Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil, Slurry and Wheat Stubble
2.2. Experimental Design
2.2.1. NH3 Experiment (E-AM)
2.2.2. GHG Experiment (E-GHG)
2.3. Statistical Analysis
3. Results
3.1. Ammonia Emissions
3.2. Nitrous Oxide Emissions
3.3. Total Nitrogen Emissions
3.4. Carbon Dioxide and Methane Emissions
3.5. Global Warming Potential and Yield-Scaled Global Warming Potential
4. Discussion
4.1. Ammonia Emissions
4.2. Greenhouse Gas Emissions
4.3. Global Warming Potential and Yield-Scaled Global Warming Potential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lesschen, J.P.; Ros, M.B.H.; Hendriks, C.M.J.; Sigurnjak, I.; Robles Aguilar, A.; Meers, E.; Michels, E.; Hajdu, Z.; Prado, J.; Pose Guerra, H.; et al. Effects of Current Techniques and Management Systems on CNP Flows in Europe; Nutri2cycle: Ghent, Belgium, 2021; Available online: https://edepot.wur.nl/547937 (accessed on 19 December 2021).
- Morino, C.C. A Aplicação de Dejetos de Suínos no Solo Como Insumo. Escola Superior da CETESB. 2021. Available online: https://cetesb.sp.gov.br/escolasuperior/wp-content/uploads/sites/30/2021/08/Camila-Canesi-Morino_TCC-T2-2021-versao-final.pdf (accessed on 8 December 2021).
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Michler, J.D.; Baylis, K.; Arends-kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, D.; Alvarenga, P.; Fragoso, R. Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts. Sustainability 2021, 13, 1436. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Cameira, M.D.R.; Valente, F.; Li, R.; Surgy, S.; Abreu, F.G.; Coutinho, J.; Fangueiro, D. Band application of acidified slurry as an alternative to slurry injection in Mediterranean winter conditions: Impact on nitrate leaching. Soil Tillage Res. 2019, 187, 172–181. [Google Scholar] [CrossRef]
- IPMA. Seca Meteorologica em Portugal. 2022. Available online: https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/textos/Evolucao_seca_meteorologica_2021_2022.html (accessed on 24 February 2022).
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Polcher, J. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Cameira, M.D.R.; Li, R.; Fangueiro, D. Integrated modelling to assess N pollution swapping in slurry amended soils. Sci. Total Environ. 2020, 713, 136596. [Google Scholar] [CrossRef]
- Fangueiro DPereira, J.L.S.; Macedo, S.; Trindade, H.; Vasconcelos, E.; Coutinho, J. Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2 and CH4 emissions and crop uptake. Geoderma 2017, 306, 160–166. [Google Scholar] [CrossRef]
- Ozlu, E.; Sandhu, S.S.; Kumar, S.; Arriaga, F.J. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci. Rep. 2019, 9, 11776. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.M.; Johnson, L. Valuing Manure as a Seller or a Buyer. UNL Water. 2022. Available online: https://water.unl.edu/article/animal-manure-management/valuing-manure-seller-or-buyer (accessed on 2 March 2022).
- Tian, H.; Xu, R.; Canadell, J.G. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Corbala-Robles, L.; Sastafiana, W.N.; Van Linden, V.; Volckle, E.I.; Schaubroeck, T. Life cycle assessment of biological pig manure treatment versus direct land application—A trade-off story. Resour. Conserv. Recycl. 2018, 131, 86–98. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Mahmood, A.; Awan, M.I.; Barbanti, L.; Seleiman, M.F.; Huang, G. Management Strategies to Mitigate N2O Emissions in Agriculture. Life 2022, 12, 439. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Lourenço, E. Conservation agriculture—A portuguese case study. J. Agron. Crop Sci. 2014, 200, 317–324. [Google Scholar] [CrossRef]
- Telles, T.S.; de Melo, T.R.; Righetto, A.J.; Didone, E.J.; de Cesare Barbosa, G.M. Soil management practices adopted by farmers and how they perceive conservation agriculture. Rev. Bras. Ciência Solo 2022, 46, 1–13. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Frouz, J. Chapter 1—Soil biodiversity conservation for mitigating climate change. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–19. [Google Scholar] [CrossRef]
- Taboada, M.Á.; Costantini, A.O.; Busto, M.; Bonatti, M.; Sieber, S. Climate change adaptation and the agricultural sector in South American countries: Risk, vulnerabilities and opportunities. Rev. Bras. Ciência Solo 2021, 45, e0210072. [Google Scholar] [CrossRef]
- EU. Directive 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L2284&from=EN (accessed on 21 January 2022).
- UNECE. Guidance Document on Preventing and Abating Ammonia Emissions from Agricultural Sources; ECE/EB.AIR/120; UNECE: Geneva, Switzerland, 2014; Available online: https://unece.org/fileadmin/DAM/env/documents/2012/EB/ECE_EB.AIR_120_ENG.pdf (accessed on 10 February 2022).
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Ten Hoeve, M.; Nyord, T.; Peters, G.M.; Hutchings, N.J.; Jensen, L.S.; Bruun, S. A life cycle perspective of slurry acidification strategies under different nitrogen regulations. J. Clean. Prod. 2016, 127, 591–599. [Google Scholar] [CrossRef]
- Seidel, A.; Pacholski, A.; Nyord, T.; Vestergaard, A.; Pahlmann, I.; Herrmann, A.; Kage, H. Effects of acidification and injection of pasture applied cattle slurry on ammonia losses, N2O emissions and crop N uptake. Agric. Ecosyst. Environ. 2017, 247, 23–32. [Google Scholar] [CrossRef]
- Wagner, C.; Nyord, T.; Vestergaard, A.V.; Hafner, S.D.; Pacholski, A.S. Acidification Effects on In Situ Ammonia Emissions and Cereal Yields Depending on Slurry Type and Application Method. Agriculture 2021, 11, 1053. [Google Scholar] [CrossRef]
- Silva, A.A.; Fangueiro, D.; Carvalho, M. Slurry Acidification as a Solution to Minimize Ammonia Emissions from the Combined Application of Animal Manure and Synthetic Fertilizer in No-Tillage. Agronomy 2022, 12, 265. [Google Scholar] [CrossRef]
- Koelsch, R. Extending the Manure Application Window: Post Plant Experiences; UNL: Lincoln, NE, USA, 2020; Available online: https://water.unl.edu/article/animal-manure-management/extending-manure-application-window-post-plant-experiences (accessed on 11 June 2020).
- Gonzatto, R.; Carvalho Miola, E.C.; Doneda, A.; Pujol Barbosa, S.; Aita, C.; Giacomini, S.J. Volatilização de amônia e emissão de óxido nitroso após aplicação de dejetos líquidos de suínos em solo cultivado com milho. Ciência Rural 2013, 43, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Inubushi, K.; Yashima, M. Mitigation of Climate Change by Nitrogen Managements in Agriculture. In Nitrogen in Agriculture—Physiological, Agricultural and Ecological Aspects; IntechOpen: London, UK, 2021; Volume 1, p. 13. [Google Scholar] [CrossRef]
- Sajeev, E.P.M.; Winiwarter, W.; Amon, B. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loyon, L.; Burton, C.H.; Misselbrook, T.; Webb, J.; Philippe, F.X.; Aguilar, M.; Doreau, M.; Hassouna, M.; Veldkamp, T.; Dourmad, J.Y.; et al. Best available technology for European livestock farms: Availability, effectiveness and uptake. J. Environ. Manag. 2016, 166, 1–11. [Google Scholar] [CrossRef]
- Silva, A.A.; Carvalho, M.; Coutinho, J.; Vasconcelos, E.; Fangueiro, D. Can Dairy Slurry Application to Stubble, without Incorporation into the Soil, Be Sustainable? Plants 2022, 11, 1473. [Google Scholar] [CrossRef]
- Rodrigues, J.; Alvarenga, P.; Silva, A.C.; Brito, L.; Tavares, J.; Fangueiro, D. Animal Slurry Sanitization through pH Adjustment: Process Optimization and Impact on Slurry Characteristics. Agronomy 2021, 11, 517. [Google Scholar] [CrossRef]
- Prado, J.; Chieppe, J.; Raymundo, A.; Fangueiro, D. Bio-acidification and enhanced crusting as an alternative to sulphuric acid addition to slurry to mitigate ammonia and greenhouse gases emissions during short term storage. J. Clean. Prod. 2020, 263, 121443. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Fangueiro, D.; Becerra, D.; Albarrán, Á.; Peña, D.; Sanchez-Llerena, J.; Rato-Nunes, J.M.; López-Piñeiro, A. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 2017, 150, 303–312. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land, an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/Fullreport-1.pdf (accessed on 19 September 2021).
- Watson, R.T.; Zinyoera, M.C.; Moss, R.H. Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific-technical analysis. In Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Fangueiro, D.; Pereira, J.L.S.; Fraga, I.; Surgy, S.; Vasconcelos, E.; Coutinho, J. Band application of acidified slurry as an alternative to slurry injection in a Mediterranean double cropping system: Agronomic effect and gaseous emissions. Agric. Ecosyst. Environ. 2018, 267, 87–99. [Google Scholar] [CrossRef]
- Sommer, S.G.; Génermont, S.; Cellier, P.; Hutchings, N.J.; Olesen, J.E.; Morvan, T. Processes controlling ammonia emission from livestock slurry in the field. Eur. J. Agron. 2003, 19, 465–486. [Google Scholar] [CrossRef]
- Chien, S.H.; Gearhart, M.M.; Villagarcia, S. Comparison of Ammonium Sulfate with Other Nitrogen and Sulfur Fertilizers in Increasing Crop Production and Minimizing Environmental Impact: A Review. Soil Sci. 2011, 176, 327–335. [Google Scholar] [CrossRef]
- Viero, F.; Bayer, C.; Fontoura, S.M.V.; de Moraes, R.P. Ammonia volatilization from nitrogen fertilizers in no-till wheat and maize in southern Brazil. Rev. Bras. Ciência Solo 2014, 38, 1515–1525. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.F. Ciclo do Nitrogênio em Sistemas Agrícolas; Embrapa: Brasília, Brazil, 2017; p. 163. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/175460/1/2017LV04.pdf (accessed on 12 October 2021).
- IPNI. Ammonium Sulfate. Nutrient Source Specifics No.12. 2011. Available online: http://www.ipni.net/specifics (accessed on 28 February 2022).
- Yamada, T.; Abdalla, S.R.S. Informações Recentes para Otimização da Produção Agrícola. Informações Agronômicas No 117. IPNI, 2007. Available online: http://www.ipni.net/publication/ia-brasil.nsf/issue/IA-BRASIL-2007-117 (accessed on 9 March 2022).
- Feilberg, A.; Sommer, S.G. Ammonia and malodorous gases: Sources and abatement technologies. In Animal Manure Recycling: Treatment and Management; Sommer, S.G., Christensen, M.L., Schmidt, T., Jensen, L.S., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2013; pp. 153–176. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gagnon, B.; Bertrand, N. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures. Can. J. Soil Sci. 2008, 88, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Lashermes, G.; Recous, S.; Alavoine, G.; Janz, B.; Butterbach-Bahl, K.; Ernfors, M.; Laville, P. N2O emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Sci. Total Environ. 2022, 806, 150883. [Google Scholar] [CrossRef]
- Aita, C.; Tonetto, F.; Gonzatto, R.; Pujol, S.B.; Schirmann, J.; dos Santos Depoi, J.; Mezzalira, A.P.; Hochscheid, M.; Zirbes, E.; Giacomini, S.J. Nitrous Oxide Emissions in a Wheat/Corn Succession Combining Dairy Slurry and Urea as Nitrogen Sources. Rev. Bras. Ciência Solo 2018, 42, e0170138. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Hatano, R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, L.; Sun, N.; Ding, X.; Li, J.; Wang, B.; Li, D. Soil CO2 and N2O Emissions in Maize Growing Season Under Different Fertilizer Regimes in an Upland Red Soil Region of South China. J. Integr. Agric. 2014, 13, 604–614. [Google Scholar] [CrossRef]
- Abagandura, G.O.; Mahal, N.K.; Butail, N.P.; Dhaliwal, J.K.; Gautam, A.; Bawa, A.; Kovács, P.; Kumar, S. Soil labile carbon and nitrogen fractions after eleven years of manure and mineral fertilizer applications. Arch. Agron. Soil Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rosa, D.; Rowlings, D.W.; Biala, J.; Scheer, C.; Basso, B.; Grace, P.R. N2O and CO2 emissions following repeated application of organic and mineral N fertiliser from a vegetable crop rotation. Sci. Total Environ. 2018, 637–638, 813–824. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Rochette, P.; Angers, D.A. Short-term C and N dynamics in a soil amended with pig slurry and barley straw: A field experiment. Can. J. Soil Sci. 2011, 81, 131–137. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Cantero-Martínez, C.; Bareche, J.; Arrúe, J.L.; Álvaro-Fuentes, J. Soil carbon dioxide and methane fluxes as affected by tillage and N fertilization in dryland conditions. Plant Soil 2014, 381, 111–130. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, N.; Xu, M.; Wang, S.; Zhang, J.; Cai, Z.; Cheng, Y. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil. Geoderma 2019, 337, 710–717. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Adviento-Borbe, M.A.; van Kessel, C.; Hill, J.E.; Linquist, B.A. Optimizing rice yields while minimizing yield-scaled global warming potential. Glob. Chang. Biol. 2014, 20, 1382–1393. [Google Scholar] [CrossRef]
Treatment | NH3 mg N pot−1 | N Lost as NH3 | |
---|---|---|---|
% of Applied Total N% of Applied NH4–N | |||
CS | 3.32 (0.2) d | - | - |
MS | 3.98 (0.2) d | 0.13 (<0.1) d | 0.13 (<0.1) d |
RDS | 170.19 (3.3) a | 33.82 (0.7) a | 90.75 (1.8) a |
ADS | 57.84 (12) c | 11.05 (3.7) c | 29.65 (9.9) c |
IR | 114.97 (5.2) b | 22.63 (1.0) b | 60.72 (2.8) b |
US | 68.44 (8.7) c | 13.20 (1.8) c | 35.41 (4.7) c |
Treatment | Cumulative N2O Emissions at First Harvest (mg N pot−1) | Total Cumulative N2O Emissions (mg N pot−1) | % of Total N Applied Lost as N2O (%) |
---|---|---|---|
CB | 4.82 (0.3) c | 6.57 (0.4) c | - |
CS | 5.66 (0.4) c | 7.21 (0.4) c | - |
IN | 14.82 (1.7) ab | 17.67 (1.8) ab | 0.74 (0.1) abc |
MB | 19.86 (2.9) a | 22.55 (3.2) ab | 1.07 (0.2) ab |
MS | 25.08 (4.7) a | 28.08 (4.4) a | 1.39 (0.3) a |
RDS | 11.45 (1.7) b | 16.17 (1.9) b | 0.60 (0.1) bc |
ADS | 19.98 (1.4) a | 23.79 (1.8) ab | 1.11 (0.1) ab |
IR | 20.51 (1.6) a | 23.36 (1.7) ab | 1.08 (0.1) ab |
US | 20.16 (1.0) a | 23.50 (1.0) ab | 1.09 (0.1) ab |
RDS T16 | 5.91(±0.2) c | 8.68 (0.2) c | 0.10 (0.1) c |
Treatment | CO2 Emissions (g C pot−1) | CH4 Emissions (mg C pot−1) | CO2 + CH4 Emissions (g C pot−1) | % of Initial C Lost as C Emissions (%) | GWP (g CO2–eq pot−1) | ys-GWP (g CO2–eq g−1) |
---|---|---|---|---|---|---|
CB | 7.19 (0.4) c | 2.44 (0.4) NS | 7.19 (0.4) c | 4.47 (0.3) c | 29.20 (1.7) c | 9.64 (2.4) a |
CS | 8.32 (0.5) bc | 2.59 (0.1) | 8.33 (0.5) bc | 5.00 (0.3)bc | 33.62 (1.6) bc | 7.76 (0.9) ab |
IN | 11.38 (0.8) ab | 3.08 (0.5) | 11.38 (0.8) ab | 6.84 (0.2)a | 49.20 (3.4) a | 3.77 (0.3) b |
MB | 9.75 (0.2) abc | 2.68 (0.3) | 9.76 (0.2) abc | 6.06 (0.1)abc | 45.26 (1.3) ab | 3.48 (0.3) b |
MS | 11.93 (0.9) a | 2.59 (0.1) | 11.94 (0.9) a | 7.17 (0.5)a | 55.57 (2.7) a | 3.85 (0.1) b |
RDS | 11.28 (0.4) ab | 2.61 (0.2) | 11.29 (0.4) ab | 6.56 (0.2)ab | 48.20 (2.0) a | 4.24 (0.4) b |
ADS | 12.55 (0.8) a | 2.88 (0.5) | 12.55 (0.8) a | 7.30 (0.4)a | 56.04 (0.3) a | 3.73 (1.7) b |
IR | 12.10 (1.0) a | 2.57 (0.2) | 12.10 (1.0) a | 7.04 (0.6)a | 54.18 (4.3) a | 4.31 (0.3) b |
US | 11.52 (0.2) a | 3.02 (0.1) | 11.52 (0.2) a | 6.70 (0.1)ab | 52.12 (0.5) a | 4.46 (0.4) b |
RDS T16 | 10.84 (0.6) ab | 2.22 (0.1) | 10.85 (0.6) ab | 6.31 (0.3)ab | 43.45 (2.2) ab | 4.92 (0.6) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.A.; Carvalho, M.; Coutinho, J.; Vasconcelos, E.; Fangueiro, D. Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions. Agriculture 2022, 12, 1021. https://doi.org/10.3390/agriculture12071021
Silva AA, Carvalho M, Coutinho J, Vasconcelos E, Fangueiro D. Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions. Agriculture. 2022; 12(7):1021. https://doi.org/10.3390/agriculture12071021
Chicago/Turabian StyleSilva, Arejacy Antonio, Mário Carvalho, João Coutinho, Ernesto Vasconcelos, and David Fangueiro. 2022. "Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions" Agriculture 12, no. 7: 1021. https://doi.org/10.3390/agriculture12071021
APA StyleSilva, A. A., Carvalho, M., Coutinho, J., Vasconcelos, E., & Fangueiro, D. (2022). Dairy Slurry Application to Stubble-Covered Soil: A Study on Sustainable Alternatives to Minimize Gaseous Emissions. Agriculture, 12(7), 1021. https://doi.org/10.3390/agriculture12071021