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Abstract: In recent years, forecasting has become particularly important as all areas of economic life
are subject to very dynamic changes. In the case of agriculture, forecasting is an essential element
of effective and efficient farm management. Factors affecting crop yields, such as soil, weather,
and farm management, are complex and investigations into the relation between these variables
are crucial for agricultural studies and decision-making related to crop monitoring, with special
emphasis for climate change. Because of this, the aim of this study was to create a spring barley yield
prediction model, as a part of the Advisory Support platform in the form of application for Polish
agriculture under a moderate input management system. As a representative sample, 20 barley
varieties, evaluated under 13 environments representative for Polish conditions, were used. To
create yield potential model data for the genotype (G), environment (E), and management (M) were
collected over 3 years. The model developed using Multiple Linear Regression (MLR) simulated
barley yields with high goodness of fit to the measured data across three years of evaluation. On
average, the precision of the cultivar yielding forecast (expressed as a percentage), based on the
independent traits, was 78.60% (Model F-statistic: 102.55***) and the range, depending of the variety,
was 89.10% (Model F-statistic: 19.26***)–74.60% (Model F-statistic: 6.88***). The model developed
using Multiple Linear Regression (MLR) simulated barley yields with high goodness of fit to the
measured data across three years of evaluation. It was possible to observe a large differentiation
for the response to agroclimatic or soil factors. Under Polish conditions, ten traits have a similar
effect (in the prediction model, they have the same sign: + or -) on the yield of almost all varieties
(from 17 to 20). Traits that negatively affected final yield were: lodging tendency for 18 varieties (18-),
sum of rainfall in January for 19 varieties (19-), and April for 17 varieties (17-). However, the sum
of rainfall in February positively affected the final yield for 20 varieties (20+). Average monthly
ground temperature in March positively affected final yield for 17 varieties (17+). The average air
temperature in March negatively affected final yield for 18 varieties (18-) and for 17 varieties in June
(17-). In total, the level of N + P + K fertilization negatively affected the final yield for 15 varieties
(15-), but N sum fertilization significantly positively affected final yield for 15 varieties (15+). Soil
complex positively influenced the final yield of this crop. In the group of diseases, resistance to
powdery mildew and rhynchosporium significantly decreased the final yield. For Polish conditions,
it is a complex model for prediction of variety in the yield, including its genetic potential.

Keywords: barley; yield potential; decision-making; precision farming; data analysis; predictive
analytics; moderate input management system; spring barley

1. Introduction

Barley (Hordeum vulgare L.) is grown in almost all parts of the world for human
consumption, industry, and animal feed. It ranks fourth in the world, after wheat, maize,

Agriculture 2022, 12, 1091. https://doi.org/10.3390/agriculture12081091 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12081091
https://doi.org/10.3390/agriculture12081091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-3021-3053
https://orcid.org/0000-0002-7499-8016
https://orcid.org/0000-0002-3997-3868
https://doi.org/10.3390/agriculture12081091
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12081091?type=check_update&version=1


Agriculture 2022, 12, 1091 2 of 20

and rice, in terms of growing area. Almost half of the world’s barley growing area is located
in Europe, where it ranks second after wheat in terms of growing area. Barley can grow
in unfavorable agroclimatic conditions because of its ability to tolerate late sowing and
moderate levels of drought stress, which are very important in a changing climate [1–3].
Comparative studies on wheat and barley [4,5] suggest that the higher yielding ability
of barley in drier environments is largely due to earlier commencement of flowering
and maturity and a faster rate of leaf canopy development and root growth early in the
season, when vapor pressure deficit is low. Their study explained that barley and wheat
characteristics result in reduced evaporative loss of water from the soil surface and increase
water use efficiency (WUE) for above-ground biomass production, which makes barley a
good candidate to replace wheat under severe climate change conditions.

Efforts to identify suitable barley varieties, as well as other crops, with yield-enhancing
characteristics in various climatic conditions, considering climate change, remain essential
to developing sustainable agriculture and food security [6–10]. Yield is complex and
governed by several genes that interact with the environment. Consequently, the selection
of genotypes based on performance in a single environment is ineffective [11]. Thanks to
the forecasts applied by the use of appropriate test methods, in marginal environments, the
risk of error can be greatly reduced.

In recent years, forecasting in agricultural production has become particularly impor-
tant, as all areas of agriculture are subject to very dynamic changes. Forecasting based on
proper models is an essential element of effective and efficient farm management [12,13].
An accurate and timely forecast of yields during the vegetation season is the basis for
estimating production volumes during the harvest. Moreover, early information on the
future allows farmers to plan and organize their purchases, storage, and processing of
agricultural crops [8,9,11,13–28].

Many factors influence the quantity and quality of yields. Because of this, different
author have used other parameters to predict them during the growing season, which may
be proper where they carried their studies. One of the most important factors affecting plant
development is weather, which it is why the constructed models should take into account
meteorological data (e.g., air temperature, rainfall, insolation) [8,15,24,29–32]. Moreover,
the second group of traits influencing plant development is connected with the soil and
they should be taken into account in the models under construction: pH, structure, organic
material content, and nutrient levels [11,23,25,33–36]. Proper management, including
fertilization, harvesting technology, and tillage technologies, of crop rotation has a positive
effect on soil structure and the availability of water for plants. The soil– water system
remains the crucial element of the ecological framework, on which food production and
water resource management depend directly, which is so important in terms of a changing
climate.

The average global temperature is rising due to the increasing release of greenhouse
gases (GHGs) into the atmosphere. This change in climate can reduce agricultural yields,
resulting in food insecurity. However, agricultural activities are one of the major con-
tributors of GHGs and lower yields can trigger increased activity to meet the demand
for food, resulting in higher quantities of GHGs released into the atmosphere [8,20,37,38].
Global warming can reduce the net carbon gain by increasing plant respiration rates, which
decrease the production yield of crops and could even result in the invasion of weeds,
pathogens, and pests.

Pest challenges vary over seasons and it is difficult to predict how this variation
will shift in the face of climate change and may render resistant plants to susceptible
ones [39–44]. This is why the constructed models for forecast of yields and its quality
during the vegetation season should take these changes into account [9,39,40,43,45]. This
capability is essential to create new varieties resistant to changed pest pressure. Plant–pest
interactions, such as changes in plant resistance and plant phenology, have an impact on
co-occurrence, with more generations of pests per year, more virulent new pathotypes in
the population, and differences in plant primary and secondary metabolism under elevated
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carbon dioxide levels. Disease management programs or climatic extremes keep pathogen
population size small, limit gene diversity, and help to control the disease. The widespread
prevalence of barley cultivation in Europe, the use of both spring and winter forms, and
local climatic conditions promote the persistence of the pathogen and the development
of the disease of this crop [46,47]. For barley, depending on the environment, the most
important foliar fungal pathogens may be powdery mildew, net blotch, scald, spot blotch,
barley stripe, and leaf rust [48–52]. They can cause a 10–40% yield loss depending on
barley growing areas. Powdery mildew is caused by Blumeria graminis f. sp. hordei and
may have the greatest negative impact on yield [53–58]. Net blotch in barley is caused
by Pyrenophora teres f. teres (anamorph: Drechslera teres) and this pathogen has two forms:
P. teres f. maculata causes the spot form and P. teres f. teres causes the net form of the disease.
These diseases reduce the green leaf area and grain size and have a big impact on the malt
quality [44,59]. Rhynchosporium commune causes scald disease in barley. This disease is
more common in cooler and semi-humid regions [44,60–63]. Cochliobolus sativus (anamorph:
Bipolaris sorokiniana) is the causal agent of spot blotch disease. Barley stripe disease is
caused by the fungal pathogen Pyrenophora graminea (anamorph: Drechslera graminea). It is
present in many regions of the world, including Europe, China, Russia, India, North Africa,
Turkey, and North America [59–64]. This disease manifests itself as chlorotic and necrotic
areas in the leaves and heads and also significantly affects the yield. Over the last few
years, the most important is barley leaf rust pathogen Puccinia hordei, which forms spherical
light-orange-brown pustules on leaves. In many regions around the world, in susceptible
varieties during an epidemic, this is lowering the yield by up to 62% [65–69]. In Central
Europe, leaf rust ranks second after powdery mildew among the most common diseases in
barley [70,71].

A large number of approaches, such as crop models, algorithms, and statistical tools,
have been proposed and used for yield prediction in precision agriculture. These methods
are used to minimize the problem caused by interacting variables to facilitate the inter-
pretation of complex relationships to reduce the dimensionality in the data set or select a
subset of appropriate variables from a large data set [72–74]. Subsequent attempts have
been made by applying artificial intelligence principles and soft computing techniques in
precision agriculture for spatial analysis and crop management [13,37,38,75].

As described by [73], nonlinear models, such as APSIM [76], DSSAT [77], RZWQM,
and SWAP/WOFOST [78], combine many traits, such as physiological and phenotypic
variation at different phases of the growth cycle measurement data. Because this calibration
of model coefficients can be labor intensive and time consuming [26–29,79,80], computation
speed could be low and prediction accuracy may not be as high as some machine learning
algorithms. Model ANNs (artificial neural networks), as no-linear statistical techniques,
have been applied to investigate yield response to soil variables [16,75,81]. Specifically,
ANN analysis as applied in precision agriculture for spatial analysis and crop manage-
ment [16,33,82] The observed data set for the selected variables is fitted to describe the
problem by adjusting the weights of linkages connecting input and output variables and
can be regarded as multivariate non-linear analytical tools. Further, as described by the
authors, its limitation is the need for a large amount of data for training.

In agriculture, principal component analysis (PCA) and factor analysis (FA), with
multiple regressions, are the methods that were applied for the construction models to
predict yield and identify important factors influencing yield [16,73,83–85]. In the case
of MLR analysis, the description of linear relationships between crop parameters and
site variables is limited and the results may be misleading when these relationships are
not linear. Thanks to this, it is possible not only to create a prediction and simulation
model, but also to make a weight evaluation of all independent variables included in the
model [16,17,24,33,73,84–89].

Because of this, the aim of this study was to create a barley yield prediction model as
a part of the Advisory Support platform in the form of application for Polish agriculture
under a moderate input management system. Multiple Linear Regression (MLR), based on
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the environmental (E), genetic (such as variety in disease resistance and yield potential)
(G), and management (M) traits in multi-environmental conditions, was used.

2. Materials and Methods
2.1. Plant Material

As a plant material 20 varieties were used (Soldo, Radek, RGT Planet, KWS Olof, Basic,
Ella, KES Astrika, Oberek, KWS Irina, Salome, Rubaszek, Podarek, Alianz, KWS Cantton,
KWS Harris, KWS Vermont, Paustian, Polonia Staropolska, Ringo).

2.2. Experimental Design, Management System, and Growing Conditions

The data used in this study to build forecast models comprise 13 experimental sites
of the Research Centre of Cultivar Testing (COBORU) in Poland observed in the Post
Registration Variety Testing System (PVTS) where the yield and other related traits of
newly released varieties were evaluated in multi-environmental trials during the three
cropping seasons 2016, 2017, and 2018 (Table 1).

Table 1. List of locations of post-registration multi-environment variety system testing trials (PRVTS)
conducted in moderate input management system, their symbol code, part of Poland symbol codes,
and information about geographic localization.

Part of Poland Part of Poland Code Location Location Code Latitude (ϕ) Longitude (λ) Altitude (m)

North-West NW Białogard L1 54◦00′ 15◦59′ 32.0

North N Radostowo L2 53◦98′ 18◦75′ 40.0

North-East NE Ruska Wies L3 53◦47′ 22◦12′ 15.8

North-East NE Krzyzewo L4 53◦01′ 22◦46′ 135.0

Central NE Nowa Wies
Ujska L5 53◦03′ 16◦75′ 105.0

Central C Glebokie L6 52◦65′ 18◦43′ 85.0

Central C Sulejow L7 51◦21′ 19◦52′ 188.0

Central C Kaweczyn L8 52◦10′ 20◦21′ 90.0

South S Glubczyce L9 50◦18′ 17◦83′ 280.0

South S Pawlowice L10 49◦57′

Central-Weast C Slupia L11 50◦63′ 19◦96′ 290.0

East E Cibór Duży L12 52◦08′ 23◦11′ 114.0

South-East SE Przecław L13 49◦53′ 22◦44′ 230.0

Locations were scattered across different agroclimatic regions of Poland, because
this country represents transitional zone between sea and continental climate transition:
S—south; N—north; W—west; SE—southeast; and NE—northeast. Geographical locations
of the experimental fields were as follows: latitude ranging from 50.1928◦ N to 52.9818◦ N,
longitude from 15.0776◦ E to 21.445◦ E, and altitude from 77 to196 m above sea level
(Table 1).

Each trial was established as a randomized block design with three blocks and plots
of 10 m2 (10 seed rows 8 m long and 1.3 m wide). The trials were planted depending on
the year and part of Poland between 15.03 and 5.04. They were conducted as moderate
input intensity experiments with mineral fertilization including nitrogen, phosphorus, and
potassium adapted to the conditions in each location (Table 2). The lowest N applied was
40 kg N × ha−1 and the highest was 120 kg N × ha−1 in 2016. In 2017 the range for N
sum was 36–117 kg N × ha−1 and in 2018: 72–120 kg N × ha−1. P2O5, K2) and NPK
(Supplementary 1).
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Table 2. Management of the trials across the thirteen environments and three years: mineral fertilization including nitrogen, phosphorus, and potassium adapted to
the conditions in each location (soil types).

Management of the Trials Across the Thirteen Environments and Three Years

No. Location
Soil

Complexity

2016 2017 2018

N Sum of
N P2O5 K2O Sum of

NPK N Sum of
N P2O5 K2O Sum of

NPK N Sum of
N P2O5 K2O Sum of

NPK

1 Białogard 4 300 120 60 120 300 300 110 60 120 290 300 120 60 120 300

2 Radostowo 1 300 94 42 112 248 300 80 60 102 242 300 88 70 105 263

3 Ruska Wieś 2 300 70 60 70 200 300 70 40 90 200 300 70 60 90 220

4 Krzyżewo 4 300 50 60 90 200 300 60 60 90 210 300 88 36 102 226

5 Nowa Wieś
Ujska 4 300 90 70 105 265 300 90 48 80 218 300 108 24 24 156

6 Głębokie 2 300 70 30 80 180 300 72 24 70 166 300 72 24 68 164

7 Sulejów 2 300 91 25 70 186 300 96 30 70 196 300 120 40 70 230

8 Kawęczyn 4 300 62 45 90 197 300 95 45 90 230 300 80 45 90 215

9 Cicibór 4 300 63 40 60 163 300 92 40 60 192 300 89 40 60 189

10 Głubczyce 1 300 40 60 90 190 350 36 0 0 36 300 81 47 40.7 169

11 Pawłowice 3 300 128 84 84 296 300 90 36 75 201 300 90 72 72 234

12 Słupia 2 300 113 50 70 233 300 117 59 70 246 300 107 50 70 227

13 Przecław 2 300 60 40 60 160 300 80 60 90 230 300 103 70 105 278
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The harvest area of each plot was 10 m2. Spring barley was planted at end of March
and beginning of April. It was harvested at the end of July.

2.3. Collected Data Set

Multiple regression was preceded by examination of the determination coefficient
R2 for the examined variables. It was carried out based on the impact of environmental
data (weather: precipitation, daily air temperature, and soil temperature), the degree of
resistance to biotic stresses (fungus), as well as on the average yield from the last 3 years,
the amount of fertilization applied, and the soil complex.

• List of quantitative and qualitative data:

— Constant—the constant obtained during the analysis (called regression con-
stant),

— Yield as the amount of seeds as tons of seed dry matter per hectare (dt ha−1)
across 3 years (2016–2018) and across all locations (as a genetic potential of the
genotype),

— NPK sum—NPK fertilization, sum,
— N sum—nitrogen mineral fertilization N -sum,
— Compl—soil complex valuation classes according to the soil quality evaluation

system in Poland compatible with regulations of the Council of Ministers; class
reflects the agricultural value of soils and a lower class means more fertile soils;
(converted into a synthetic indicator according IUNG-PIB Pulawy),

— LT-lodgbfhar—lodging tendency before harvesting,
— Disease resistance: PM (powdery mildew), NB—net blotch, BBR (barley brown

rust), SB (rhynchosporium); disease resistance was scored on 1–9 scale (9—no
symptoms of the disease).

• Weather environmental variables

— The sum of rainfall: o1—in January, o2—in February, o3—in March, o4—in
April, o5—in May, o6—in June, and o7—in July,

— Average monthly ground temperature: tg1—in January, tg2—in February,
tg3—in March, tg4—in April, tg5—in May, tg6—in June, and tg7—in July,

— Average daily air temperature: tp1—in January, tp2—in February, tp3—in
March, tp4—in April, tp5—in May, tp6—in June, tp7—in July.

2.4. Calculation Methodology

Statistical modelling of the causal relationship between yield and agrotechnical and
weather factors was carried out using a multiple regression model [90–92]. The variables
for the model were selected using the backward selection method. The model with the
best fit (highest adjusted determination factor) to the observed data was wanted. Model
parameter values, standardized parameter values, and determination coefficients were
estimated. Analyses were carried out separately for each variety and then for the whole
group of the evaluated barley varieties (the model with the highest adjusted coefficient of
determination). Calculations were made in GenStat 21 (VSN International, England, UK,
2020) and Statistica 13.3 (TIBCO Software Inc., Palo Alto, CA, USA, 2017) software [93,94].

3. Results
3.1. Identification of Weather Environmental Variables Used in Multivariate Regression Analysis

Significant differences between locations and years for precipitation and temperatures
were observed (Table 3). The 2017 growing season was the coldest year, with high rainfall,
and 2018 was hot and dry. Average air temperatures in 2018 in April were higher in all
locations by more than 3.0 ◦C compared to averages in 2016 and 2017, while, on average,
by 1.0 in the remaining months.
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Table 3. Monthly average daily air temperature, ground temperature, and sum of rainfall across the thirteen environments where experiments with barley were
conducted (2016–2018).
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Depending on the location, the maximum air temperatures in 2018 were higher com-
pared to 2017 for the entire growing period (from 3.6 to 7.8 ◦C in April, from 2.1 to 3.9
in May, from 0.1 to 4.3 in June and from 1.4 to 6.3 ◦C in July). In 2017, maximum tem-
peratures in April reached 17.8 ◦C, May 23.8 ◦C, in June 27.0 ◦C, and in July 26.2 ◦C. In
2016, the maximum temperature in May was 26.0 ◦C. During the 2018 growing season,
the maximum temperature in April was 23.6 ◦C, in May 26.1 ◦C, in June 27.6 ◦C, and in
July 30.2 ◦C.

In January 2016 and 2017, average air temperatures were in a range from −6.2 ◦C to
−1.0 ◦C and in 2018, in a range from−1.4 ◦C to 2.7 ◦C. In February, the highest temperatures
were in 2016 (average +3.2 ◦C, range−1.5 ◦C–4.0 ◦C), they were, on average, in 2017,−0.7◦C
(range from −2.3◦C to 2.5◦C), and in 2018, on average, were −3.3◦C (range from −5.1 ◦C
to −2.2 ◦C). In March, average air temperatures in 2017 were in a range from 4.3 ◦C to
6.3 ◦C (average 5.7 ◦C) and in 2018, in a range −1.5 ◦C–1.3 ◦C (on average −0.1 ◦C). In
April and May 2018, the average air temperatures were, on average, 4.0 ◦C higher than in
2017 and 2016.

In January and February, similar to the average temperatures, ground temperatures
were lowest in 2018. In March 2018, they were also below zero (in a range −1.7–1.8), which
is about 3–4 degrees higher than in 2017–2018. On average, the temperatures for all years
were similar, and only in 2016, in June, the maximum temperatures were higher than in
other years. On average, throughout the growing season, the amount of rainfall was lower
compared to 2016 and 2017.

Drought occurred in many locations. The differences were approx. 10 mm compared
to 2016 and approx. 20 mm compared to 2017. The differences between the locations were
large over the years.

3.2. Identification of Yield Information for Site–Years Used in this Study

The variation in spring barley grain yield in the analyzed period (2016–2018) was rela-
tively high and differences between years and locations were significant (Figures 1 and 2,
Supplementary 1). On average, in 2016 and 2017, the yield was similar, and in 2018, it was
very low. Across all years, the highest yields were in L11 (Slupia).
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Figure 1. Average barley grain yields in dt/ha harvested from 20 varieties growing at randomized 
experiments at thirteen environments (L1–L13) in 2016, 2017, and 2018. (A) presents average yields 
harvested from 20 varieties in 2016, 2017, and 2018 (A). (B) presents average yields harvested from 
20 varieties in 13 environments (L1–L13) in 2016–2018 (B). Analysis of variance (ANOVA test; α ≤ 
0.05) values, which are presented under the figures, confirm the significant differences for grain 
yield harvested from 20 varieties between years (A) and differences for grain yield harvested from 
20 varieties in 13 environments (B). The bars represent mean value and standard deviation (SD) for 
each year and environment.

Figure 1. Average barley grain yields in dt/ha harvested from 20 varieties growing at randomized
experiments at thirteen environments (L1–L13) in 2016, 2017, and 2018. (A) presents average yields
harvested from 20 varieties in 2016, 2017, and 2018 (A). (B) presents average yields harvested
from 20 varieties in 13 environments (L1–L13) in 2016–2018 (B). Analysis of variance (ANOVA test;
α ≤ 0.05) values, which are presented under the figures, confirm the significant differences for grain
yield harvested from 20 varieties between years (A) and differences for grain yield harvested from
20 varieties in 13 environments (B). The bars represent mean value and standard deviation (SD) for
each year and environment.
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Figure 2. Average barley grain yields in dt/ha harvested from 20 varieties growing at randomized experiments at thirteen environments (L1–L13) in 2016, 2017, and
2018 years. (A) represents average grain yields harvested from 20 varieties in thirteen environments (L1–L13) in 2016 year. (B) represents average grain yields in
dt/ha harvested from 20 varieties in thirteen environments (L1–L13) in 2017 year. (C) represents average grain yields in dt/ha harvested from 20 varieties in thirteen
environments (L1–L13) in 2018 year. Analysis of variance (ANOVA test; α ≤ 0.05) values, which are presented under the figures, confirm the significant differences
for grain yield harvested from 20 varieties between environments in 2016 (A), 2017 (B), and 2018 (C). The bars represent mean value and standard deviation (SD) for
each environment.
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3.3. Identification of Disease Information for Site–Years Used in This Study

The variation in spring barley resistance for the most economically important diseases,
such as powdery mildew (PM), net blotch (NB), and barley brown rust (BBR) in the analyzed
period (2016–2018) was relatively high and differences between years and locations were
significant (p < 0.05, Figure 3A1–D1, Supplementary 1).

Differences for PM severity across years were not significant (8.1–8.4 in 1–9 scale,
where 1 means no symptoms of the disease); however, they were significant between the
locations, in a range from 6.6 (L5) to 9.0 (L3, L12) (p < 0.05, Figure 3A2). On average,
significant differences between years were observed for NB disease (in a range from 6.8 in
2016 to 7.7 in 2018, p < 0.05) (Figure 3B1). In locations L5 and L7, NB severity was high and
scored 6.7 and 6.2, respectively (Figure 3B2). Differences for BBR (BBR) were significant
between years (p < 0.05, Figure 3D1) and between localities (p < 0.05, Figure 3D2).
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Figure 3. Averages for powdery mildew (PM), net blotch (NB), rhynchosporium (SB), and barley
brown rust (BBR) levels of resistance of 20 varieties growing in thirteen environments (L1–L13) in
2016, 2017, and 2018. PM resistance: (A1) presents averages in 2016, 2017, and 2018 based on the data
collected for 20 varieties in thirteen environments and (A2) present averages in thirteen environments
based on the data collected for 20 varieties in 2016, 2017, and 2018. NB resistance: (B1) presents
averages of resistance in 2016, 2017, and 2018 based on the data collected for 20 varieties in thirteen
environments and (B2) presents averages of resistance in thirteen environments based on the data
collected for 20 varieties in 2016, 2017, and 2018. SB resistance:(C1) presents averages in 2016, 2017,
and 2018 based on the data collected for 20 varieties in thirteen environments and (C2) presents
averages in thirteen environments based on the data collected for 20 varieties in 2016, 2017, and
2018. BBR resistance: (D1) presents averages in 2016, 2017, and 2018 based on the data collected
for 20 varieties in thirteen environments and (D2) presents averages in thirteen environments based
on the data collected for 20 varieties in 2016, 2017, and 2018. Analysis of variance (ANOVA test;
α ≤ 0.05) values, which are presented under the figures, confirm the significant differences for av-
erage powdery mildew resistance between years and between environments (A1,A2), significant
differences for average net blotch resistance (B1,B2), significant differences for average rhynchospo-
rium resistance (C1,C2), and significant differences for average barley brown rust resistance (D1,D2).
Disease severity scored on 1–9 scale (9—no symptoms of the disease).

3.4. Impact of Diseases on Yield Potential

Phenotypic data for PM, SR, and BBR severity at MW stages in 2016, 2017, and
2018 are presented in the Supplementary File 1. Summary statistics are presented on the
Figure 3A1,A2 for PM, Figure 3B1,B2 for NB, Figure 3C1, C2 for SB, Figure 3D1, D2 for
BBR. Frequency distribution models for the spring barley varieties based on PM, NB, NS,
and BBR and with the regression analysis models to estimate the relationship between
resistance scores and frequency index are presented in Figure 4.

3.5. Regression Models

The final yield AGRO-SBY prediction model of 20 varieties, grown in the 13 locations,
was conditioned by its genetic potential, including disease resistance, which was modified
by environmental conditions. In the location where data were collected, there was a large
intra-species differentiation for the response to agroclimatic or soil factors (soil structure,
availability of micro and macro elements) and this is presented in Tables 1 and 2. It was
possible to observe significant differentiation between the evaluated varieties for yield po-
tential, disease resistance, and lodging tendency, and this is presented in Supplementary 1.

Comparison between yield harvested and predicted based on AGRO-SBY model of
20 varieties in thirteen environments (L1–L13) in 2016, 2017, and 2018 is presented in
Supplementary 3. Comparison between yield predicted and harvested in 2016, 2017, and
2018 based on the average in thirteen environments is presented in Figure 5.
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Figure 4. Impact of powdery mildew (PM), net blotch (NB), rhynchosporium (SB), and barley brown
rust (BBR) resistance of 20 varieties growing in thirteen environments (L1–L13) scored in 2016, 2017,
and 2018 on their yield potential (dt/ha). Figures present regression analysis models, which estimate
relationship between PM resistance (A), NB resistance (B), SB resistance (C), and BBR resistance (D)
and yield potential frequency index.
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Estimated model parameter values, standardized parameter values, and determination
coefficients were estimated for each of the 20 varieties (Table 4, Supplementary 2). The
R-squared, which measures the strength of the relationship between the AGRO-SPY model
and the dependent variable for each variety, was relatively very height (range: 74.6% for
Soldo–89.1% for KWS Vermont).

Table 4. R-squared AGRO-SBY yield prediction models developed using MLR method for twenty
varieties based on the data collected in thirteen locations including genetic potential, environment,
and management traits under moderate input management system.

No. Variety Model F-Statistic R sq. adj. No. Variety Model F-Statistic R sq. adj.

1 Soldo 6.88 *** 0.746 11 Salome 6.93 *** 0.766
2 Radek 10.34 *** 0.831 12 Rubaszek 8.73 *** 0.785
3 RGT Planet 12.82 *** 0.848 13 Podarek 10.33 *** 0.797
4 KWS Olof 11.52 *** 0.816 14 Allianz 8.62 *** 0.822
5 Basic 8.53 *** 0.79 15 KWS Cantton 12.22 *** 0.842
6 Ella 7.72 *** 0.75 16 KWS Harris 9.19 *** 0.812
7 KWS Atrika 8.05 *** 0.796 17 KWS Vermont 19.26 *** 0.891
8 Oberek 9.47 *** 0.791 18 Paustian 10.28 *** 0.843

9 KWS Iri 8.22 *** 0.774 19 Polonia
Staropolska 7.93 *** 0.745

10 KWS Dante 6.12 *** 0.719 20 Ringo 7.26 *** 0.776

***—significant at α = 0.01.

Based on the models for 20 varieties, it was possible to observe that among the
independent (explanatory) traits included in the analysis, the following types can be
distinguished as two groups (Supplementary 2):

(1) Ten traits have a similar effect (in the prediction model they have the same sign) on the
yield of almost all varieties (i.e., u from 17 to 20). This is, e.g., a lodging tendency (LT)
that occurred in the prediction model for 18 cultivars with a plus sign, and we write:
(18-). Other traits are: o1 (19-), o2 (20+), tg3 (17+), tg4 (17-), tp3 (18-) and tp6 (17).

(2) Twenty traits have a similar effect on the yield of more than half of the studied cultivars:
o4 (16-), o7 (16-), tp2 (15+), tp4 (13+), tp7 (14+).

In total, the level of N + P + K fertilization negatively influenced the final yield (15-).
However, Nsum fertilization was significantly positive (15+). In the group of diseases,
resistance to powdery mildew and rhynchosporium significantly decreased the final yield,
while the other diseases did not. Other traits influenced the yield of less than half of the
studied cultivars (in the same or differently).

The model for the whole group of the 20 evaluated barley varieties (the model with
the highest adjusted coefficient of determination) is presented in Table 5.

Table 5. Regression model for spring barley yield prediction (AGRO_SBY) for whole group of the
twenty barley varieties based on the data collected in thirteen locations including genetic potential,
environment, and management traits under moderate input management system.

Trait
Model (20 Cultivars)

Estimation t-Statistic Standarized
Estimation

Constant Constant −113.13 −4.27 *** -

sum of NPK NPK −0.083 −6.59 *** −0.2629

sum of N N 0.276 8.45 *** 0.3946

soil cmplxexity soilcmplx 4.641 8.85 *** 0.3131

powdery mildew PM −1.011 −2.86 *** −0.0708
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Table 5. Cont.

Trait
Model (20 Cultivars)

Estimation t-Statistic Standarized
Estimation

net blotch NB

barley rust BR

rynchosporium RN −2.686 −5.67 *** −0.1778

lodging before harvest-lodging tendency LT 0.526 2.23 ** 0.0619

mean yield accross 3 years before YC 1.304 22.06 *** 0.9323

the sum of rainfall January r1 −0.357 −5.87 *** −0.2625

the sum of rainfall Febuary r2 0.129 4.05 *** 0.1976

the sum of rainfall March r3 0.452 9.14 *** 0.38

the sum of rainfall April r4 0.181 5.74 *** 0.3585

the sum of rainfall May r5 0.038 1.91 * 0.0549

the sum of rainfall June r6

the sum of rainfall July r7 0.018 2.00 ** 0.0671

average monthly ground temperature January tg1

verage monthly ground temperature Febuary tg2 −6.782 −6.70 *** −0.6498

verage monthly ground temperature March tg3 21.47 12.08 *** 2.2865

verage monthly ground temperatureApril tg4 −15.139 −10.09 *** −1.3334

verage monthly ground temperature May tg5 18.46 10.80 *** 1.9042

verage monthly ground temperature June tg6 −1.63 −1.48 * −0.1375

verage monthly ground temperature July tg7 −5.274 −3.60 *** −0.3704

average daily air temperature January ts1 2.678 4.56 *** 0.4161

average daily air temperature Febuary ta2 5.455 8.38 *** 0.9547

average daily air temperature March ta3 −6.838 −5.62 *** −1.031

average daily air temperature April ta4 12.15 9.94 *** 1.8219

average daily air temperature May ta5 −7.366 −4.15 *** −0.6056

average daily air temperature June ta6 −7.49 −4.83 *** −0.3099

average daily air temperature Julay ta7 9.509 10.18 *** 0.635

Model F-statistic 102.55 ***

R sq. adj. 0.786

*—significant at α = 0.1; **—significant at α = 0.05; ***—significant at α = 0.01.

4. Discussion

The aim of the presented work was to develop a model for the prediction of spring
barley yields (AGROBANK-SBY: AGROBANK spring barley yield prediction), focusing
on environmental (E), plant genetic potential (G), including disease resistance and yield
potential, and management (M) variables. It was developed as a part of the platform for
Crop Management Advisory Support for farmers to select the species and varieties to
grow on the field indicated by the farmer for precision agriculture under a moderate input
management system in Poland. The system was developed in the frame of the AGROBANK
project “Creation of bioinformatic management system about national genetic resources of
useful plants and development of social and economic resources of Poland throughout the
protection and use of them in the process of providing agricultural consulting services”.
The model incorporates all traits in a system available for farmers to choose species and
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varieties appropriate to the specific environment (G×M× E). In the form of an application,
the user will be able to divide the uniform field and then the system will help plan proper
crop rotation, fertilization, plant protection, and predict potential yield. In addition, farmers
can predict yield potential during the whole growing season. To create the Management
Advisory Support platform, it was decided that in the group of cereals model, first for
barley and next for wheat, model crops will be developed.

Barley (Hordeum vulgare L.) is one of the most important cereals in Poland. It was
decided that for Polish conditions, the Advisory Support application will be used for
the yield prediction using models developed based on the satellite images, as well as
through an algorithm developed based on the function for the data collected from field
experiments conducted in many environments. Collection data using satellite images
are recommended for farms 10 ha or larger, but not for small farms using conventional
management systems. The reason is that the satellite maps do not always have resolutions
suitable for small farms. Moreover, small farms have fields often not uniform concerning
the soil complex. Polish agriculture is characterized by great fragmentation of farms.
Still, more than half of agricultural farms (51%) operate on no more than 5 ha of utilized
agricultural land, with farms of this size comprising 12.7% of total utilized agricultural
areas in Poland. The farms utilizing less than 10 ha of arable land make up 75% of all
farms and their total area comprises 27.7% of the utilized agricultural area in Poland (https:
//www.gov.pl/web/arimr/srednia-powierzchnia-gospodarstw-w-2021-roku, accessed
on 2 April 2022). Referring to this farm structure, it should be noted that farms up to 10 ha
are characterized by traditional agricultural production, with relatively low use of both
mineral fertilizers and agricultural chemicals.

To create a Management Advisory Support platform for Polish conditions, data were
collected in the thirteen environments across different agroclimatic regions of Poland, in-
cluding marginal environment for weather conditions, where rainfall during the vegetation
season was relatively low. The genetic potential of 20 newly released varieties was eval-
uated. Prediction models based on only one environment are ineffective if they are to be
used in many other environmental conditions [11].

A group of management trait fertilization data, such as sum of the NPK and N, were
collected. Soil was described as soil complex valuation classes according to the soil quality
evaluation system in Poland compatible with regulations of the Council of Ministers. The
soil class reflects the agricultural value of soils; the lower the class, the more fertile the
soils. In the group of the weather traits sum of rainfall, average daily air temperature and
average monthly ground temperature were used. In the group of traits describing genotype
(variety) yield across 3 years before the year when the model will be used: their resistance
to powdery mildew, net blotch, barley brown rust, rhynchosporium, and lodging tendency.

Based on calibration results, it was possible to conclude that for most of the 20 varieties
tested, the yield calculated using the MLR method closely corresponds to the harvested
yield. These results confirm that MLR method may be used to predict yield in non-precise
agriculture [16,17,24,33,87–89]. However, none of them included the cultivar genetic po-
tential in the group of independent variables. Genetic potential is the most important trait
that influences the interaction of a genotype with its environment. As described, MLR
models are recommended for non-precise agriculture [73] because they do not require
the collection of data that would be difficult to calibrate, such as non-linear models AP-
SIM [76], DSSAT [77], RZWQM, and SWAP/WOFOST [78]. In this study, in the group
of environmental conditions, we measured sum of rainfall, air temperature, and ground
temperature and they were analyzed as average for each month and soil complex. The
group of the management traits sum of N and sum of NPK were analyzed. As a genetic
potential logging tendency, disease resistance and average yield for the previous 3 years to
the year in which the crop was harvested were used.

It was possible to conclude that for the AGRO-SBY model for Polish conditions, under
moderate input management, the level of N + P + K fertilization negatively influenced the
final yield, but N fertilization significantly positively affected the yield. This element is im-

https://www.gov.pl/web/arimr/srednia-powierzchnia-gospodarstw-w-2021-roku
https://www.gov.pl/web/arimr/srednia-powierzchnia-gospodarstw-w-2021-roku
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portant because the fertilization, as a part of the crop management, can be properly planned
and farmers can prevent the negative impact of over-fertilization by N and N + P + K on
the soil, which is as important part of the environment [11,23,33,34,36].

The average air temperature, ground temperature, and total rainfall in all months
from February to June, except for January, had a positive effect on the final yield. This is a
first MLR model, which takes into account ground temperature, and as it was described, it
was important for spring barley plant development and final yield. Ground temperature
in March positively affected the final yield of 17 varieties from 20 evaluated. In contrast,
ground temperature in April had a negative influence for the final yield of the 17 varieties.
The sowing time of spring barley at II and III decade of March depends on the region
of Poland. Based on the presented model created by the MLR method, it was taken into
account the fact that during sowing time, ground temperature can not to be too low.

The next important part of the presented model is the fact that it confirms that under
Polish conditions, in the group of diseases, lack of resistance to powdery mildew and
rhynchosporium significantly decreased the final yield, while the other diseases did not.
However, in Poland, changes in temperatures throughout the year are observed, and in
summer, they are much higher than at the end of the 20th century, both of which have a
negative effect on the final yield in cooler and semi-humid regions. The reduction in tillering
was affecting powdery mildew development in early spring, when the temperatures and
humidity are favorable for Blumeria graminis f. sp. hordei. Similarly, over-fertilization
contributes to disease development [53] and this corresponds to the level of N and N + P + K
effect for final yield. Rhynchosporium is the disease that occurs in all areas where barley
is grown. However, this disease is more common in cooler and semi-humid regions. It
can cause a 35–40% yield loss in barley growing areas [44,60–63] and it corresponds to the
effect of the level of rainfall and temperatures. In the presented model, during 2016–2018,
barley leaf rust did not significantly affect the yield of barley varieties.

5. Conclusions

The selected AGRO-SBY model was designed using algorithms to identify the most
important traits describing genotypes x management x environment interaction, such
as: yield potential of the variety, its disease resistance, lodging tendency, management
system, soil complex description, and weather conditions. It was created in the frame of
the AGROBANK project “Creation of bioinformatic management system about national
genetic resources of useful plants and development of social and economic resources of
Poland throughout the protection and use of them in the process of providing agricultural
consulting services” (https://agrobank.cdr.gov.pl/index.php accessed on 9 May 2022). For
Polish conditions, it is as a first model for prediction cultivar yield, including its genetic
potential. The AGRO-SBY model is used as a part of the platform for Management Advisory
Support. The platform allows farmers to choose the right crop rotation, field management
before setting up a plantation, and monitor it during the growing season under a moderate
input management system. Because, in Poland, farms are both large in area, carried out
in an intensive system, but also small, with an area of less than 10 ha, yield forecasting
and monitoring of plantations during vegetation can be carried out using satellite images,
as well as using the AGRO-SBY model recommended for small farms conducted in the
moderate input system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12081091/s1, Supplementary 1. Data collected for
yield prediction models (AGRO_SBY) in 2016, 2017 and 2018: yield, disease resistance and lodging
tendency of 20 varieties at 13 environments. Supplementary 2. Regression model for 20 spring
barley yield prediction (AGRO_SBY) based on the data collected at 13 environments at 2016, 2017
and 2018 including: genetic potential, weather conditions and management traits under moderate
input management system. Supplementary 3. Yield harvested and predicted for 20 varieties at
13 environments at 2016, 2017 and 2018 using AGRO-SBY model.
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94. Mańkowski, D.; VSN International. Genstat for Windows, 21st ed.; VSN International: Hemel Hempstead, UK, 2020. Available

online: Genstat.co.uk (accessed on 15 May 2021).

http://doi.org/10.1016/S2095-3119(16)61546-0
http://doi.org/10.1038/s41598-021-97221-7
https://arxiv.org/pdf/2204.03456.pdf
http://doi.org/10.1130/G25447A.1
http://doi.org/10.1016/S1161-0301(02)00108-9
http://doi.org/10.1016/j.ecolmodel.2003.08.012
http://doi.org/10.1016/j.agsy.2017.07.016
http://doi.org/10.1038/s41598-021-90835-x
http://www.ncbi.nlm.nih.gov/pubmed/34075079
http://doi.org/10.3844/ajassp.2010.390.394
http://doi.org/10.1080/00380768.1989.10434795
http://doi.org/10.1007/BF00773667
http://doi.org/10.1016/j.neucom.2011.11.028
http://statistica.io
http://statistica.io
Genstat.co.uk

	Introduction 
	Materials and Methods 
	Plant Material 
	Experimental Design, Management System, and Growing Conditions 
	Collected Data Set 
	Calculation Methodology 

	Results 
	Identification of Weather Environmental Variables Used in Multivariate Regression Analysis 
	Identification of Yield Information for Site–Years Used in this Study 
	Identification of Disease Information for Site–Years Used in This Study 
	Impact of Diseases on Yield Potential 
	Regression Models 

	Discussion 
	Conclusions 
	References

