 2018. [Google Scholar]
- Jiao, X.Q.; Nyamdavaa, M.; Zhang, F.S. The transformation of agriculture in China: Looking back and looking forward. J. Integr. Agric. 2017, 17, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Liu, M.; Liu, J.; Li, W.; Jiang, C.; Li, Z. Optimize nitrogen fertilization location in root-growing zone to increase grain yield and nitrogen use efficiency of transplanted rice in subtropical China. J. Integr. Agric. 2017, 16, 2073–2081. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Bai, Y.; Zhang, J.H.; Shahzad, A. Developing a process-based and remote sensing driven. crop yield model for maize (PRYM–Maize) and its validation over the Northeast China Plain. J. Integr. Agric. 2021, 20, 408–423. [Google Scholar] [CrossRef]
- Wang, D.Y.; Li, X.Y.; Ye, C.; Xu, C.M.; Chen, S.; Chu, G.; Zhang, Y.B.; Zhang, X.F. Geographic. variation in the yield formation of single-season high-yielding hybrid rice in southern China. J. Integr. Agric. 2021, 20, 438–449. [Google Scholar] [CrossRef]
- Guo, X.H.; Hu, Y.; Jiang, H.F.; Lan, Y.C.; Wang, H.Y.; Xu, L.Q.; Yin, D.W.; Wang, H.Z.; Zheng, G.P.; Lv, Y.D. Improving photosynthetic production in rice using integrated crop management in northeast China. Crop Sci. 2020, 60, 454–465. [Google Scholar] [CrossRef]
- Yang, Y.S.; Guo, X.X.; Liu, H.F.; Liu, G.Z.; Liu, W.M.; Ming, B.; Xie, R.Z.; Wang, K.R.; Hou, P.; Li, S.K. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution. J. Integr. Agric. 2021, 20, 482–493. [Google Scholar] [CrossRef]
- Yao, F.M.; Li, Q.Y.; Zeng, R.Y.; Shi, S.Q. Effects of different agricultural treatments on narrowing winter wheat yield gap and nitrogen use efficiency in China. J. Integr. Agric. 2021, 20, 383–394. [Google Scholar] [CrossRef]
- Cui, D.C. Climatic resources utilization coefficiency of cereal crops in China and development measures. Chin. J. Agrometeorol. 2001, 22, 25–32, (In Chinese with English Abstract). [Google Scholar]
- Tang, Q.Y. Dps Data Processing System-Experimental Design, Statistical Analysis and DATA Mining; Science Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.L.; Cassman, K.G.; Peng, S.B. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Huang, J.L.; He, F.; Cui, K.H.; Zeng, J.M.; Nie, L.X.; Peng, S.B. Head rice yield of “super” hybrid rice Liangyoupeijiu grown under different nitrogen rates. Field Crop. Res. 2012, 134, 71–79. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, J.; Yang, C.D.; Song, Y.P.; Zheng, C.Y.; Wang, S.H.; Liu, Z.H.; Ding, Y.F. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis. Crop J. 2014, 2, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.Q.; Zhong, X.H.; Zeng, J.H.; Liang, K.M.; Pan, J.F.; Xin, Y.F.; Liu, Y.Z.; Hu, X.Y.; Peng, B.L.; Chen, R.B.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Liu, H.; Won, P.L.; Banayo, N.P.; Nie, L.; Peng, S.; Kato, Y. Late-season nitrogen applications improve grain yield and fertilizer-use efficiency of dry direct-seeded rice in the tropics. Field Crop. Res. 2019, 233, 114–120. [Google Scholar] [CrossRef]
- Peng, X.L.; Yang, Y.M.; Yu, C.L.; Chen, L.N.; Zhang, M.C.; Liu, Z.L.; Sun, Y.K.; Luo, S.G.; Liu, Y.Y. Crop management for increasing rice yield and nitrogen use efficiency in northeast China. Agron. J. 2015, 107, 1682–1690. [Google Scholar] [CrossRef]
- Zhao, G.M.; Miao, Y.X.; Wang, H.Y.; Su, M.M.; Fan, M.S.; Zhang, F.S.; Jiang, R.F.; Zhang, Z.; Liu, C.; Liu, P. A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crop. Res. 2013, 154, 23–30. [Google Scholar] [CrossRef]
- Wang, X.W.; Ran, C.; Zhang, S.Q.; Zhu, J.; Liu, L.X.; Jin, F.; Shao, X.W. Comparations of rice yield compositions and material productions under different cultivation modes in soda saline-alkali rice area. J. South China Agric. Univ. 2019, 40, 45–50. [Google Scholar] [CrossRef]
- Lv, Y.D. Study on Relationship between Early Japonica Rice Plant Tape and Yield in Cold Region; Heilongjiang Bayi Agricultural University: Daqing, China, 2007. [Google Scholar]
- Ji, F. Water Requirement Rules and Water Use Efficiency of Rice under Different Water Treatments; Northeast Agricultural University: Haerbin, China, 2008. [Google Scholar]
- Gong, J.L.; Xing, Z.P.; Hu, Y.J.; Zhang, H.C.; Dai, Q.G.; Huo, Z.Y.; Gao, H. Difference in growth duration and utilization of temperature and solar radiation between indica and japonica super rice in the lower Yangtze and Huaihe river valley. Chin. J. Rice Sci. 2014, 28, 267–276, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Pang, Y.M.; Chen, C.; Pan, X.B.; Wei, X.Y. Impact of future climate change on climatic resources and potential productivity of maize in Sichuan Basin. Chin. J. Eco-Agric. 2013, 21, 1526–1536, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xi, M.; Du, X.B.; Wu, W.G.; Kong, L.C.; Chen, J.H.; Yue, W.; Zhou, Y.J. Effects of late sowing of two season crops on annual yield and resource use efficiency in rice wheat double cropping system. J. Appl. Ecol. 2020, 31, 165–172. [Google Scholar] [CrossRef]
- Boling, A.A.; Tuong, T.P.; Keulen, V.H.; Bouman, B.A.M.; Suganda, H.; Spiertz, J.H.J. Yield gap of rainfed rice in farmers’ fields in Central Java, Indonesia. Agric. Syst. 2010, 103, 307–315. [Google Scholar] [CrossRef]
- Xu, X.P.; He, P.; Zhao, S.C.; Qiu, S.J.; Johnston, A.M.; Zhou, W. Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crop. Res. 2016, 186, 58–65. [Google Scholar] [CrossRef]
- Hu, X.Y.; Huang, Y.; Sun, W.J.; Yu, L.F. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. Forest Meteorol. 2017, 247, 34–41. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Siebert, S.; Ewert, F. Climate and management interaction cause diverse crop phenology trends. Agric. For. Meteorol. 2017, 233, 55–70. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.L.; Hou, D.P.; Zhou, Y.L.; Liu, M.Z.; Wang, Z.Q.; Liu, L.J.; Gu, J.F.; Yang, J.C. The effect of integrative crop management on root growth and methane emission of paddy rice. Crop J. 2019, 7, 444–457. [Google Scholar] [CrossRef]
- Lv, Y.D.; Hu, Y.; Jiang, H.F.; Lan, Y.C.; Wang, H.Y.; Xu, L.Q.; Yin, D.W.; Wang, H.Z.; Zheng, G.P.; Guo, X.H. Agronomic practices affect rice yield and nitrogen, phosphorus, and potassium accumulation, allocation and translocation. Agron. J. 2020, 112, 1238–1249. [Google Scholar] [CrossRef]
- Qin, J.Q.; Impa, S.M.; Tang, Q.Y.; Yang, S.H.; Yang, J.; Tao, Y.S.; Jagadish, K.S.V. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop. Field Crop. Res. 2013, 148, 15–23. [Google Scholar] [CrossRef]
- Fu, J.; Yang, J.C. Research advances in high-yielding cultivation and physiology of super rice. Rice Sci. 2012, 19, 177–184. [Google Scholar] [CrossRef]
- Huang, L.; Yu, J.; Yang, J.; Zhang, R.; Bai, Y.; Sun, C.; Zhuang, H. Relationships between yield, quality and nitrogen uptake and utilization of organically grown rice varieties. Pedosphere 2016, 26, 85–97. [Google Scholar] [CrossRef]
- Ladha, J.K.; Kumar, V.; Alam, M.M.; Sharma, S.; Gathala, M.K.; Chandna, P.; Balasubramanian, V. Integrating Crop and Resource Management Technologies for Enhanced Productivity, Profitability and Sustainability of the Rice-Wheat System in South Asia; International Rice Research Institute: Los Baños, Philippines, 2009; pp. 69–108. [Google Scholar]
Treatment | SRP | PP | IM | AI (m3/ha−1) | TNFA (ha−1) | CF (ha−1) | |
---|---|---|---|---|---|---|---|
Nano-Silicon | Guifuji | ||||||
N0 | DBM | PW | SWF | 9750–11,250 | 0 | - | - |
FP | DBM | PW | SWF | 9750–11,250 | 150 | - | - |
HYP | DBM | PW | AWD | 7500–8250 | 160 | 450 | - |
SHY | PRM | AWNW | AWD | 7500–8250 | 180 | 450 | 15 |
Treatment | Panicles (m−2) | SNP | SSR (%) | 1000 GW (g) | TY (Mg ha−1) | |
---|---|---|---|---|---|---|
Sites | Daqing | 394.7 b | 97.7 a | 91.5 a | 21.0 b | 7.45 b |
Suiling | 472.4 a | 75.8 b | 89.8 b | 24.2 a | 7.78 a | |
Cultivation methods | N0 | 314.8 d | 73.7 d | 94.5 a | 23.4 a | 5.02 d |
FP | 429.1 c | 83.8 c | 91.2 b | 22.7 b | 7.36 c | |
HYP | 462.0 b | 92.3 b | 88.5 c | 22.6 b | 8.45 b | |
SHY | 528.2 a | 97.1 a | 88.3 c | 21.8 c | 9.63 a | |
Analysis of variance | ||||||
Sites | ** | ** | ** | ** | * | |
Cultivation methods | ** | ** | ** | ** | ** | |
Sites × Cultivation methods | * | ** | ns | ns | ns | |
Varieties | KJ6 | 437.5 b | 94.8 b | 89.8 b | 21.2 c | 7.88 b |
KJ8 | 352.0 c | 100.6 a | 93.2 a | 20.9 c | 7.01 c | |
LJ31 | 503.6 a | 75.9 c | 91.6 a | 23.8 b | 8.35 a | |
LJ46 | 441.2 b | 75.6 c | 87.9 c | 24.7 a | 7.21 c |
Treatment | Harvest Index | Biomass (Mg ha−1) | |
---|---|---|---|
Sites | Daqing | 0.524 b | 14.10 a |
Suiling | 0.575 a | 13.46 b | |
Cultivation methods | N0 | 0.513 b | 9.76 d |
FP | 0.530 b | 13.97 c | |
HYP | 0.578 a | 14.67 b | |
SHY | 0.577 a | 16.70 a | |
analysis of variance | |||
Sites | ** | * | |
Cultivation methods | ** | ** | |
Sites × Cultivation methods | ns | ns | |
Varieties | KJ6 | 21.2 c | 14084.5 a |
KJ8 | 20.9 c | 14107.9 a | |
LJ31 | 23.8 b | 13761.1 a | |
LJ46 | 24.7 a | 13153.6 b |
Treatments | Panicles (m−2) | SNP | SSR | 1000 GW | HI | Biomass |
---|---|---|---|---|---|---|
N0 | 0.8902 ** | 0.1229 ns | 0.0185 ns | −0.1013 ns | 0.7383 ** | 0.7636 ** |
FP | 0.6707 ** | −0.2533 ns | 0.2322 ns | 0.6219 ** | 0.5427 ** | 0.4344 * |
HYP | 0.6130 ** | 0.0085 ns | 0.3654 ns | 0.2947 ns | 0.5698 ** | 0.6049 ** |
SHY | 0.5820 ** | −0.0228 ns | 0.1731 ns | −0.0094 ns | 0.6465 ** | 0.5298 ** |
All | 0.8861 ** | 0.4893 ** | −0.4032 ** | −0.1794 | 0.6246 ** | 0.9054 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Hu, Y.; Sun, F.; Huo, W.; Li, H.; Liu, L.; Yin, D.; Zheng, G.; Guo, X. Yield and Resource Utilization Efficiency Gap in Early Maturing Japonica Rice Cultivars under Different Management Strategies—A Different Location Investigation. Agriculture 2022, 12, 1010. https://doi.org/10.3390/agriculture12071010
Lv Y, Hu Y, Sun F, Huo W, Li H, Liu L, Yin D, Zheng G, Guo X. Yield and Resource Utilization Efficiency Gap in Early Maturing Japonica Rice Cultivars under Different Management Strategies—A Different Location Investigation. Agriculture. 2022; 12(7):1010. https://doi.org/10.3390/agriculture12071010
Chicago/Turabian StyleLv, Yandong, Yue Hu, Fujing Sun, Wanyue Huo, Hongyu Li, Lihua Liu, Dawei Yin, Guiping Zheng, and Xiaohong Guo. 2022. "Yield and Resource Utilization Efficiency Gap in Early Maturing Japonica Rice Cultivars under Different Management Strategies—A Different Location Investigation" Agriculture 12, no. 7: 1010. https://doi.org/10.3390/agriculture12071010
APA StyleLv, Y., Hu, Y., Sun, F., Huo, W., Li, H., Liu, L., Yin, D., Zheng, G., & Guo, X. (2022). Yield and Resource Utilization Efficiency Gap in Early Maturing Japonica Rice Cultivars under Different Management Strategies—A Different Location Investigation. Agriculture, 12(7), 1010. https://doi.org/10.3390/agriculture12071010