Design and Experiment of a Sowing Quality Monitoring System of Cotton Precision Hill-Drop Planters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Carrier
2.2. Monitoring System Design
2.2.1. Hardware Design
- (1)
- Missing broadcast monitoring module
- (2)
- Visualization module
2.2.2. Monitoring System Software Design
2.3. Test Equipment and Methods
2.3.1. Bench Test
2.3.2. Field Test
3. Results and Discussion
3.1. Bench Test
3.2. Field Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, Z.M.; Zhang, W.P.; Zhao, B.; Ji, J.T.; Jin, X.; He, Z.T. Design and Test of Operation Quality Monitoring System for Small Grain Electric Seeder. Trans. Chin. Soc. Agric. Mach. 2019, 4, 77–83. [Google Scholar]
- Che, Y.; Wei, L.G.; Liu, X.T.; Li, Z.L.; Wang, F.Z. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder. Trans. Chin. Soc. Agric. Eng. 2017, 33 (Suppl. S1), 11–16. [Google Scholar]
- Wang, Z.M.; Pei, J.; He, J.; Zhang, M.H.; Yang, W.W.; Luo, X.W. Development of the sowing rate monitoring system for precision rice hill-drop drilling machine. Trans. Chin. Soc. Agric. Eng. 2020, 10, 9–16. [Google Scholar]
- Ding, Y.C.; Chen, L.Y.; Dong, W.J.; Wang, W.C.; Liu, X.D.; Wang, K.Y.; Liu, W.P. Design and experiment of the sowing monitoring system for a wide-width rapeseed planter. Trans. Chin. Soc. Agric. Eng. 2021, 13, 38–45. [Google Scholar]
- Hu, J.P.; Lu, L. Design of the image monitored control system for the magnetic type precision seeder. Trans. Chin. Soc. Agric. Mach. 2006, 11, 88–91. [Google Scholar]
- Wang, T.J. Experimental Study on the Monitoring Device for Missing Seeding of Rice Direct Seeding Machine; Shenyang Agricultural University: Shenyang, China, 2017. [Google Scholar]
- Liang, K.; Luo, H.Y.; Shen, M.X.; He, R.Y.; Zhang, L. Review and prospect for the detection technology of paddy seeding quality. Acta Agric. Zhejiangensis 2010, 2, 253–257. [Google Scholar]
- 20/20 SeedSense Monitoring System. Available online: http://www.precisionplanting.com/Products/WaveVision/Default.aspx (accessed on 20 January 2022).
- MC Electronics. Sistema Full Semina. Available online: https://www.mcelettronica.it/it/prodotti/semina/semina-a-righe/fotocellula-blockage-pro-seeder_256c28.html (accessed on 8 February 2022).
- John, D. Monitoring and Documentation. Available online: http://www.deere.com/en_US/parts/parts_by_industry/ag/seeding/monitoring/monitoring.page (accessed on 19 December 2021).
- Hadi, K.; Hossein, N.; Bahram, B.; Hossein, B.; Iraj, E. A practical approach to comparativedesign of non-contact sensing techniques for seed flow rate detection. Comput. Electron. Agric. 2017, 142, 165–172. [Google Scholar]
- Karayel, D.; Wiesehoff, M.; Ozmerzi, A.; Muller, J. Laboratory measurement of seed drillseed spacing and velocity of fall of seeds using high-speed camera system. Comput. Electron. Agric. 2006, 2, 89–96. [Google Scholar] [CrossRef]
- Leemans, V.; Destain, M.F. A computer-vision based precision seed drill guidance assistance. Comput. Electron. Agric. 2007, 59, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Navid, H.; Ebrahimian, S.; Gassemzadeh, H.R.; Mousavi, M.J. Laboratory evaluation of seed metering device using image processing method. Aust. J. Agric. Eng. 2011, 2, 1–4. [Google Scholar]
- Sun, Y.J.; Shen, J.X.; Dou, Q.Q.; Li, Q.L.; Chen, G.; Sun, Y.T. Design and test of monitoring system of no-tillage planter based on Cortex-M3 processor. Trans. Chin. Soc. Agric. Mach. 2018, 8, 50–58. [Google Scholar]
- Zhou, L.M.; Wang, S.M.; Zhang, X.C.; Yuan, Y.W.; Zhang, J.N. Seed monitoring system for corn planter based on capacitance signal. Trans. Chin. Soc. Agric. Eng. 2012, 13, 16–21. [Google Scholar]
- Zhou, L.M.; Li, S.J.; Zhang, X.C.; Wang, S.M.; Yuan, Y.W.; Dong, X. Detection of seed cotton mass flow based on capacitance approach. Trans. Chin. Soc. Agric. Mach. 2014, 6, 47–52. [Google Scholar]
- Ding, Y.C.; Wang, X.L.; Liao, Q.X. Method of real-time loss sowing detection for rapeseed precision metering device based on time changed window. Trans. Chin. Soc. Agric. Eng. 2014, 24, 11–21. [Google Scholar]
- Ding, Y.C.; Zhu, K.; Wang, K.Y.; Liu, X.D.; Du, C.Q. Development of monitoring device for medium and small size seed flow based on thin surface laser- silicon photocell. Trans. Chin. Soc. Agric. Eng. 2019, 8, 12–20. [Google Scholar]
- Li, M.; Liu, X.H.; Ding, Y.C.; Liao, Q.X. Loss sowing test technology and equipment of rapeseed pneumatic precision seeder based on the seeding frequency. In Proceedings of the Annual Conference of Chinese Society of Agricultural Engineering, Chongqing, China, 22 October 2011; pp. 299–304. [Google Scholar]
- Ding, Y.C.; Yang, J.Q.; Zhu, K.; Zhang, L.L.; Zhou, Y.W.; Liao, Q.X. Design and experiment on seed flow sensing device for rapeseed precision metering device. Trans. Chin. Soc. Agric. Eng. 2017, 9, 29–36. [Google Scholar]
- Ding, Y.C.; Zhang, L.L.; Yang, J.Q.; Zhu, K. Sensing device improvement and communication design on sowing monitoring system of precision planter for rapeseed. Trans. Chin. Soc. Agric. Eng. 2018, 14, 19–26. [Google Scholar]
- Tan, S.Y.; Ma, X.; Wu, L.L.; Li, Z.H.; Liang, Z.W. Estimation on hole seeding quantity of super hybrid rice based on machine vision and BP neural network. Trans. Chin. Soc. Agric. Eng. 2014, 21, 201–208. [Google Scholar]
- Zhao, Z.B.; Liu, Y.C.; Liu, Z.J.; Gao, B. Performance detection system of tray precision seeder based on machine vision. Trans. Chin. Soc. Agric. Mach. 2014, Z1, 24–28. [Google Scholar]
- Xie, C.J.; Yang, L.; Zhang, D.X.; Cui, T.; Zhang, K.L. Seeding parameter monitoring method based on laser sensors. Trans. Chin. Soc. Agric. Eng. 2021, 3, 140–146. [Google Scholar]
- Wu, Z.Q.; Liu, J.J.; Yang, X. The design of JPS-16 seeder test-bed. J. Agric. Mech. Res. 2011, 10, 59–62. [Google Scholar]
- Zhang, H.N.; Ma, Y.F. Research on performance testing method of machine sowing based on image processing. Meas. Control. Technol. 2015, 2, 44–47. [Google Scholar]
- Chen, J.; Bian, J.; Li, Y.M.; Zhao, Z.; Wang, J.L. Performance detection experiment of precision seed metering device based on high speed camera system. Trans. Chin. Soc. Agric. Eng. 2009, 9, 90–95. [Google Scholar]
- Zhou, L.M.; Zhang, X.C. Monitor system of precision seeder based on capacitive sensor. J. Agric. Mech. Res. 2009, 11, 37–39. [Google Scholar]
- Tong, C. Zero-speed seeding technology and its theoretical design. Mech. Res. Appl. 1995, 1, 16–18+25. [Google Scholar]
- Yuan, Y.W.; Bai, H.J.; Fang, X.F.; Wang, D.C.; Zhou, L.M.; Niu, K. Research Progress on Maize Seeding and Its Measurement and Control Technology. Trans. Chin. Soc. Agric. Mach. 2018, 9, 1–18. [Google Scholar]
- Zhang, X.J.; Chen, Y.; Shi, Z.L.; Jin, W.; Zhang, H.T.; Fu, H.; Wang, D.J. Design and experiment of double-storage turntable cotton vertical disc hole seeding and metering device. Trans. Chin. Soc. Agric. Eng. 2021, 19, 27–36. [Google Scholar]
Seed Plate Speed/(r/min) | No. | Actual Broadcast Volume/Piece | Monitor Broadcast Volume/Piece | Accuracy Rate of Broadcast Monitoring/% |
---|---|---|---|---|
20 | 1 | 300 | 296 | 98.67% |
2 | 294 | 291 | 98.98% | |
3 | 304 | 300 | 98.68% | |
4 | 297 | 302 | 98.51% | |
5 | 299 | 305 | 98.03% | |
6 | 302 | 306 | 98.69% | |
25 | 1 | 306 | 298 | 97.39% |
2 | 300 | 294 | 98.00% | |
3 | 298 | 304 | 98.03% | |
4 | 302 | 296 | 98.01% | |
5 | 302 | 308 | 98.05% | |
6 | 303 | 295 | 97.36% | |
30 | 1 | 312 | 304 | 97.44% |
2 | 294 | 286 | 97.28% | |
3 | 294 | 306 | 96.08% | |
4 | 308 | 315 | 97.62% | |
5 | 299 | 293 | 97.93% | |
6 | 305 | 297 | 97.38% |
Seed Plate Speed/(r/min) | No. | Actual Missed Broadcast/Piece | Monitor Broadcast Volume/Piece | Missed Broadcast Monitoring Accuracy/% |
---|---|---|---|---|
20 | 1 | 303 | 295 | 97.36% |
2 | 292 | 285 | 97.60% | |
3 | 307 | 300 | 97.72% | |
4 | 295 | 302 | 97.84% | |
5 | 297 | 306 | 97.06% | |
6 | 302 | 309 | 97.73% | |
25 | 1 | 305 | 295 | 96.72% |
2 | 303 | 294 | 97.03% | |
3 | 299 | 310 | 96.45% | |
4 | 301 | 291 | 96.68% | |
5 | 297 | 308 | 96.30% | |
6 | 303 | 295 | 97.36% | |
30 | 1 | 315 | 302 | 95.87% |
2 | 299 | 287 | 95.99% | |
3 | 293 | 306 | 95.75% | |
4 | 303 | 315 | 96.19% | |
5 | 299 | 285 | 95.32% | |
6 | 308 | 295 | 95.78% |
Seed Plate Speed/(r/min) | No. | Actual Broadcast Volume/Piece | Actual Missed Broadcasts/Piece | Monitor Broadcast Volume/Piece | Monitor the Amount of Missed Broadcasts/Piece | Accuracy Rate of Broadcast Monitoring/% | Accuracy Rate of Missed Broadcast Monitoring/% |
---|---|---|---|---|---|---|---|
20 | 1 | 1137 | 25 | 1107 | 26 | 97.36% | 96.15% |
2 | 1137 | 24 | 1110 | 23 | 97.60% | 95.83% | |
3 | 1137 | 28 | 1111 | 27 | 97.72% | 96.43% | |
4 | 1137 | 22 | 1162 | 21 | 97.84% | 95.45% | |
5 | 1137 | 18 | 1171 | 19 | 97.06% | 94.74% | |
6 | 1137 | 30 | 1163 | 31 | 97.73% | 96.77% | |
7 | 1137 | 25 | 1121 | 24 | 98.59% | 96.00% | |
8 | 1137 | 21 | 1155 | 22 | 98.44% | 95.45% | |
9 | 1137 | 24 | 1111 | 25 | 97.71% | 96.00% | |
10 | 1137 | 28 | 1109 | 27 | 97.54% | 96.43% | |
11 | 1137 | 24 | 1168 | 23 | 97.35% | 95.83% | |
12 | 1137 | 29 | 1110 | 28 | 97.63% | 96.55% | |
25 | 1 | 1137 | 33 | 1089 | 31 | 95.78% | 94.55% |
2 | 1137 | 29 | 1187 | 27 | 95.79% | 93.75% | |
3 | 1137 | 35 | 1189 | 33 | 95.63% | 94.29% | |
4 | 1137 | 27 | 1187 | 25 | 95.79% | 93.33% | |
5 | 1137 | 22 | 1090 | 23 | 95.87% | 94.74% | |
6 | 1137 | 40 | 1075 | 37 | 94.55% | 93.00% | |
7 | 1137 | 27 | 1195 | 29 | 95.15% | 93.75% | |
8 | 1137 | 29 | 1081 | 27 | 95.07% | 93.10% | |
9 | 1137 | 29 | 1195 | 30 | 95.15% | 96.00% | |
10 | 1137 | 35 | 1088 | 33 | 95.69% | 94.29% | |
11 | 1137 | 35 | 1196 | 33 | 95.07% | 94.29% | |
12 | 1137 | 35 | 1090 | 37 | 95.87% | 94.05% | |
30 | 1 | 1137 | 43 | 1078 | 40 | 94.81% | 93.02% |
2 | 1137 | 35 | 1080 | 32 | 94.99% | 93.75% | |
3 | 1137 | 43 | 1200 | 40 | 94.75% | 92.09% | |
4 | 1137 | 40 | 1205 | 37 | 94.36% | 92.50% | |
5 | 1137 | 35 | 1074 | 27 | 94.46% | 92.11% | |
6 | 1137 | 48 | 1070 | 32 | 94.11% | 91.67% | |
7 | 1137 | 38 | 1077 | 36 | 94.72% | 94.74% | |
8 | 1137 | 35 | 1199 | 32 | 94.83% | 93.10% | |
9 | 1137 | 40 | 1068 | 43 | 93.93% | 93.02% | |
10 | 1137 | 46 | 1069 | 45 | 94.02% | 92.00% | |
11 | 1137 | 44 | 1199 | 41 | 94.83% | 93.18% | |
12 | 1137 | 42 | 1070 | 44 | 94.11% | 91.49% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Yuan, Y.; Niu, K.; Shi, Z.; Zhou, L.; Zhao, B.; Wei, L.; Liu, L.; Zheng, Y.; An, S.; et al. Design and Experiment of a Sowing Quality Monitoring System of Cotton Precision Hill-Drop Planters. Agriculture 2022, 12, 1117. https://doi.org/10.3390/agriculture12081117
Bai S, Yuan Y, Niu K, Shi Z, Zhou L, Zhao B, Wei L, Liu L, Zheng Y, An S, et al. Design and Experiment of a Sowing Quality Monitoring System of Cotton Precision Hill-Drop Planters. Agriculture. 2022; 12(8):1117. https://doi.org/10.3390/agriculture12081117
Chicago/Turabian StyleBai, Shenghe, Yanwei Yuan, Kang Niu, Zenglu Shi, Liming Zhou, Bo Zhao, Liguo Wei, Lijing Liu, Yuankun Zheng, Sa An, and et al. 2022. "Design and Experiment of a Sowing Quality Monitoring System of Cotton Precision Hill-Drop Planters" Agriculture 12, no. 8: 1117. https://doi.org/10.3390/agriculture12081117
APA StyleBai, S., Yuan, Y., Niu, K., Shi, Z., Zhou, L., Zhao, B., Wei, L., Liu, L., Zheng, Y., An, S., & Ma, Y. (2022). Design and Experiment of a Sowing Quality Monitoring System of Cotton Precision Hill-Drop Planters. Agriculture, 12(8), 1117. https://doi.org/10.3390/agriculture12081117