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Section A 

A brief description of the determination of k-NN hyperparameters:  

 Number of neighbors (k) 

Good care must be taken to ensure a proper selection of the k value as it greatly affects the accuracy of k-

NN algorithm. One common way of choosing the optimal k value is to perform the cross-validation (CV) 

method, which is discussed later. An optimal value of k produces a minimum error using the validation 

dataset. 

 Distance function 

Distance function – considered the core of the k-NN algorithm – defines how to compute the distance of 

each observation in the testing dataset (called query observation) from all the observations in the training 

dataset. An observation is specified by a collection of n + 1 data points, {𝑥𝑖 , 𝑦}𝑖=1
𝑛 , where n represents the 

number of attributes known as input variables (x’s), and y represents the corresponding output. Several 

different types of distance functions have been used and researched for k-NN based models [36, 37]. The 

Euclidian distance function, often called Ruler distance which is an extension of Pythagoras’ theorem, is 

the most popular, efficient, and commonly used function that is mathematically given by: 

 

𝐸𝐷(𝐴, 𝐵) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (S1) 

 

where A and B are represented by feature vectors whose elements are in the sets {x1, x2, ..., xn} and  

{y1, y2, ..., yn}, respectively, where n is the feature space dimensionality. 

 Weighting function 

The weighting function specifies how much each of the k observations in the training dataset contributes 

to the prediction of the query observation in the testing dataset. The standard k-NN algorithm used the 

same weight for each of the k observations, given by: 

 

𝑊(𝑋, 𝑋𝑖) =
1

𝑘
   (S2) 

 

It is recommended to apply a non-uniform function in order to allocate smaller weights to the closer 

observations, and larger weights to the farther observations from the query observation, which means that 

the closer observations to the query observation will contribute more to the prediction, and vice versa. An 

example of a non-uniform weighting function is given by Eq. (S3) [38]. After assigning a weight value to 

each of the k nearest neighbors to the query observations, the output of the query observation (Y) is 

calculated according to Eq. (S4): 

 𝑊(𝑋, 𝑋𝑖) =
exp(−𝐷(𝑋, 𝑋𝑖))

∑ exp(−𝐷(𝑋, 𝑋𝑖))𝑘
𝑖=1

   (S3) 

 

where X and Xi are the query observation in the testing dataset and the i-th observation in the training 

dataset, respectively; D(X,Xi) is the distance between X and Xi; W(X,Xi) represents the weight assigned to 

Xi based on the D(X,Xi); k is the number of nearest neighbors to X. 

 

𝑌 =  ∑ 𝑊(𝑋, 𝑋𝑖)

𝐾

𝑖=1

× 𝑌𝑖   (S4) 

 

where Yi is the output corresponding to Xi. 
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Section B 

 

An example of a q-fold cross-validation (CV) method: 

A brief description of an example of a q-fold CV, graphically illustrated in Figure S1, is given below [39]. 

i) The training subset was split into q equal-sized folds. 

ii) For each k value (1 to 10), q runs were executed such that in each run, the model was trained on (q-1) 

folds.  

iii) The trained model was then tested against the remaining fold (called the validation fold) to determine 

the validation error. 

iv) The average of errors on the validation folds was plotted versus the k values. 

The value of k that generated the least error in the trained model was selected as the optimal value. 

 

 
 
Figure S1. Schematic illustration of q-fold CV approach 

Notes: Ntr stands for the size of the training subset, which is divided into q equal-sized subset; in each run, 

the white circles represent the training folds, whereas the red circle represents the validation fold; 

RMSE: root mean squared error. 
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Section C 

 

To derive a linear SVM regression with the use of Lagrangian function and optimal constraints: 

In order to derive a linear SVM regression, Eq. (6) should be optimized, which is generally solved in 

its dual formulation. To obtain the dual objective function, Lagrangian function (Eq. (S5)) from the primal 

objective function is constructed: 

  
𝐿 (w, 𝜉, 𝜉∗, 𝑏, 𝛼, 𝛼∗, 𝛽, 𝛽∗)

=   
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 −  ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + ⟨𝑤, 𝑥𝑖⟩ + 𝑏)

𝑛

𝑖=1

 

−  ∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖 + 𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏)

𝑛

𝑖=1

 −  ∑ 𝛽𝑖𝜉𝑖

𝑛

𝑖=1

− ∑ 𝛽𝑖
∗𝜉𝑖

∗

𝑛

𝑖=1

          

 

 

 

 

(S5) 

 

where 𝛼𝑖, 𝛼𝑖
∗, 𝛽𝑖 , 𝛽𝑖

∗ ≥ 0 are the Lagrange multipliers associated with the vector xi, while the following partial 

derivatives of 𝐿 with respect to 𝑤, 𝑏, 𝜉𝑖 , and 𝜉𝑖
∗ must be equal to zero under the optimal conditions. 

 

𝜕𝑤𝐿 = 0 ⇒ 𝑤 = ∑ 𝑥𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

 (S6) 

𝜕𝑏𝐿 = 0 ⇒ ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑛

𝑖=1

= 0 (S7) 

𝜕𝜉𝑖
𝐿 = 0 ⇒ ∑ 𝛽𝑖

𝑛

𝑖=1

= 𝐶 − ∑ 𝛼𝑖

𝑛

𝑖=1

 (S8) 

𝜕𝜉𝑖
∗𝐿 = 0 ⇒ ∑ 𝛽𝑖

∗

𝑛

𝑖=1

= 𝐶 − ∑ 𝛼𝑖
∗

𝑛

𝑖=1

 (S9) 

 

Substituting Eqs. (S6-S9) into Eq. (S5) yields the dual objective function: 

 

𝐿 (𝛼, 𝛼∗) =  
1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖 , 𝑥𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑛

𝑖=1

− ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

 (S10) 

 

which should be minimized with respect to 𝛼1, 𝛼1
∗, … , 𝛼𝑛, and 𝛼𝑛

∗ , subject to the following constraints: 

 

subjected to      ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

= 0,      0 ≤ 𝛼𝑖  ≤ 𝐶,      0 ≤ 𝛼𝑖
∗  ≤ 𝐶      (S11) 

  

Equation (S10) can be solved using quadratic programming (QP) method. However, from the 

perspective of computational load, the use of QP method may be unfeasible because the Gramian matrix, 

often shortened to Gram matrix, may become too large to be stored in memory. Instead, the use of 

sequential minimal optimization (SMO) algorithm can reduce the computational load and prevent low 

memory problems. SMO, originally introduced by Platt [41] at Microsoft Research (MSR) (Redmond, 

Washington, United States), is the most common algorithm for solving SVM problems, which uses a two-

point optimization technique. In other words, SMO breaks down the optimization problem into a series of 

sub-problems, each involving two Lagrange multipliers, which are then optimized analytically without 
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requiring a QP solver. For detailed information on SMO algorithm, the reader is referred to the study of 

Platt [41]. 

 

After solving Eq. (S10) to obtain 𝛼1, 𝛼1
∗, … , 𝛼𝑛 , 𝛼𝑛

∗ , substituting Eq. (S6) into Eq. (3) yields: 

 

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)〈𝑥𝑖 , 𝑥〉

𝑛

𝑖=1

+ 𝑏 (S12) 

 

which is the so-called linear SVM regression, where 𝛼𝑖 , and  𝛼𝑖
∗ ≥ 0 are the Lagrange multipliers associated 

with the vector xi. 

 

All the vectors xi for which (𝛼𝑖 − 𝛼𝑖
∗)  ≠ 0 are called support vectors that are utilized to formulate the 

solution. The vectors for which (𝛼𝑖 − 𝛼𝑖
∗) = 0 are not considered as support vectors, which means if these 

vectors are removed from training dataset prior to training the SVM model, the same solution could be 

achieved. 
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Section D 

 

A solved example of how to use the developed SVM model in this study: 

To apply the developed SVM model for estimating how much biogas can be produced for a given data 

on temperature (°C), C/N ratio, and retention time (d) over the range examined, the following equation can 

be used:  

𝑓(𝑥) =  ∑ 𝛼 × 𝐾 (𝑥, 𝑥𝑖)

𝑛𝑠𝑣

𝑖=1

+ 𝑏 

where, 

- 𝛼 = 𝛼𝑖 − 𝛼𝑖
∗, where 𝛼𝑖  and 𝛼𝑖

∗ are the Lagrange multipliers associated with 𝑥𝑖 in the training dataset 

(see Table S1 for 𝛼 values) 

- 𝑥𝑖: the i-th observation in the form of a row vector; 𝑥𝑖 = [𝑥1𝑖   𝑥2𝑖   𝑥3𝑖], where 𝑥1 = T (°C), 𝑥2 = C/N 

ratio, and 𝑥3 = retention time (d) 

- 𝑥: a query observation (with the same format as 𝑥𝑖) whose output 𝑓(𝑥), cumulative biogas 

production (mL g VS-1), needs to be estimated 

- b: bias with an optimum value of 20.4169 (from Table 6) 

- 𝑛𝑠𝑣: the number of support vectors; note that all of the observations in the training dataset  

(90 observations) are considered as support vectors because 𝛼 ≠ 0. 

𝐾 (𝑥, 𝑥𝑖) =  exp (−
‖𝑥 − 𝑥𝑖‖

2

𝛾2
) 

where, ‖𝑥 − 𝑥𝑖‖2, the squared Euclidean distance between the two vectors 𝑥 and 𝑥𝑖, can be 

simplified as (‖𝑥‖2 + ‖𝑥𝑖‖
2 − 2〈𝑥𝑇 , 𝑥𝑖〉); 〈𝑥, 𝑥𝑖〉 denotes as the dot product between the vectors 

𝑥 and 𝑥𝑖; 𝛾 is the kernel scale (6.93) (from Table 6).  

 

Let 𝑥 be the query observation with the assumed values for 𝑥1(Temperature), 𝑥2 (C/N ratio), and 𝑥3 

(retention time) as 35°C, 40, and 12 d, respectively. 

 

𝒇(𝒙) = 

(−1200) × exp (
−(352 + 402 + 122) − (552 + 122 + 82) + 2 × (35 × 55 + 40 × 12 + 12 × 8)

6.932
) + 

 

(−510.15) × exp (
−(352 + 402 + 122) − (352 + 202 + 142) + 2 × (35 × 55 + 40 × 20 + 12 × 14)

6.932
) + 

⋮ 

⋮ 

⋮ 

(−1200) × exp (
−(352 + 402 + 122) − (552 + 202 + 92) + 2 × (35 × 55 + 40 × 20 + 12 × 9)

6.932
) +  20.4169

= 𝟐𝟗. 𝟔𝟓 ml gVS−1 (The measured value was 𝟐𝟗. 𝟓𝟖 ml gVS−1) 
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Table S1. α values for the support vectors 

# SV x1 x2 x3 α  # SV x1 x2 x3 α 

1 55 12 8 −1200.00  41 −55 40 2 −736.24 

2 35 20 14 −510.15  42 35 12 11 391.22 

3 35 40 6 −1200.00  43 35 12 5 −1200.00 

4 35 40 7 1091.29  44 55 40 8 −1200.00 

5 35 12 7 1200.00  45 55 12 10 1200.00 

6 55 12 6 990.43  46 35 20 11 −87.40 

7 55 20 3 −674.74  47 55 30 1 −908.06 

8 55 20 8 −1200.00  48 35 20 5 −874.91 

9 35 40 8 1200.00  49 55 30 4 −1200.00 

10 35 12 9 −677.70  50 35 40 2 −154.47 

11 35 40 10 −1200.00  51 55 40 4 −1200.00 

12 35 30 14 −195.10  52 55 12 2 217.44 

13 55 40 5 1200.00  53 55 30 13 83.77 

14 55 20 11 1016.17  54 35 20 9 −166.40 

15 35 12 6 −715.22  55 55 40 7 −1200.00 

16 35 40 4 1200.00  56 35 30 10 314.03 

17 55 20 6 1200.00  57 35 20 2 −540.69 

18 55 20 14 592.24  58 55 30 8 1200.00 

19 55 30 7 893.54  59 35 12 14 −209.33 

20 35 20 10 −1200.00  60 55 12 5 1200.00 

21 35 30 12 −1200.00  61 55 30 6 −1200.00 

22 55 12 7 −1200.00  62 55 40 14 608.99 

23 35 12 4 256.43  63 35 40 13 863.77 

24 55 40 6 338.56  64 35 40 9 −151.26 

25 35 12 2 1200.00  65 55 20 1 −492.69 

26 35 30 8 1200.00  66 55 20 13 −1200.00 

27 35 12 8 1200.00  67 35 20 3 1200.00 

28 35 12 12 359.78  68 55 12 4 −1200.00 

29 35 20 8 1200.00  69 35 30 2 −406.79 

30 35 30 13 1016.69  70 55 40 3 1200.00 

31 35 40 5 −1200.00  71 35 12 1 −795.91 

32 55 40 13 −293.91  72 55 12 13 21.04 

33 55 30 12 291.86  73 55 30 2 1200.00 

34 55 12 11 −1200.00  74 55 20 7 1200.00 

35 35 30 9 −119.36  75 35 30 3 590.94 

36 55 12 14 135.39  76 55 12 9 1082.35 

37 55 40 1 88.41  77 55 20 10 707.73 

38 55 20 2 1200.00  78 35 20 6 −1200.00 

39 55 40 10 1200.00  79 55 20 5 −1144.37 

40 55 30 10 −1190.27  80 55 40 12 −1200.00 
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Table S1. α values for the support vectors (cont’d) 

# SV x1 x2 x3 α       

81 55 40 9 1200.00       

82 35 20 7 1200.00       

83 55 12 1 −43.84       

84 35 12 10 −1200.00       

85 35 30 7 −1200.00       

86 35 40 14 −450.79       

87 55 30 3 830.65       

88 35 20 13 988.26       

89 35 12 13 168.60       

90 55 20 9 −1200.00       

SV: support vector; x1: temperature; x2: carbon-to-nitrogen ratio; x3: retention time (d); 𝛼 =  𝛼𝑖 − 𝛼𝑖
∗ 

where 𝛼𝑖 , and 𝛼𝑖
∗ are the Lagrange multipliers associated with the vector xi whose elements are x1, x2, and 

x3; α values were rounded off to two decimal places. 

 


