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Abstract: Research on the mechanical harvesting of pineapples is currently in its early stages. The
purpose of this study is to provide a design and configure a method for multi-flexible-fingered roller
pineapple harvester. Depending on the physical and mechanical characteristics of pineapples, the
evaluation function for the critical damage condition of the fruit was established. Our experimental
results revealed the optimal parameters for pineapple harvesting were as follows: the rollers of the
harvesting mechanism should be inclined at 35◦, the left flexible fingers should be 120 mm long, the
gap between each of the left flexible fingers should be 30 mm, the length of the right flexible fingers
should be 150 mm long, and the gap between each of the right flexible fingers should be 10 mm. The
harvesting rate was 85% and the damage rate was 5% in the laboratory; in the natural environment,
harvesting rate and damage rate were 78% and 8% respectively, and the harvesting speed was about
1 s per fruit, which demonstrated the harvesting machinery could sufficiently meet the usage demand
of pineapple harvesting. In the cases of unsuccessful harvesting, failure resulted from mismatched
flexible finger length, fruit size, and harvesting posture and position.

Keywords: agricultural machinery; mechanism; pineapple harvester; flexible fingers; roller

1. Introduction

The production cost of fruit is high and depends heavily on labor. Most fruits are
harvested manually. According to statistics, the cost of hand-harvesting fruits accounts for
30% to 60% of total production cost [1]. The mechanization of fruit harvesting has become
increasingly important as the cost of manual labor rises [2]. Competition in the global
market requires the use of fast and efficient harvesting systems that reduce harvesting costs.
Extensive technical research into fruit and vegetable harvesting machinery has been carried
out in various countries [3,4]. There are three main types of mechanized fruit harvesting:
harvest-assist platforms, picking robots and mechanized batch harvesting systems [5,6].
Harvest-assist platforms are mainly used to reduce labor intensity and improve manual
harvesting efficiency but still require labor. Picking robots and mechanized batch harvesting
systems often integrate information from disciplines, such as plant and food sciences, and
engineering, in order to reduce labor and simplify the harvesting process [3,4,7]. Most
recent studies on picking robots focus on small-sized, light-weight crops [8]. In addition,
robotic picking is relatively inefficient, costly and not very stable for long-term use [9,10].
Mechanized batch harvesting methods have been implemented in harvesting nuts and
fruits with relatively hard peel since the early 1960s [11–13].

Pineapples play a significant role in the grocery cart of many populations internation-
ally, including China, Brazil, and the USA. Pineapple occupies an important place in the
tropical agricultural cash crop market, being the third most important tropical fruit after
bananas and mangoes [14,15]. O’Brien et al. (1970) [16] proposed an automated pineapple
harvester that caused acceptable mechanical damage by using a ripening chemical that
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enabled the machine to recover 99% of the fruit. Their harvester applied lateral and down-
ward forces on the fruit while simultaneously applying an opposing force on the pedicel.
The action resulted in a bending moment on the pedicel. A few researchers have studied
pineapple identification, positioning [17–19] and picking end-effectors [20,21]. Research on
the mechanization of pineapple harvesting, however, is still in its nascence [22,23]. In the
past, studies on pineapple fruit plant detachment were focused on stalk cutting. Most re-
sults showed that the stalk cutting method can separate fruit from the plant easily, however,
such methods have to locate the pineapple stalk accurately; this results in inefficiency.

The purpose of this paper is to study mechanized batch harvesting methods. A multi-
flexible-fingered roller pineapple batch harvesting mechanism was designed according to
pineapple’s ellipsoidal shape and hard waxy peel. This harvesting device bends pineapple
stalks and separates the fruit from the plant using two pairs of tilted flexible rubber fingers.
Those fingers provide a breaking bending moment on the fruit, which simulates the process
of manual picking. The moment required to break the abscission layer at the pineapple calyx
was measured. The mechanics of the fingers acting on the pineapples were investigated,
and the key parameters of a suitable harvesting mechanism were obtained.

2. Materials and Methods
2.1. The Physical and Mechanical Properties of Pineapples and Their Stems

Usually, both robotic and mechanical batch harvesting must ensure the lowest possible
rate of damage to the fruit. The physical and mechanical properties of the fruit and stem
define the basic premise for achieving damage-free harvesting.

2.1.1. Physical Characteristics of Pineapple Fruit and Plant

According to the United Nations Economic Commission for Europe (UNECE) standard
for pineapples (FFV-49), the ripeness of pineapple can be classified into five stages from C0
to C4 depending on peel color: stage C0 contains 0% yellow, stage C1 0–25% yellow, stage
C2 25–50% yellow, stage C3 50–75% yellow, and stage C4 75–100% yellow. Between C1 and
C2 maturity, pineapples are easier to transport and less prone to damage [14]. The size
and plant height of pineapples were measured (as shown in Figure 1) by using a random
selection method in October 2021 in Shenwan Town, Zhongshan City, Guangdong Province,
China (north latitude N22◦18′18.46”; longitude E113◦21′30.07”). Shenwan pineapples, also
known as the Jinshan species, were transplanted to Shenwan in 1915 by repatriated Chinese
who had been living in Peru. Two hundred pineapples with maturity stage C1 and C2
were selected to measure the maximum diameter (as shown in Figure 1a), length of fruit
(as shown in Figure 1b) and the height of the plant. The samples selected were all pest-
free and had reasonable planting gaps. At the measurement site, most of the pineapples
were growing upright or leaning slightly. The statistical results are shown in Figure 2; the
average and standard deviations are summarized in Table 1. The pineapple plant heights
were relatively scattered, with the highest being 930 mm. Most of them were concentrated
between 650 mm and 850 mm. The maximum diameter and length of the specimens were
142 mm and 152 mm, respectively. Most diameters and lengths were concentrated between
100–110 mm and 120–150 mm, respectively.

Table 1. Pineapple physical properties.

Average Value/cm Standard Error

Height of plant 70.56 9.19

Diameter 10.66 1.18

Length 13.23 0.59



Agriculture 2022, 12, 1175 3 of 19

Agriculture 2022, 12, x FOR PEER REVIEW 3 of 20 
 

 

 

   
(a) (b) (c) 
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Figure 2. Histogram of statistical data. (a) Diameter of pineapple. (b) Length of pineapple. (c) 
Height of plant. 
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Fruit trees generally have four abscission zones [24], two for leaves and two for fruit. 

Fruits have two abscission zones: the first abscission zone is located between the branch 
and the fruit peduncle (AZ-A), and the second is found in the fruit calyx (AZ-C). Liu et al. 
(2008) [25] presented a detailed method measuring the bending and tensile strength of 
tomato fruit abscission layers (AZ-A). During their experiments, fruit stalks containing 
tomato abscission layers were placed on a miniature electronic universal testing machine. 
The bending moment required for the stalks to break at the abscission layer was calculate 
by force, displacement and the physical properties of the tomato fruit stalks. Liu et al. 
(2020) [26] derived a theoretical fracture model for the abscission layer at the pedicel of 
tomatoes under three different fruit plucking patterns (pulling, bending, twisting). The 
abscission zone at the pineapple calyx is also defined as AZ-C (as shown in Figure 3). The 
abscission layer is located in a zone of anatomically distinct cells. The presence of the 
abscission layer makes it easier for the fruit to separate from the plant. 

Studies of hand-picking patterns provide greater insight into the optimal methods 
for separating the fruit from the plant [27]. In September 2021, we conducted a survey of 
pineapple hand-picking methods and concluded that there are two fruit plant detachment 
methods: the first method involves holding the pineapple with the left hand while the 
right hand cuts the stem with a knife, the second method involves holding the upper part 
of the pineapple with the right thumb and the lower part of the pineapple with the 
remaining fingers of the right hand and separating the pineapple from the plant by 
turning the hand to bend the abscission layer at the calyx. 

The bending moment applied to the abscission layer at the calyx of the fruit enables the 
pineapple fruit to cleanly detach from the plant. Before we continue, the bending moment 
required to break the abscission layer at the calyx of the fruit needs to be measured. One 

Figure 1. Measurement of pineapple physical property parameters. (a) Diameter of pineapple.
(b) Length of pineapple. (c) Height of plant.
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Figure 2. Histogram of statistical data. (a) Diameter of pineapple. (b) Length of pineapple. (c) Height
of plant.

2.1.2. Pineapple Separation Mode from Plant

Fruit trees generally have four abscission zones [24], two for leaves and two for
fruit. Fruits have two abscission zones: the first abscission zone is located between the
branch and the fruit peduncle (AZ-A), and the second is found in the fruit calyx (AZ-
C). Liu et al. (2008) [25] presented a detailed method measuring the bending and tensile
strength of tomato fruit abscission layers (AZ-A). During their experiments, fruit stalks
containing tomato abscission layers were placed on a miniature electronic universal testing
machine. The bending moment required for the stalks to break at the abscission layer
was calculate by force, displacement and the physical properties of the tomato fruit stalks.
Liu et al. (2020) [26] derived a theoretical fracture model for the abscission layer at the
pedicel of tomatoes under three different fruit plucking patterns (pulling, bending, twisting).
The abscission zone at the pineapple calyx is also defined as AZ-C (as shown in Figure 3).
The abscission layer is located in a zone of anatomically distinct cells. The presence of the
abscission layer makes it easier for the fruit to separate from the plant.

Studies of hand-picking patterns provide greater insight into the optimal methods
for separating the fruit from the plant [27]. In September 2021, we conducted a survey of
pineapple hand-picking methods and concluded that there are two fruit plant detachment
methods: the first method involves holding the pineapple with the left hand while the right
hand cuts the stem with a knife, the second method involves holding the upper part of the
pineapple with the right thumb and the lower part of the pineapple with the remaining
fingers of the right hand and separating the pineapple from the plant by turning the hand
to bend the abscission layer at the calyx.

The bending moment applied to the abscission layer at the calyx of the fruit enables the
pineapple fruit to cleanly detach from the plant. Before we continue, the bending moment
required to break the abscission layer at the calyx of the fruit needs to be measured. One
hundred pineapple plants with maturity stages C1 and C2 were randomly selected from a
pineapple plantation and wrapped in cling film to reduce the lateral force on the abscission
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layer at the calyx of the fruit. Experiments were carried out within the room temperature
range of 20–25 ◦C on one day and all fruits were labeled before the experiment.
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Figure 3. Schematic diagram of pineapple plant structure name. (a) Citrus leaf and fruit abscission
zones. (b) Pineapple plant with fruit. (c) Pineapple abscission layer.

2.1.3. Mechanical Properties of the Abscission Layer at the Calyx of the Pineapple

All these experiments were carried out on a microcomputer-controlled electronic
universal testing machine with an accuracy of ±0.5% and a resolution of ±1/500,000. The
loading and unloading was controlled automatically by the microcomputer and data were
recorded automatically. Before each experiment, fruits were divided into two groups: one
with a maturity range of C1 and the other with a maturity range of C2. The pineapple plant
was fixed horizontally on a jig and clamped without displacement in any direction. The
stem was kept perpendicular to the inverted triangular indenter before the test. A force
transducer with 250 N range was used to detect pressure. Loading rate for all tests was
0.33 mm/s. A test sample was shown in Figure 4a. The distance from the fracture end of
each stem to the indentation position (at the blue line, as shown in Figure 4b) was measured
separately. The length L’ of the moment arm measuring method was demonstrated in
Figure 4b. This measurement method can be simplified to a model shown in Figure 4c,
where point A is the fruit calyx abscission layer and point B is the position of the stem
under force. The bending moment required to break the abscission layer of the fruit calyx
is calculated by peak force F’ multiplied by L’. Some of the measured lengths L’ were listed
in Table 2.
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Table 2. Length.

Maturity Levels L’1/mm L’2/mm L’3/mm L’4/mm L’5/mm L’6/mm L’ 7/mm L’8/mm L’9/mm L’10/mm

C1 33 30 31 33 32 34 38 46 63 59

C2 36 43 51 47 37 35 45 42 37 60

2.1.4. Analysis of Experimental Results

Fruit stems were all broken from the abscission layer at the calyx of the fruit, and the
required bending moment M was derived from Equation (1). Several test result diagrams
of maturity C1 and C2 samples are shown in Figure 5, where the peak of each curve in the
figure is the bending moment when the abscission layer at the calyx of the fruit breaks. The
average and maximum bending moments with maturity levels C1 and C2 are shown in
Table 3. The average and the maximum bending moments in stage C1 are greater than in
stage C2.

M = F′L′ (1)
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Table 3. Bending moment.

Maturity Levels Average Bending Moment/(N·m) Maximum Bending Moment/(N·m)

C1 3.67 4.96

C2 2.41 3.02

2.2. Pineapple Batch Harvesting Mechanism Design
2.2.1. Multi-Flexible-Fingered Roller Pineapple Harvesting Mechanism

The multi-flexible-fingered roller pineapple harvesting mechanism is shown in Figure 6.
Flexible materials, such as rubber and plastic, have been widely used in various flexible
clamps due to their super-elasticity and shock-absorbing properties (Navas et al., 2021) [4].
The flexible fingers made of super-elastic flexible material reduce damage to the fruit.

The harvesting device was taken out for analysis. It consists of three main parts:
the flexible-fingered rollers, the leaf press shelf, and the frame. The rollers are arranged
symmetrically on the frame and each roller is fitted with two rows of symmetrical flexible
fingers, which rotate in opposite directions at the same angular speed to provide the
bending moment. The radius R of the rollers is 55 mm and their thickness is 5 mm. The
distance between the centers of the two rollers is 400 mm, according to the measured
pineapple diameter (as shown in Table 1).

The schematic diagram of this operational method is shown in Figure 7. At the
beginning of the harvesting process, the two rollers are inclined relative to each other, and
the flexible fingers are oriented perpendicular to the ground. Then, the leaf press shelf is
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pressed into the plant, plant leaves are pressed down to the ground, and the pineapple will
be located in the middle of the two rollers. The rollers rotate in reverse at the same angular
speed. The left flexible fingers touch the pineapple and push the plant to the right under
the force from the left side. The right flexible fingers touch the pineapple and apply an
opposing right side force on the fruit. Those flexible fingers together pluck the pineapple
by applying a bending moment on the two sides of the pineapple. Then, fruit calyx at the
abscission layer breaks off.
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2.2.2. Flexible Fingers Design and Force Deformation Analysis

To ensure sufficient space between the flexible finger and the pineapple and to protect
the pineapple from damage, the left finger is designed as a solid circular cross-section
flexible rod and is made of natural rubber (as shown in Figure 8). In Figure 8, Ni denotes
the pressure of continuous bending unit i, length L0 = 120 mm and diameter φ1 = 22 mm.
Natural rubber has excellent resilience, plasticity and wear resistance, and is a common
material for flexible picking devices [28].
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The right flexible finger is designed as a nylon screw wrapped in hollow circular
section silicone rubber tubing, as shown in Figure 9. In Figure 9, Fi denotes force i dispersed
across the contact surface, L1 = 150 mm, φ2 = 16 mm, φ3 = 36 mm and L2 = 120 mm. The
right flexible finger is fixed to the roller by two nuts. The nylon screw has strength, stiffness
and high impact absorption capacity. This structure can reduce the sudden impact force of
the flexible rod acting on the surface of the pineapple. In order to prevent relative slippage
between the left flexible fingers and the pineapple and to increase the coefficient of friction
on the contact surface, the surface of left flexible fingers is textured by bulges. The uneven
surface of the pineapple engages with the bulges and generates greater friction.
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The contact length between the left flexible finger and the pineapple must be sufficient,
such that the force is spread over each small bending unit, and reaction force Fi on the
pineapple surface can spread over the contact area. If the squeezed circular cross-section
changes to an elliptical cross-section, the contact area between the surface of pineapple fruit
and the flattened silicone rubber tube becomes larger, which also helps prevent damage to
the fruits.

The structure of the flexible finger is assumed to be exact and regular in deriving its
mechanical model. Rubber has large deformation and super elastic ability. It is difficult to
construct a satisfactory and uniform model to express all of rubber’s non-linear viscoelastic
and stress-softening properties. The deformation that occurs when the rubber flexible
fingers come into contact with the pineapple can be equated as a force deformation model
for the flexible rubber cantilever beam that is fixed to the roller. Howell et al. (2001) [29]
applied the pseudo-rigid body approach to analyze flexible beams and proposed a force
deformation model to express large deformations of compliant cantilever beams. The
compliant cantilever beam structure (as shown in Figure 10) with the force at the free end
is equivalent to a rigid rod that is hinged together, and a torsion spring is added at the joint
to analyze the trajectory of the end of the cantilever beam. The model of such a compliant
cantilever beam is expressed as Equations (2)–(9).

I =
πr4

4
(2)

K =
γKθEI

l
(3)

n = − 1
tan φ

(4)



Agriculture 2022, 12, 1175 8 of 19

η =
√

1 + n2 (5)

θ′ = arcsin
ly
γl

(6)

P =
Kθ′

ηγl sin(π
2 − θ)

(7)

θ0 = cθθ′ (8)

F = ηP (9)

where, I, K, θ′, θ0 and F, φ are the moment of inertia of the circular section (m4), the torsion
spring constant, the pseudo-rigid-body angle (◦), the actual angle of rotation at the end
of the flexible beam (◦), the load applied to the beam (N), and the angle of force F (◦),
respectively; r is the circular section radius of the flexible finger (m); Kθ is the stiffness
coefficient; γ is the characteristic radius factor; γl is the characteristic radius (m); E is
Young’s modulus of the material (MPa); Kθ , γ are constants that can be derived by checking
the table.
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When the Shore hardness A of rubber is between 20 and 80, the Young’s modulus E of
rubber can be approximated by the Shore hardness A [30], and is expressed as Equation (10).

log E = 0.0235S− 0.6403 (10)

where S is Shore A hardness, (HA).
The Shore hardness A of the rubber flexible finger was measured by a SYNTEK digital

Shore hardness A tester. This was measured by pressing the pressure needle vertically into
the plane of the rubber flexible finger specimen; the needle and the specimen were held
in full contact for 1 s to stabilize the value and then record the data. Five positions were
randomly selected as measuring points, and their average was taken as the final Shore
hardness A. The measured Shore hardness A of the rubber flexible finger was 54.5. Radius
r, length l, and length factor γ were 11 mm, 96 mm and 0.85, respectively. Therefore, the
Young’s modulus of the flexible finger rubber is 4.375. The relationship between ly and F
was derived according to Equations (6), (7) and (9).

In order to verify that the theoretical model was also applicable to the flexible fingers of
circular cross-section, one end of a flexible finger was fixed on a clamp, a load perpendicular
to the center line of the flexible finger was applied at the other end (l = 96 mm). Because the
load was perpendicular to the center line of the sample, n was equal to 0. The experiment
was carried out on a micro-controlled electronic universal testing machine with a loading
speed of 0.4 mm/s and the data were automatically recorded by a microcomputer. Each
recorded displacement was taken as ly and substituted into the Equation (6) to calculate θ′

and further calculate theoretical force F. The displacement force curve of the theoretical
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force F and the measured force are both plotted on the same coordinates, as shown in
Figure 11. The recorded and calculated displacement-force curves are very similar. This
result indicates that the flexible rubber cantilever beam can be characterized by the pseudo-
rigid-body method.
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2.2.3. Mechanical Analysis of the Critical Fracture State of the Abscission Layer under the
Action of a Flexible Finger

The geometry of the pineapple can be approximated as an ellipsoidal shape (Bhat et al., 2020).
We will approximate the central vertical profile of the pineapple as an ellipse. The maximum
diameter and the length of pineapple were taken as the short and long axis of the ellipse,
respectively. The harvesting model was simplified to the structure shown in Figure 12. The
connection between the pineapple stalk and the ground was simplified as a hinge and the
pineapple stalk was considered as a rigid body. According to Equations (6) and (7), the
shorter the distance between the force applied to the flexible finger to the fixed end, the
greater the force required and deform the flexible finger to the same angle. The distance
between the end of the nylon screw and the end of the finger was 30 mm. Because the
right finger is significantly more rigid than the left finger, it was taken to be a rigid body.
The kinematic mechanism was analyzed according to the above approximations. Both
rollers rotated in reverse at the same angular speed, the left flexible finger touched the
pineapple fruit first and the whole pineapple plant rotated around the fixed hinge point as
shown in Figure 12a. Then, the end of the right flexible finger contacted the pineapple fruit
and pushed the pineapple fruit backwards. Finally, the abscission layer at the calyx of the
pineapple broke under the action of the two flexible fingers, as shown in Figure 12b. The
contact process between the flexible fingers and the pineapple fruit is complex. The only
problem that needs to be solved is how to keep the bending moment of the two fingers
greater than that broken bending moment of the abscission layer. Therefore, the position of
each contact point at the critical breaking state needs to be analyzed.
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A coordinate system was established, as shown in Figure 13. Its origin is located at
the center of the left roller. Assuming that the initial position of the pineapple was at the
center of both rollers in the x-axis direction and that the y-axis direction was unfixed, the
coordinates of the left roller center O1 and the right roller center O2 were set as (x1,y1) and
(x2,y2), respectively. The lower vertex C of the long axis of pineapple fruit was set as (xc,yc).
θ is the relative tilt angle of the two rollers. θ1 is the angle between the flexible finger and
the line O1O2.

x2 = x1 + L cos θ (11)

y2 = y1 + L sin θ (12)

xc =
L cos θ

2
(13)

θ1 = θ2 (14)

where L is the distance between the centers of the two rollers.
The tangent line of the ellipse is expressed as Equation (15). The ellipse in the coordi-

nate system is expressed as Equation (16).

ξ

a2 +
ψ

b2 = 1 (15)

(y− a− yc)
2

a2 +

(
x− 0.5L cos θ)2

b2 = 1 (16)

where,a and b is the long and short semi-axes of the ellipse. The expressions of ξ and ψ are
as follows:

ξ = (υ− a− yc)(L sin θ − a− yc) (17)

ψ = (∂− 0.5L cos θ)(L cos θ − 0.5L cos θ) (18)

where (∂,υ) is a point on the ellipse.
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Substituting point B (xb,yb) into (x, y) in Equation (16) and (∂,υ) in Equations (17) and (18),
and point O2 (x2,y2) into (x, y) in Equations (17) and (18), the contact position xb, yb between
the right flexible finger and the pineapple can be calculated and expressed as xb = f1(θ, yc)
and yb = f2(θ, yc), where xb > 0.

The relationship between θ and θ2 can be derived from Equations (19), (20) and their
geometric relationship can be expressed as θ2 = f3(θ, yc). The slope of the line O2-B dy

dx is
as follows:

dy
dx

=
y2 − yb
x2 − xb

(19)

and
dy
dx

= tan(θ + θ2) (20)

The coordinates of the intersection A′(xa
′,ya
′) in Figure 13 were calculated using

Equations (16), (21) and expressed as xa
′ = f4(θ, yc), ya

′ = f5(θ, yc).

ya
′ = tan(θ − θ1)xa

′ (21)

where xa ≥ 0.
Figure 14 shows a diagram of the state of the left flexible finger under force. Take

point A (xa,ya) as the final intersection of the deformed flexible finger with the ellipse (fruit
contour). The horizontal coordinate of point A xa can be computed approximately using
Equation (22). Its vertical coordinate ya was calculated by substituting xa into the elliptic
Equation (16). Symbol d represents the magnitude of the flexible finger’s longitudinal
deformation, and its solution formula is shown in Equation (23). The inclination angle θA of
the tangent line of ellipse at point A was calculated by substituting the coordinates of point
A into the ellipse tangent line Equation (15) and expressed as θA = f6(θ, yc). The action
angle φ of the flexible finger can be deduced by the geometric relationship in Figure 14, as
in Equation (24).

xa =
xa
′ + xc

2
(22)

d =
|ya − tan(θ − θ1)xa|√

1 + (tan(θ − θ1))
2

(23)

φ = θA + θ − θ1 +
π

2
(24)
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Figure 14. Forced state of the left flexible finger.

Equation (25) is the function of Circle O1. The coordinates of intersection point D
(xd,yd) between line O1A’ and circle O1 are computed by Equations (25) and (26). Symbol
ld denotes the distance between the point A and point D, and its computing formula is
Equation (27).

xd
2 + yd

2 = R2 (25)

yd = tan(θ − θ1)xd (26)

ld =

√
(xa − xd)

2 + (ya − yd)
2 (27)

where R is the radius of the roller.
The left flexible finger will deform after it makes contact with the pineapple fruit. Its

deformation displacement can also be seen as an offset pushed by force F. According to the
flexible finger model in Section 2.2.2, the relationship among parameters ly, d, γl, and ld
satisfy Equations (28) and (29).

ly = d (28)

γl = ld (29)

Then, input parameters r = 11 mm, γ = 0.85, Kθ = 2.65 and S = 53.5 HA, E = 4.375
MPa into Equations (2)–(9) together, resulting in the function of force F = g(θ, yc).

Figure 15 shows a schematic representation of the forces on the pineapple when it is
separated from the plant. Friction between the pineapple fruit surface and finger can be
ignored, because the bending moment created by them is very small. Therefore, bending
moment M is co-generated by FA and FB, M = M1 + M2. Moment M1 and M2 can be
deduced according to Figures 14 and 15 and the geometrical relations. M1 and M2 are
expressed as Equations (30) and (31), respectively.

M1 = FA[− cos θA|0.5L cos θ − xa| − sin θA|ya − yc|] (30)

M2 = FB[cos(θ2 + θ)|xb − 0.5L cos θ|+ sin(θ2 + θ)|yb − yc|] (31)

F and FA are equivalent reaction forces, so that

F = FA (32)
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Parameters xb, yb, xa, ya and FA are all functions of the independent variables (θ,yc).
Therefore, the sum of the bending moment can be expressed by Equation (33).

M = M1 + M2 = f (θ, yc, FB) (33)
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2.2.4. Key Parameters of the Harvesting Mechanism

A load of 50 N cannot cause damage to the pineapple fruit [31]. Therefore, the
maximum interaction force between each finger and the pineapple fruit should be less than
50 N, meaning if FA and FB reach 50 N, the bending moment formed by the two flexible
fingers must be greater than the moment required to break the abscission layer at the calyx
of the pineapple. The force FA, generated by the left flexible finger on the pineapple, is a
function of θ and yc. A constraint as expressed in Equation (34) can be derived to avoid
injuring the fruit.

M = M1 + M2 = f (θ, yc, 50) ≥ Mac (34)

where Mac is the actual measured moment required to break the abscission layer at the
pineapple calyx (as shown in Table 3).

Another prerequisite for successful harvesting is that the fruit itself can be fed into the
cavity between the two rollers; the horizontal distance between the two rollers at a certain
inclination angle must satisfy Equation (35). According to this constraint, inclination angle
θ must be less than 57◦.

(L cos θ − 2R) > 2b (35)

A program was designed using MATLAB R2020a (The Mathworks Inc., Natick, MA,
USA) software to calculate M under the different yc. The range of θ is [0, 57◦]. Due to the
possible relative position of the pineapple fruit and the harvesting device (in the vertical
direction), the range of yc is [−30 mm, 20 mm]. The traversal interval of θ and yc were set
as 1◦ and 1 mm, respectively. The computed space M is shown in Figure 16.

Figure 16 shows that, regardless of yc, bending moment M increases with θ. If the angle
θ does not change, the yc gets bigger, and the bending moment becomes smaller. When
θ is 51◦ and yc is −30 mm, the bending moment reached the maximum. The maximum
bending moment created by the pair of flexible fingers is 2.5 N·m. The force FA applied to
the pineapple by the left flexible finger at different positions yc was calculated according
to the pseudo-rigid-body model under conditions of θ being equal to 0◦, 35◦ and 40◦, and
was plotted in Figure 17. Figure 18 shows the bending moment under conditions of θ
being equal to 0◦, 35◦ and 40◦. It is clear from Figure 17 that FA is less than 50 N and will
not damage fruit. It can be observed in Figure 18 that, when the inclination angle θ is
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35◦ and 40◦, the bending moment provided by the pair of flexible fingers is larger than
2 N·m. According to the above calculations, and in keeping with the design principle of
compactness, the final inclination angle θ is set as 35◦. In the process of harvesting, the
harvesting possibility area of yc is controlled within [−30 mm, 20 mm].
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Because the maximum bending moment required to separate the pineapple from the
plant is 4.96 N·m (as listed in Table 3), at least two pairs of flexible fingers must be in
contact with the pineapple to provide a sufficient bending moment. Therefore, the distance
between the two flexible fingers should be less than the diameter of the fruit. The constraint
formula is as shown in Equation (36).

Lf ≤ 2nb (36)

where L f is the distance between the two flexible fingers; n is a safety coefficient, 0 < n < 1.
The gaps between the two adjacent flexible fingers on the left and right rollers were set as
30 mm and 10 mm, respectively.
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2.3. Experiment Method

According to the results calculated in Section 2.2, the main parameters of the pineapple
harvesting mechanism: the diameter of the roller is 110 mm; the inclination angle of the
two rollers is 35◦; the relative distance between the two rollers is 400 mm; the length of
the left flexible fingers equaling to 120 mm, the clearance between each of the left flexible
fingers equaling to 30 mm, the length of the right flexible fingers equaling to 150 mm, and
the clearance between each of the right flexible fingers equaling to 10 mm.

The experimental pineapple harvesting machine is shown in Figure 19. In the harvest-
ing experiment, the rollers rotated at the same speed. During the rapid grasping of fruit by
two fingers, the peak collision force had a positive correlation with the collision speed, and
the collision time was negatively correlated with the collision speed [32]. The speed of the
roller was set to 100 r/min in order to prevent damage to the fruit caused by collision force.
In order to further clarify the actual state of contact between the pineapple and the flexible
fingers, the experiment was recorded with a camera.
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A case of the harvesting process in laboratory is shown in Figure 20. 400 samples, with
90–120 mm diameters, 100–140 mm lengths and ripeness stages between C1 and C2 were
selected to do this trial in the laboratory. Before the trial, the bottom of the pineapple stalk
was fixed and was randomly placed in different positions within the harvesting possibility
zone. Possible damage areas were marked with a note pen before the test. Because the
pineapple has a hard waxy peel, most damage occurred in the pulp. It was hard to find
inside damage with upon first glance. The detached fruits were stored in a temperate box
at 20 ◦C for three days, and then cut open in the possible damaged areas to check for injury.
In order to further evaluate the harvesting performance of the multi-flexible-fingered roller
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in the natural environment, 80 samples were used to do trial in natural environment, as
shown in Figure 21.
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Figure 20. Some pictures of pineapple harvesting in a harvesting process. (a) Pineapple was located
in the harvesting possibility area. (b) Left fingers contacted the pineapple. (c) Abscission layer was
broken. (d) Pineapple fruit was detached from the plant.
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To evaluate the performance of the proposed mechanism harvesting pineapple fruit, three
metrics were defined. The first metrics was the harvesting rate expressed in Equation (37).
The harvesting rate is the number of intact harvested pineapple fruits per total harvested
pineapple fruits. The second metric was the damage rate expressed in Equation (38). The
damage rate is the number of injured pineapple fruits per total harvested pineapple fruits.
In this study, the fruit had to be completely intact. Cases of small damage (diameter less
than 10 mm) were counted as 60% damaged and cases of larger damage were counted as
totally damaged. Both types of damage were considered harvesting failures. The third
metric was harvesting speed expressed in Equation (39).

Harvesting rate =
Intact harvested f ruits number

Total f ruits number
× 100% (37)

Damage rate =
Injured f ruit number

Intact harvested f ruits number
× 100% (38)

Harvestingspeed =
Harversted f ruitnumber

Time
(39)

3. Results and Discussion

In the laboratory trial, the rate of successful harvest was 85%, with 5% damaged.
The harvesting experiment using the multi-flexible-fingered roller of pineapple harvester
was conducted in the natural environment, which is shown in Figure 21. The results,
in the natural environment, showed harvesting rate and damage rate to be 78% and 8%
respectively. The harvesting speed was about 1 s per fruit. When the roller is long enough,
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multiple pineapples can be harvested in a single harvesting process. Most successfully
harvested pineapples were separated from the plant at the calyx by the action of the flexible
finger, with a small amount separating from the plant due to the breakage of the stem
nodes. There were four factors that likely led to the majority of harvest failure. The first
was that the flexible finger is too short for small fruits or too long for big fruits. The second
was that the gaps between the two adjacent flexible fingers are too big for small fruits,
allowing only one pair of flexible fingers to act on the surface of the fruit. A single pair of
flexible fingers cannot provide a sufficient bending moment to separate fruit from the plant.
The third factor was that the tilt angle of some pineapple stalks was greater than 30◦ and
could not be fed into the cavity between the two rollers. The fourth possibility was that
the harvesting position is too high to form the bending moment, and the force on the fruit
only acted to pull the pineapples fruit away from the plant. The force direction of the left
and right flexible fingers acting on a few of the fruits tended to be parallel and formed a
squeezing force. Such squeezing force is the main cause of damage.

The end-effector designed by Du et al. (2019) [31] achieved a fruit damage rate of
5%, a plant damage rate of 0%, a fruit fall rate of 1.7% and an average picking speed of
14.9 s per fruit. An automatic pineapple picking and collecting straddle machine proposed
by Guo et al. (2021) [33] reached 1636 plants/hour by simulation. A robotic system for
harvesting pineapples developed by Nguyen et al. (2020) [34] can pick 95.55% fruit with
a speed of 12 s per fruit. FU et al. (2020) [35] designed a semi-automatic screw-type
pineapple picking–collecting machine and achieved a picking speed of 17.99 s per plant.
Ma et al. (2020) [36] designed a pineapple picking manipulator and reached a picking rate
of 80%, with an average picking time 13.5 s. Their harvesting rates vary from 80% to 95%,
and their damage rates vary from 0% to 5%. However, the average picking speed of their
methods was slower than 14 s/fruit. Besides, those robotic fruit picking methods require
precise positioning pineapple. Comparatively, our multi-flexible-fingered roller pineapple
harvesting method is faster, with no requirement of precise positioning.

4. Conclusions

A mechanized pineapple harvesting mechanism was put forward by simulating the
process of manual harvest. In the presented solution, the broken bending moments of the
pineapple abscission layer were measured by a universal electronic testing machine, and
the results showed that the maximum bending moment to break the abscission layer at the
calyx of the pineapple was 4.96 N·m. The experimental curve is very similar with the curve
obtained from the pseudo-rigid-body theory, which indicated that the pseudo rigid body
theory can be used to analyze the large deformation of flexible fingers. The key parameters
of the harvesting mechanism were as follows: the rollers should be inclined at 35◦, the left
flexible fingers should be 120 mm long, the gap between each of the left flexible fingers
should be 30 mm, the length of the right flexible fingers should be 150 mm long, and the
gap between each of the right flexible fingers should be 10 mm.

An experimental device was developed for trial. Experimental results showed that
most of the pineapple fruits could be successfully harvested. The successful harvesting rate
was 85% with a damage rate of 5% in laboratory; in natural environment, harvesting rate
and damage rate were 78% and 8%, respectively. The harvesting speed was about 1 s per
fruit. When the pineapples were located in the harvesting possibility area, the harvesting
mechanism can harvest most of the pineapples with a diameter of 90–120 mm and a length
of 110–150 mm. According to above results, the machinery can sufficiently meet the usage
demand of pineapple harvesting and be more efficient. For unsuccessful harvesting, the
failure resulted from mismatched flexible finger length, fruit size and harvesting posture
and position. A small fruit diameter probably leads to insufficient contact between the
flexible finger and the pineapple, and an insufficient bending moment. If the harvesting
position is too high, the contact position between the two flexible fingers and the pineapple
is almost at the same horizontal height, and the bending moment cannot be formed. The
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harvest damage mainly resulted from the excessive size of some of the fruits, where an
excessive extrusion force formed when the fingers interacted with the pineapple fruit.

The limitations of current research are that the inclination angle between the two rollers
cannot be adjusted, and there is no automatic device to lift the harvesting mechanism. In
future research, the hydraulic rod will be designed to adjust the inclination of the two
rollers. The adaptability of the mechanism will also be improved.
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