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Abstract: Soil nutrients are a vital part of soil fertility and other environmental factors. Soil testing
is an efficient tool used to evaluate the existing nutrient levels of soil and aid to compute the
appropriate quantity of soil nutrients depending upon the fertility level and crop requirements. Since
the conventional soil nutrient testing models are not feasible in real time applications, an efficient
soil nutrient, and potential of hydrogen (pH) prediction models are essential to improve overall crop
productivity. In this aspect, this paper aims to design an intelligent soil nutrient and pH classification
using weighted voting ensemble deep learning (ISNpHC-WVE) technique. The proposed ISNpHC-
WVE technique aims to classify the existence of nutrients and pH levels exist in the soil. In addition,
three deep learning (DL) models namely gated recurrent unit (GRU), deep belief network (DBN), and
bidirectional long short term memory (BiLSTM) were used for the predictive analysis. Moreover, a
weighted voting ensemble model was employed which allows a weight vector on every DL model of
the ensemble depending upon the attained accuracy on every class. Furthermore, the hyperparameter
optimization of the three DL models was performed using manta ray foraging optimization (MRFO)
algorithm. For investigating the enhanced predictive performance of the ISNpHC-WVE technique,
a comprehensive simulation analysis takes place to examine the pH and soil nutrient classification
performance. The experimental results showcased the better performance of the ISNpHC-WVE
technique over the recent techniques with accuracy of 0.9281 and 0.9497 on soil nutrient and soil pH
classification. The proposed model can be utilized as an effective tool to improve productivity in
agriculture by proper soil nutrient and pH classification.

Keywords: soil nutrients; pH classification; agriculture; soil management; deep learning; ensemble model

1. Introduction

The primary objective of soil management in agriculture is to enhance crops’ produc-
tivity via the improvement and maintenance of dynamic soil parameters [1]. Population
stress, terrestrial limitation, and weakening of conventional soil management approaches
have led to a deterioration in soil fertility, particularly in developing countries such as
India. Crop health is an essential component in the high productivity systems of cur-
rent agriculture [2]. Significant growth in crop productions could be achieved through
adopting the appropriate crop health management system. Improved productivity can be
attained by efficient soil resources management as well as corrective measures to employ
micronutrients [3]. Accurate and rapid detection of problems related to the crop enables

Agriculture 2022, 12, 977. https://doi.org/10.3390/agriculture12070977 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12070977
https://doi.org/10.3390/agriculture12070977
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-4897-398X
https://orcid.org/0000-0001-5857-8495
https://doi.org/10.3390/agriculture12070977
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12070977?type=check_update&version=1


Agriculture 2022, 12, 977 2 of 16

decision makers (agricultural experts) and farmers to decide suitable crop environment
management and soil resource management. Soil nutrients are a critical property which
contributes to soil fertility and other environmental aspects. Based on past research [4], it
might generate great impact on the community biomass, region distribution of vegetation,
species composition, and plant size. Thus, there is a need for an efficient method to evaluate
the soil nutrients for improved agricultural productivity.

Currently, the recent advent of machine learning (ML) and deep learning (DL) models
can be employed in the design of soil related classification methods [5]. Various ML meth-
ods are employed for predicting soil moisture, soil nutrient content, and soil types [4–6].
In order to classify village-wise soil nutrient levels and soil fertility indices, a group of
20 classifiers, including bagging, random forest (RF), AdaBoost, support vector machine
(SVM), and neural network (NN), were employed, and the class label was evaluated on a
scale of high, low, and medium according to their numerical value [6]. An extensive range
of regression methods were employed for generating the transfer function that directly
predicts the numerical value of village-wise fertility index. The soil fertility data of India
are summarized for block and district levels. These data are appropriate to make decisions
regarding an accurate quantity use of fertilizer, the consumptions based on the process of
fertilizer distribution, and the variation in fertility level. The main purpose of this study
was to categorize region-wise soil fertility indices on the basis of village level soil fertility
data [7]. Such classifications were employed in generating village-wise fertility indices
analyses, and they are applied for making fertilizer recommendations using the decision
support systems. This study will assist levels of fertility of the soil, therefore the significance
of the study to categorize the fertility index for soil nutrients such as boron (B), organic
carbon (OC), phosphorous (P), and potassium (K). The interests in forecasting the level
of this soil parameter using ML technique assist in decreasing the unwanted spending on
fertilizer input and analysis environmental quality and soil health [8].

Over the past few years, ML based methods have been demonstrated as a useful alter-
nate for handling complex and multivariate nature of problems in soil science, geoscience,
and different fields of engineering [9]. An enhanced kernel logistic regression model was
used for landslide vulnerability measurement. The logistic model tree, logistic regression
(LR), and evidential belief function-based function tree (FT) was used to predict fertility of
the soil.

This paper proposes an intelligent soil nutrient and pH classification using weighted
voting ensemble deep learning (ISNpHC-WVE) technique to determine the level of nutri-
ents and pH in the soil. Moreover, three deep learning (DL) models namely gated recurrent
unit (GRU), deep belief network (DBN), and bidirectional long short term memory (BiL-
STM) models were applied for prediction process. Then, a weighted voting ensemble model
was used to allocate weight vector to every DL model of the ensemble depending upon
the attained accuracy on every class. Finally, manta ray foraging optimization (MRFO)
algorithm based hyperparameter optimizer was derived. In order to examine the improved
prediction results of the ISNpHC-WVE technique, a wide-ranging simulation analysis was
carried out on benchmark dataset.

2. Literature Review

In Suchithra and Pai [10], five classification issues have been resolved by means of
faster learning classification techniques called extreme learning machine (ELM) using
distinct functions such as sine-squared, hard limit, hyperbolic tangent, triangular, and
Gaussian radial basis. Afterward, in the efficiency analysis of ELM using distinct activation
functions for this soil parameter classification, the Gaussian radial basis functions (RBF)
attained better performances. Chambers [11] proposed a study on the basis of hypotheses
that the ML approaches increase the precision of soil properties predictions. The relation
attained in this work is significant to understand the whole strategies for soil property
predictions with an optical spectroscopy sensor. Various ML models such as RF, decision
tree (DT), Naïve Bayes (NB), SVM, least squares SVM (LSSVM), and artificial neural network
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(ANN) are investigated in [11]. Wu et al. [12] used ML methods to make a sequence of
complete and new models from which to estimate soil nutrient contents. Soil nutrient
estimation method was made with six SVM models and four ANN models. The generalized
recurrent neural network (RNN) models were the best ANN estimation models using mean
square prediction error, least root mean square error, and mean error. The precision rate of
integrated k-nearest neighbor (KNN) local SVM models (viz., KNNSVM) for soil nutrient
estimation was higher than another five partial SVM methods. In Rose et al. [13], research
was conducted on distinct parameters employed to define the features of the soil and how
they are employed as an input to ML analysis or algorithms for forecasting soil fertility.
According to this, it can be noted that predictive methods can be effectively used on
enhanced soil parameters for soil fertility predictions using less human intervention and
more accuracy.

Rajamanickam [14] presents distinct Supervised ML models such as DT, KNN, and
SVM for predicting the soil fertility according to micro and macro nutrients status establish
in the datasets. A supervised ML algorithm is used on the training datasets and verified by
test datasets, and the execution of this algorithm is made by R Tools. Rajamanickam and
Mani [15] proposed a technique by integrating uncertainty quantification using the fisher
ratio pre-processing models and Kullback divergent chi-square FS to predict the fertility
of the soil. Then, Gustafson–Kessel probabilistic NN classifications use the soil fertility
prediction models for producing the likelihood distribution as output and the distinct kinds
of soil fertility levels rather than an individual value.

Sirsat et al. [16] developed fertility index predictions for soil organic carbons and
4 significant soil nutrients (zinc, manganese, phosphorus pentoxide, and iron) with the
most accessible regression method, especially a group of seventy-six regressors belonging
to twenty families, involving boosting NN, DL, SVM, RF, bagging, Bayesian models, lasso
and ridge regression, etc. The optimal result is attained using the extraTrees that attain
satisfactory predictive results. In Ning et al. [17], near infrared spectroscopy integrated
to chemometric method was used for determining the total nitrogen content and organic
matter as well as calculate fertility of tea plantation soil. Firstly, subtractive spectroscopy
and photometric precision are employed as indicators in finding optimum sample prepa-
ration conditions. Next, the combination of partial least square methods was compared
using three distinct characteristics: GA, wavelength extraction methods, and competitive
adoptive reweighted sampling quantitative discrimination model is defined to be optimum
for overall nitrogen contents as well as organic matter. Then, classification models for
soil fertility levels with LDA, SVM, and ELM were determined according to successive
projection and full spectrum algorithms individually.

Only few works have addressed both pH classification and soil nutrient classifica-
tion process. However, there is still a room for improvement to accomplish enhanced
classification performance. Furthermore, it is desirable to improve the decision maker’s
countermeasures and offer them an effortless method with a collection of common rules
which assist complex decision-making processes. Thus, the proposed work varies from
earlier works in the design of weighted voting ensemble model with MRFO based hyper-
parameter tuning strategy for soil pH and nutrient classification. The use of ISNpHC-WVE
model offers more insights and attained better performance than the state-of-art techniques.

3. Materials and Methods

In this study, a novel ISNpHC-WVE technique is derived to classify the level of soil
nutrients and pH level in the soil. The ISNpHC-WVE technique involves three DL models
for predictive process. In addition, the ISNpHC-WVE technique has derived a weighted
voting ensemble DL model with MRFO based hyperparameter tuning process. The use
of MRFO algorithm assists to boost the overall predictive performance of the DL models.
Figure 1 illustrates the overall process of ISNpHC-WVE model. The processes involved in
these modules are elaborated in the following sections.
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Figure 1. Overall process of ISNpHC-WVE model.

3.1. Data Collection

Samples of soil were gathered from individual farmers by the soil testing laboratory.
The soil samples were examined for different parameters of immediate relevance to plant
nutrition such as soil reaction (pH), electrical conductivity (EC), OC, plant available primary
nutrients (P, K), and micronutrients. The analytical models utilized to estimate soil fertility
parameters are given as follows. pH level was determined by the use of pH meter with
1:2.5 soil water suspension. EC is a metric of the concentration of soluble salts, and the
degree of salinity in the soil was determined by the use of conductivity meter with 1:2.5 soil
water suspension. The OC was computed by Walkley and Black’s wet digestion technique.
The phosphorous was estimated using ascorbic acid approach and potassium in soil was
determined by the solution ratio of 1:5 of neutral normal ammonium acetate solution and
the potassium in the extract was computed using flame photometry. Then, the available
boron (B) in soils was extracted by the use of the hot water extraction procedure. The
agricultural data collected from farmland involved four major parameters (Figure 2A):
OC, P, K, and B. Each class comprises three subclasses namely low, medium, and high.
Moreover, the pH level can be divided into four classes such as strongly acidic (SA), highly
acidic (HA), moderately acidic (MA), and slightly acidic (SLA). The details related to the
data are given in Figure 2B.

3.2. Prediction Models

For predictive analysis of the soil nutrients and pH level, three DL models namely
GRU, DBN, and BiLSTM models are employed. The overall structure and working of the
DL models are offered in the succeeding subsections.

3.2.1. GRU Model

RNN has been proven to be more powerful in extracting temporal patterns than
traditional neural networks by building self-loop connections from a node to itself and
sharing parameters across different time steps. The benchmark RNN takes their input from
the present input xt along with what they have picked up earlier. Firstly, the hidden states
ht carrying the network memory can be calculated as

ht = f (Wht−1 + Uxt + b) (1)
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where ht−1 represents the prior hidden states; χi denotes a novel input; W & U indicates
the weight matric; b signifies the bias vector and f is a nonlinear activation function. Then,
the current state 0t is calculated as

0t = W0ht + b0 (2)

where W0 is the weight matrix, and b0 is the bias vector. Although RNN shows a robust
ability to model non-linear time sequences in an efficient manner, it cannot escape the
exploding and vanishing gradient issues, and its accuracy decreases when the time span be-
comes longer [18]. The LSTM was proposed for mitigating the above-mentioned problems,
but the time-consuming training process may hinder a wide-spread adoption of LSTM in
real-time. In our paper, we employ another notable RNN variant, a gated recurrent unit
network (GRU). Figure 3 shows the framework of GRU.
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Both RNN and GRU have chain-like modules, but the repeating modules of GRU are
more complicated. Each repeating module of GRU contains two gates, named update gate
and reset gate, which gives GRU the ability to control the flow of information. The two
gates are sigmoid units that map the variables in [0, 1], where the value between 0 and 1 is
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the ratio of memory Thus, GRU can tackle the correlation with the time series over long
and short terms.

Initially, the rt reset gate controls how many data from the prior hidden states would
be transferred to the present hidden states, whereas

rt = σ(Wr · [ht−1′xt] + br) (3)

The novel memory candidate h̃t is created using rt using tan h layers derive from the
succeeding equation:

h̃t = tan h (W · [rt · ht−1, xt]) (4)

The upgrade gate zt determine the hidden states would be upgraded using a novel
hidden states, whereas

zt = σ(Wz[ht−1′xt] + bz) (5)

At last, the hidden states ht are regenerated

ht = (1− zt) · ht−1 + zt · h̃t (6)

In Equations (3)–(6), Wr, Wz indicates the weight matric, br, bz denotes the respective
bias vector.

3.2.2. DBN Model

The DBN has been generative graphical method which is a class of deep neural
networks (DNNs). Hinton [19] projected to stack trained Restricted Boltzmann Machine
(RBM) from the greedy approach for creating the called DBN. This is a deep layer network
with all layers being an RBM network stacked together for construction of a DBN.

In DBN structure, all two sequential hidden layer procedures an RBM. An input layer
of the current RBM is usually the resultant layer of preceding RBM. The DBN has been
graphical method which contains deep hierarchical representation of trained data. The joint
probability distribution of visible vector v and l hidden layer (hk(k = 1, 2, . . . , l), h0 = v) is
demonstrated utilizing the subsequent equations:

P(hh2,..,.,hl |v)=P(hl
|hl−1)P(hl−1|hl−2)...P(h|v)

P(h1, h2, . . . , h1|v) = P(hl |hl−1)P(hl−1|hl−2) . . . P(h1|v)

=
l

∏
k=1

P(hk|hk−1)

(7)

The probabilities of bottom-up inference in the visible layer v to hidden layer hk, is
determined as:

P(hk|hk−1) = σ

(
bk

j +
m

∑
j=1

wk
ijh

k−1
j

)
, (8)

where bk represents the bias to the layer kth.
Comparison, the top-down inference from the symmetric version of bottom-up infer-

ence that is expressed as [20]:

P(hk−1|hk) = σ

(
ak−1

j +
m

∑
j=1

wk−1
ij hk

j

)
, (9)

where ak−1 signifies the bias to the layer (k – 1)th. The training process of DBN is separated
into 2 phases: pre-training and fine-tuning utilizing back propagation (BP). Pre-training
subsequently fine-tuning has been great mechanism to train as DBN.
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3.2.3. BiLSTM Model

LSTM [21] was developed by a specific memory cell for storing temporal data. This
framework permits LSTM to recall longer-range features better than traditional RNN. Using
multilayer models, component of cells at time step i at l layers in the forward direction
could be performed as follows:

f l
i = σ

(
W l

( f )

→
h

l−1

i + V l
( f )

→
h

l

i−1 + bl
( f )

)
, (10)

il
i = σ

(
W l

(i)

→
h

l−1

i + V l
(i)

→
h

l

i−1 + bl
(i)

)
, (11)

0l
i = σ

(
W l

(0)

→
h

l−1

i + V l
(0)

→
h

l

i−1 + bl
(0)

)
, (12)

gl
i = tanh

(
W l

(g)

→
h

l−1

i + V l
(g)

→
h

l

i−1 + bl
(g)

)
, (13)

Cl
i = f l

i � Cl
i−1 + il

i � gl
i , (14)

→
h

l

i = 0l
i � tanh

(
Cl

i

)
, (15)

Whereas
→
h

l

i , il
i , f l

i , 0l
i , gl

i , and Cl
i , represents the hidden state, input gate, forget gate,

output gate, candidate gate, and cell state correspondingly. Each is the size of the Nl-
dimension vector. In Equations (11)–(14), W l represents the weight matrices among cells of
layer (l − 1)− l, V l denotes the weight matrices among successive cells of layer l, and bl

indicates the bias vector at all the layers. The bias values and weight matrices in a cell are
distributed with the length of series, therefore decreasing the overall amount of hidden
neurons and weights in the network. The sigmoid function σ and hyperbolic tangent
functions are employed as activation function and � denotes elementwise multiplication.

A bi-LSTM could process the information in the backward and forward direction

with two distinct LSTM layers. The forward hidden states,
→
h

l

i , estimated using the above

equation, and the backward states,
←
h

l

i estimated, are concatenated, and later fed into the
following layers:

↔
h

l

i =

→h l

i ,
←
h

l

i

, (16)

Whereas l = 0 denotes the input layer. BiLSTM is better at attaining the correlations
amongst the components in an entire series through data in both directions, rather than
recalling the feature in one direction. Further, with the parameter sharing method, the
BiLSTM models require lesser memory for solving the problems than traditional CNN and
FNN models.

3.3. Design of MRFO Based Parameter Optimization Technique

To optimally tune the hyperparameters of the DL models, the MRFO algorithm is
applied to it. The inspiration of MRFO depends upon the smart foraging behaviors of MR.
It has three exclusive foraging principles of manta ray (MR) for identifying the optimal
food source [22]. MRFO is operated by three foraging behaviors: Somersault foraging,
Chain foraging, and Cyclone foraging. Some numerical methods are given as follows.

3.3.1. Chain Foraging

In MRFO, MR monitors the place of plankton and moves towards it. If the plankton
concentration is higher, then the position will be optimal in which, every position is
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upgraded by a remarkable identified solution. This numerical method of chain foraging is
depicted as:

Cdim
x (n + 1) = Cdim

x (n) + rand.Cdim
best(n) + ϕCdim

best(n)− Cdim
x (n).

X = 1
(17)

Cdim
x (n + 1) = Cdim

x (n) + rand.Cdim
x−1(n)− Cdim

x (n) + ϕCdim
best(n)− Cdim

x (n)
X = 2 . . . . . . N

(18)

where, implies the place of xth individual at time n in dim is a dimension, rand refers
an arbitrary vector from [0, 1], ϕ denotes a weight coefficient, and refers plankton with
maximum concentration.

3.3.2. Cyclone Foraging

In this strategy, MR is shifted spirally to the place of the food source; the MR swims
toward the plankton. It follows the one in front of it and swims towards the food spirally.
The numerical notion of spiral-shaped events of MRs is described in the following:

Cx(n + 1) = Cbest
+ rand.(Cx−1(n)− Cx(n)
+ rat. cos(2πt).(Cbest − Cx(n))

)
(19)

(19)

Dx(n + 1) = Dbest
+ rand.(Dx−1(n)− Dx(n)
+ rat. cos(2πt).(Dbest − Dx(n))

)
(20)

(20)

This behavior can be updated to d space. The arithmetical model of cyclone foraging
is represented as:

Cdim
x (n + 1) = Cdim

best + rand.
(

Cd
best(n)− Cd

x(n) + αCdim
best(n)− Cdim

x (n)
)

.
X = 1

(21)

Cdim
x (n + 1) = Cdim

best + rand.
(

Cd
best(n)− Cd

x(n) + αCdim
best(n)− Cdim

x (n)
)

.
X = 2 . . . . . . N

(22)

A = 2Erand1 T−t+1
T ·Sin(2πrand1) (23)

where α refers the weight coefficient, T shows higher count of iterations, and rand1 defines
the rand value from [0, 1]. Every individual explores the novel position away from recent
optimal one through allocating a novel arbitrary location in the search space location.
This process is highly concentrated on MRFO to accomplish a wider global search; the
mathematical function is projected as;

Cdim
r = LBdim + rand

(
UBdim − LBdim

)
(24)

where rand refers the random position, LB and UB denote lower and upper limits of a
dimension, correspondingly.

3.3.3. Somersault Foraging

Every MR intends to move and somersault to novel place. Hence, it maximizes the
positions and makes an optimal position. The numerical representation of this behavior
can be depicted as:

Cdim
x (n + 1) = Cdim

x (n) + som.rand2.
(

Cdim
best(n)− rand3Cdim

x (n)
)

X = 1 . . . N
(25)
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where som shows the somersault factor which selects a somersault threshold of MRs and
Som = rand2 and rand3 defines two random values from [0, 1].

Thus, the entire time complexity of MRFO is demonstrated as:

O(MRFO) = O(T (Ochain f oraging + Ocyclone f oraging
+OSomersault f oraging)

(26)

where T refer higher count of iterations.

3.4. Design of Weighted Voting Ensemble Model

In general, the generation of an ensemble of classifiers considers mostly two phases:
Combination and Selection. The combination of a single classifier prediction takes place
through various methods with distinct concepts; whereas the selection of component
classifier is deliberated necessary for the efficacy of ensemble, and the key points for its
efficiency is dependent on their accuracy and diversity. Considering that fact, the presented
method depends on the concept of electing a set C = (C1, C2, . . . , CN) of N self-labelled
classifier through distinct methods (using heterogeneous method representation) to an
individual dataset and the combination of their separate prediction take place by using a
novel weighted voting method. It is noteworthy that weighted voting is a widely employed
method to combine prediction in pair-wise classification where the classifier is not equally
treated. All the classifiers are calculated on a calculation set D and related to a coefficient
(weight), generally proportional to its classification performance.

Assume a dataset D using M classifier, i.e., used to the calculation of all the component
classifiers. Particularly, the efficiency of all the classifiers Ci, using i = 1, 2, . . . , N is
calculated on D and a N ×M matrix W is determined by

W =


w1,1 w1,2 · · · w1,M
w2,1 w2,2 · · · w2,M

...
... · · ·

...
wN,1 wN,2 · · · wN,M


Whereas all the elements wi,j are determined as follows

wi,j =
2p(Ci)

j∣∣Dj
∣∣+ p(Ci)

j + q(Ci)
j

, (27)

While Dj represent the collection of samples of the datasets belong to the class j, p(Ci)
j

denotes the amount of accurate prediction of classifiers Ci on Dj also q(Ci)
j indicates the

amount of incorrect predictions of Ci that instances belong to class j. Obviously, all the
weights wi,j are the F1-score of classifiers Ci for j class [23]. The basis behindhand (1) is to
evaluate the efficacy of all the classifiers, relate to all the classes j of calculation set D. Next,
the class y of all the unknown instances χ in the test sets are evaluated as follows

y = argmax
j

N

∑
i=1

wi,jχA
(
Cj(x) = j

)
, (28)

Whereas function argmax return the values of index respective to the large value from
array, A = {1, 2, . . . , M} denotes the set of exclusive class labels and χA indicates the
characteristics function that considered the predictions j ∈ A of a classifiers Ci on instances
χ and create vectors where the j coordinates take values of one and the remaining takes
the value of zero. Currently, it is noteworthy that this is the execution they elected for
evaluating the efficiency of all the classifiers of the ensemble on the early training labelled
set L.
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4. Result Analysis

The performance of the ISNpHC-WVE technique for soil nutrient and pH classification
is tested using Python 3.6.5 tool.

4.1. Proposed Model on Soil Nutrient Classification

Figure 4 reports the set of confusion matrices generated by the ISNpHC-WVE tech-
nique on the classification of soil nutrients and pH. Figure 4a shows the confusion matrix
of the ISNpHC-WVE technique on the classification of ‘OC–F’. The figure exhibited that the
ISNpHC-WVE technique has categorized 23 instances into Low, 44 instances into Medium,
and 70 instances into High. Moreover, Figure 4b illustrates the confusion matrix of the
ISNpHC-WVE manner on the classification of ‘P–F’. The figure demonstrates that the
ISNpHC-WVE technique has categorized 131 instances into Low and 13 instances into
Medium. Thereafter, Figure 4c depicts the confusion matrix of the ISNpHC-WVE manner
on the classification of ‘K–F’. The figure demonstrated that the ISNpHC-WVE approach
has categorized 88 instances into Low, 29 instances into Medium, and 12 instances into
High. In line with, Figure 4d shows the confusion matrix of the ISNpHC-WVE algorithm
on the classification of ‘B–F’. The figure exhibited that the ISNpHC-WVE method has
categorized 120 instances into Low and 22 instances into Medium. At last, Figure 4e shows
the confusion matrix of the ISNpHC-WVE technique on the classification of ‘pH’. The figure
outperformed that the ISNpHC-WVE methodology has categorized 13 instances into SA,
75 instances into HA, 36 instances into MA, and 10 instances into SLA.

Table 1 investigates the soil nutrient classification results analysis of the ISNpHC-
WVE technique under different classes. The table values portrayed that the ISNpHC-WVE
technique has accomplished maximum classification outcome. For instance, the ISNpHC-
WVE technique has classified the organic carbon with the average positive predictive
value (PPV) of 0.8933, true positive rate (TPR) of 0.9131, accuracy of 0.9303, F-measure of
0.9016, and kappa of 0.827. Additionally, the ISNpHC-WVE approach has classified the
phosphorus with the average PPV of 0.9493, TPR of 0.9850, accuracy of 0.9412, F-measure
of 0.9668, and kappa of 0.3341. Moreover, the ISNpHC-WVE manner has classified the
potassium with the average PPV of 0.9030, TPR of 0.8367, accuracy of 0.9029, F-measure
of 0.8610, and kappa of 0.7080. Furthermore, the ISNpHC-WVE algorithm has classified
the boron with the average PPV of 0.9524, TPR of 0.9600, accuracy of 0.9281, F-measure of
0.9562, and kappa of 0.3408.

Table 1. Result analysis of ISNpHC-WVE technique on soil nutrient classification.

Methods PPV TPR Accuracy F-Measure Kappa

Organic Carbon-F

Low 0.8846 1.0000 0.9804 0.9388 -

Medium 0.8980 0.8302 0.9085 0.8627 -

High 0.8974 0.9091 0.9020 0.9032 -

Average 0.8933 0.9131 0.9303 0.9016 0.8277

Phosphorus-F

Average 0.9493 0.9850 0.9412 0.9668 0.3341

Potassium-F

Low 0.8302 0.9565 0.8543 0.8889 -

Medium 0.8788 0.6304 0.8609 0.7342 -

High 1.0000 0.9231 0.9934 0.9600 -

Average 0.9030 0.8367 0.9029 0.8610 0.7080

Boron-F

Average 0.9524 0.9600 0.9281 0.9562 0.3408
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4.2. Proposed Model on Soil pH Classification

Table 2 and Figure 5 investigate the soil pH classification results analysis of the
ISNpHC-WVE technique under different classes, i.e., Organic Carbon in Figure 5a, Phos-
phorus in Figure 5b, Potassium in Figure 5c, Boron in Figure 5d, and Soil in Figure 5e. These
values portray that the ISNpHC-WVE technique has accomplished maximum classification
outcome. For instance, the ISNpHC-WVE technique has classified the SA with the PPV
of 0.7222, TPR of 0.9286, accuracy of 0.9597, and F-measure of 0.8125. Simultaneously,
the ISNpHC-WVE approach has classified the HA with the PPV of 0.9615, TPR of 0.9036,
accuracy of 0.9262, and F-measure of 0.9317. Eventually, the ISNpHC-WVE algorithm has
classified the MA with the PPV of 0.8571, TPR of 0.9000, accuracy of 0.9329, and F-measure
of 0.8780. Meanwhile, the ISNpHC-WVE methodology has classified the SLA with the PPV
of 0.9091, TPR of 0.8333, accuracy of 0.9799, and F-measure of 0.8696.
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Table 2. Result analysis of ISNpHC-WVE technique on soil pH classification.

Soil (pH)

Methods PPV TPR Accuracy F-Measure Kappa

SA 0.7222 0.9286 0.9597 0.8125 -

HA 0.9615 0.9036 0.9262 0.9317 -

MA 0.8571 0.9000 0.9329 0.8780 -

SLA 0.9091 0.8333 0.9799 0.8696 -

Average 0.8625 0.8914 0.9497 0.8729 0.8364
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4.3. Comparative Analysis with Existing Models

A brief comparative study of the ISNpHC-WVE technique with existing techniques [10]
is performed in Table 3 and Figures 6 and 7. On examining the classification results of
OC-F, the ISNpHC-WVE technique has achieved a higher accuracy of 0.9303 whereas the
ELM-TAN, ELM-SIN, ELM-TRI, ELM-HAR, and ELM-GRBF techniques have accomplished
a lower accuracy of 0.8104, 0.6732, 0.6470, 0.7320, and 0.8366 respectively.

Thereafter, on investigating the classification outcomes of P–F, the ISNpHC-WVE
method gained an increased accuracy of 0.9412 whereas the ELM-TAN, ELM-SIN, ELM-
TRI, ELM-HAR, and ELM-GRBF methodologies accomplished a minimal accuracy of
0.8823, 0.8692, 0.8562, 0.8627, and 0.9000 correspondingly. In addition, on examining the
classification results of K–F, the ISNpHC-WVE technique achieved a higher accuracy of
0.9029, whereas the ELM-TAN, ELM-SIN, ELM-TRI, ELM-HAR, and ELM-GRBF techniques
accomplished lower accuracies of 0.7189, 0.6274, 0.6470, 0.7385, and 0.7843, respectively.
Moreover, on exploratory classification results of B-F, the ISNpHC-WVE technique achieved
a maximum accuracy of 0.9281, whereas the ELM-TAN, ELM-SIN, ELM-TRI, ELM-HAR,
and ELM-GRBF techniques accomplished lower accuracoies of 0.8627, 0.8496, 0.8431, 0.8627,
and 0.8823 correspondingly. Furthermore, on determining the classification results of pH,
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the ISNpHC-WVE technique has achieved a higher accuracy of 0.8729 whereas the ELM-
TAN, ELM-SIN, ELM-TRI, ELM-HAR, and ELM-GRBF techniques have accomplished a
lower accuracy of 0.8859, 0.7114, 0.7852, 0.8523, and 0.8729 respectively.

Table 3. Comparative results analysis of the ISNpHC-WVE with existing techniques [10].

Methods Organic Carbon-F Phosphorus-F Potassium-F Boron-F Soil (pH)

ELM-TAN 0.8104 0.8823 0.7189 0.8627 0.8859

ELM-SIN 0.6732 0.8692 0.6274 0.8496 0.7114

ELM-TRI 0.6470 0.8562 0.6470 0.8431 0.7852

ELM-HAR 0.7320 0.8627 0.7385 0.8627 0.8523

ELM-GRBF 0.8366 0.9000 0.7843 0.8823 0.8187

ISNpHC-WVE 0.9303 0.9412 0.9029 0.9281 0.8729Agriculture 2022, 15, x FOR PEER REVIEW 14 of 17 
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Figure 6. Comparative results analysis of ISNpHC-WVE technique with recent models [10] on soil
nutrient classification.

Table 4 offers a detailed computation time (CT) examination of the ISNpHC-WVE
technique with existing models. The experimental values implied that the ELM-TAN
model has attained higher CT of 32.65 s. Thereafter, the ELM-SIN and ELM-TRI models
resulted in slightly reduced CT of 31.48 s and 31.06 s, respectively. Next, the ELM-HAR and
ELM-GRBF models resulted in reasonable CTs of 30.54 s and 29.11 s, respectively. However,
the ISNpHC-WVE technique showed an effectual outcome with a minimal CT of 24.56 s.
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Table 4. Computational time analysis of the ISNpHC-WVE with existing techniques.

Methods Computation Time (s)

ELM-TAN 32.65

ELM-SIN 31.48

ELM-TRI 31.06

ELM-HAR 30.54

ELM-GRBF 29.11

ISNpHC-WVE 24.56

5. Discussion

By looking into the above-mentioned results analysis, it is apparent that the ISNpHC-
WVE technique has the ability to classify soil nutrients and soil pH effectively over other
models [10]. The proposed model accomplishes superior performance due to the inclusion
of weighted voting ensemble model and hyperparameter tuning process. The proposed
weighted strategy allocates weights on every individual classification model of the en-
semble depending upon the accuracy on every class. The presented model allocates a
vector of weights on every component classifier of the ensemble depending upon the
accuracy on every class. The major intention is to determine the efficiency of the weighted
voting ensemble model compared to the majority voting ensembles, by the use of separate
component classification models in each case. Therefore, the presented weighted voting
scheme had a considerable impact of every ensemble of self-labeled model, making use of
the individual predictions of every component classifier effectually over other traditional
voting models.
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6. Conclusions

In this study, a novel ISNpHC-WVE technique was derived to classify the level of
soil nutrients and pH level in the soil. The ISNpHC-WVE technique involved three DL
models: GRU, DBN, and BiLSTM for the predictive process. In addition, the ISNpHC-WVE
technique derived a weighted voting ensemble DL model with MRFO-based hyperparam-
eter tuning process. The use of MRFO algorithm assists to boost the overall predictive
performance of the DL models. In order to examine the improved prediction results
of the ISNpHC-WVE technique, a wide-ranging simulation analysis was carried out on
benchmark dataset. The experimental results showcased the better performance of the
ISNpHC-WVE technique over the recent techniques with accuracy of 0.9281 and 0.9497 on
soil nutrient and soil pH classification, respectively. In future, the presented ISNpHC-WVE
technique could be deployed in the real time environment to automate the agricultural
process. In addition, the performance of the proposed model can be improved by the use of
hybrid metaheuristic optimizers with feature selection process. Moreover, the performance
of the proposed model can be investigated on large scale datasets in future.
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